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Abstract. In this expository paper, we abstract and describe a simple MCMC
scheme for sampling from intractable target densities. The approach has been
introduced in Gonçalves, Łatuszyński and Roberts (2017a) in the specific
context of jump-diffusions, and is based on the Barker’s algorithm paired
with a simple Bernoulli factory type scheme, the so called 2-coin algorithm.
In many settings, it is an alternative to standard Metropolis–Hastings pseudo-
marginal method for simulating from intractable target densities. Although
Barker’s is well known to be slightly less efficient than Metropolis–Hastings,
the key advantage of our approach is that it allows to implement the “marginal
Barker’s” instead of the extended state space pseudo-marginal Metropolis–
Hastings, owing to the special form of the accept/reject probability. We shall
illustrate our methodology in the context of Bayesian inference for discretely
observed Wright–Fisher family of diffusions.

1 Introduction

Modern data science is awash with problems with intractable likelihoods, that
is, problems in which pointwise evaluation of the likelihood function is ei-
ther impossible or extremely computationally expensive. Intractability can be
caused by data missingness, model complexity, or the sheer size of the data
set. Within this context, Bayesian inference is particularly challenging, as its
algorithmic workhorse, MCMC, requires large numbers (typically many thou-
sands) of likelihood evaluations, and therefore runs the risk of being prohibitively
slow.

We place our problem in the following generic context. Suppose that π(θ) =
π(θ |y) is a target (posterior) density (with respect to some dominating measure ν)
of parameter θ on state space X given data set y. Considering the problem of
designing an MCMC algorithm that targets π , we shall use q(θ, ·) to denote the
density (also with respect to ν) of the proposed transition from θ . The standard
Metropolis–Hastings algorithm proposes a move from θ to φ accepting with prob-
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ability

αMH(θ,φ) = 1 ∧ π(φ)q(φ, θ)

π(θ)q(θ,φ)
(1)

requiring at least a function evaluation of π(φ).
Motivated by this, in recent years there has been increased interesting ret-

rospective simulation techniques which attempt to simulate from an event of
probability (1) directly, and without recourse to calculating the probability it-
self, see e.g. Beskos, Papaspiliopoulos and Roberts (2008), Beskos et al. (2006b),
Papaspiliopoulos and Roberts (2008). These methods rely heavily on being able
to simulate from events such as a duplicated data set, y′ say, conditional on the
parameter φ which might have probability (proportional to) π(φ).

However in the current context, even if retrospective simulation of events of
probability π(θ) and π(φ) is possible and efficient, that does not directly lead to
a solution to the problem of simulation from an event of probability (1) which
is a nonlinear expression of π(θ) and π(φ). This problem falls into the category
of the classical computational probability problem known as the Bernoulli factory
problem: given the probability p which we cannot evaluate but where events of this
probability can be simulated, how can one simulate from an event of probability
f (p)? (cf. Von Neumann (1951), Keane and O’Brien (1994)). In the context of (1),
the function f takes the form f (p1,p2) = 1 ∧ c1p1

c2p2
for suitable constants c1 and

c2, and in many modelling contexts of interest can be equivalently rewritten as

f (p3) = 1 ∧ c3p3. (2)

While substantial progress has been made on efficient solutions to the Bernoulli
factory problem in recent years (e.g., Nacu and Peres (2005), Łatuszyński et al.
(2011) and in more specialised settings Flegal and Herbei (2012), Herbei and
Berliner (2014), Huber (2015, 2016)), it is known that in general there does not ex-
ist a solution when f takes the form given in (2), cf. Asmussen, Glynn and Thoris-
son (1992), Łatuszyński et al. (2011). Fortunately, the flexibility of the Metropolis–
Hastings algorithm allows us to circumvent this difficulty.

In this paper, we will abstract and describe a framework for the implementation
of MCMC with intractable likelihoods by using an alternative acceptance probabil-
ity to that in (1); namely that introduced in Barker (1965). Although less efficient
than (1), the Barker acceptance probability can be simulated using an efficient
and simple Bernoulli factory type algorithm we will describe, called the 2-coin
algorithm. The approach has been first used in the complex setting of exact fully
Bayesian inference for stochastic differential equations with jumps (Gonçalves,
Łatuszyński and Roberts (2017a)) and then also for diffusions with switching
regimes (Łatuszyński, Palczewski and Roberts (2017)) and diffusion driven Cox
processes (Gonçalves, Roberts and Łatuszyński (2017b)). Here, for expository pur-
poses we will illustrate our algorithm with one toy example and then move on to
describe a more realistic example of Bayesian inference for discretely observed
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Wright–Fisher diffusions for which the approach of Beskos et al. (2006b) is not
applicable.

2 Barker’s alternative to Metropolis–Hastings

Peskun (1973) demonstrated that given a proposal kernel q , there are many differ-
ent choices of acceptance probability α(θ,φ) which create a Markov chain with
stationary distribution π , going on to show that the Metropolis–Hastings option
αMH(θ,φ) in (1) maximises the acceptance probability for all possible transi-
tions θ → φ. This in turn implies (via the celebrated Peskun ordering) that the
Metropolis–Hastings choice of acceptance probability minimises the asymptotic
Monte Carlo variance for estimating integrals of functions in L2(π) (see also Mira
and Geyer (1999), Mira (2001); here L2(π) denotes the Hilbert space of func-
tions square integrable with respect to π , for background on functional analytic
perspective on Markov chains we refer to Roberts and Rosenthal (1997) and ref-
erences therein). However, there are many other acceptance probability solutions
which can be shown to be almost as good. We will focus on one introduced in
Barker (1965):

αB(θ,φ) = π(φ)q(φ, θ)

π(θ)q(θ,φ) + π(φ)q(φ, θ)
. (3)

It is straightforward to verify that

αMH(θ,φ)

2
≤ αB(θ,φ) ≤ αMH(θ,φ),

which indicates that the two algorithms have similar performance. More precisely,
in terms of comparing the CLT and its asymptotic variance, the following result
holds, which demonstrates that roughly speaking Barker’s method is at worst half
as good as Metropolis–Hastings.

Proposition 1 (Łatuszyński and Roberts (2013), Theorem 4(ii)). Let f ∈ L2(π)

and denote the i.i.d. Monte Carlo variance by σ 2
π := Varπ(f ). If a square root

central limit theorem holds for f and the Metropolis–Hastings chain with the CLT
assymptotic variance σ 2

MH, i.e.∑N
i=1 f (θi) − π(f )√

N
⇒ N

(
0, σ 2

MH
)
,

then a corresponding CLT holds for f and the Barker chain with CLT asymptotic
variance σ 2

B satisfying

σ 2
MH ≤ σ 2

B ≤ 2σ 2
MH + σ 2

π .



Barker’s algorithm for Bayesian inference 735

On the other hand, when we can simulate efficiently from events proportional
to π(θ), the following 2-coin algorithm gives a simple way of simulating from an
event of probability αB(θ,φ), which we write as c1p1

c1p1+c2p2
:

The 2-coin algorithm for sampling Barker’s acceptance probability:

1. Sample C1 ∼ Ber( c1
c1+c2

);
2. if C1 = 1, sample C2 ∼ Ber(p1);

• if C2 = 1, output 1;
• if C2 = 0, go back to 1;

3. if C1 = 0, sample C2 ∼ Ber(p2);

• if C2 = 1, output 0;
• if C2 = 0, go back to 1.

Elementary conditional probability calculations verify that the above 2-coin al-
gorithm outputs 1 with probability c1p1

c1p1+c2p2
and 0 with probability c2p2

c1p1+c2p2
.

Furthermore, the number of loops needed until the algorithm stops is distributed as
Geom(

c1p1+c2p2
c1+c2

) and hence the mean execution time is proportional to c1+c2
c1p1+c2p2

.
The approach described in this paper can be seen as an alternative to pseudo-

marginal MCMC (Beaumont (2003), Andrieu and Roberts (2009)) in settings
where simulation of an event of probability proportional to π(θ) is possible, hence
in particular when there is an unbiased positive and bounded estimator of π(θ)

(cf. Lemma 2.1 and Theorem 2.7 of Łatuszyński et al. (2011) and also Jacob and
Thiery (2015) for a related discussion). While both methods have their advantages,
we see that the Barker approach advocated here has the clear distinction of con-
structing the marginal algorithm, i.e. a Markov chain on the state space X with-
out any need for additional auxiliary variables, which slow down pseudo-marginal
methods in terms of the CLT asymptotic variance (see Andrieu and Vihola (2015),
Theorem 7). This paper will not attempt a systematic numerical comparison be-
tween these approaches.

3 A simple example

To illustrate how an intractable posterior density π may be written as a product of a
known function and an unknown probability from which one can simulate, so that
it can be readily sampled via the above Barker’s algorithm with 2-coin acceptance,
consider the following simple (toy) example. Suppose that (perhaps due to missing
data) we can write the posterior distribution π as

π(θ) = Eη∼h

[
π(θ | η)

]
that is, we only have an explicit expression for π as a mixture of conditional den-
sities π(· | η) with known mixing measure h.
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Figure 1 Trace plot for the first 5 thousand iterations and empirical (lines) and exact (circles)
distribution π(θ). The estimated mean and variance are 20.012 and 23.989.

Now, we shall be even more explicit, and assume that θ | η ∼Poisson(η) so that

π(θ | η) = e−ηηθ

θ ! ≤ e−θ θθ

θ ! := d(θ).

Writing π(θ) = d(θ)π(θ)
d(θ)

yields the desired form since events of probabil-
ity p(θ) := π(θ)/d(θ) are easy to simulate as follows. First, simulate η ∼ h

and an independent standard uniform random variable U . Then the event {U ≤
π(θ | η)/d(θ)} is easily seen to have the desired probability.

Now consider a Barker algorithm which proposes from a symmetric random
walk move (i.e. q(θ,φ) = q(φ, θ)). We are thus required to accept the proposed
move with probability

αB(θ,φ) = d(φ)p(φ)

d(φ)p(φ) + d(θ)p(θ)
,

which we can do using the 2-coin algorithm.
We implement this example with η ∼ Gamma(100,5) and a uniform proposal

distribution on {θ −10, θ −9, . . . , θ −1, θ +1, . . . , θ +9, θ +10}, which leads to a
0.367 acceptance rate. The exact distribution π(θ) is Negative Binomial with mean
20 and variance 24. We run the chain for 2.106 iterations. Results are reported in
Figure 1. The average number of loops in the 2-coin algorithm is 4.7.

4 Barker’s MCMC for exact inference in the Wright–Fisher family of
diffusions

In this section, we sketch the MCMC methodology for exact Bayesian infer-
ence for diffusions introduced in Beskos et al. (2006b) and further developed in
Sermaidis et al. (2013). We then consider inference for the Wright–Fisher diffu-
sion and explain why it falls outside the scope of this methodology. Next, for the
Wright–Fisher family of diffusions, we present how to design the Barker’s based
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MCMC algorithm, originally proposed in Gonçalves, Łatuszyński and Roberts
(2017a) in the context of jump-diffusions. The algorithm performs exact Bayesian
inference by sampling from a Markov chain that has the exact posterior distribution
of the parameters and missing paths of the diffusion as its invariant distribution.

4.1 Exact Bayesian inference for discretely observed diffusions

The model considered in this section is that of a stochastic process Y := {Ys :
0 ≤ s ≤ t} that solves the following SDE parametrised by θ :

dYs = b(Ys; θ) ds + σ(Ys; θ) dWs, Y0 = y0, (4)

where Ws is a Brownian motion and the drift coefficient b : R → R and the dif-
fusion coefficient σ : R → R are such that there exists a unique weak solution to
(4) (for background on diffusions see, for example, Kloeden and Platen (1995),
in particular Chapter 4 for stability conditions). We consider only univariate and
time-homogeneous processes.

Suppose that the data

Yobs = (y0, y1, . . . , yn)

comes from Y observed at times 0 = t0, t1, . . . , tn−1, tn = T .
The interest is in the parameter θ and we work in the Bayesian setting, assuming

a prior π(θ) on θ . Hence, if we denote the transition densities of Y as

p(θ, yi−1, yi) := Pθ (Yti ∈ dyi |Yti−1 = yi−1)/dyi, (5)

the posterior distribution of θ given data Yobs becomes

π(θ |Yobs) ∝ π(θ)

n∏
i=1

p(θ, yi−1, yi). (6)

Unfortunately the diffusion transition density in (5) is not available in closed form
except for the constant coefficients case, and a few other very special diffusion
families. Consequently, standard inference about θ relies on approximations, such
as Euler approximation of the diffusion dynamics, or Monte Carlo approximations
of transition densities. We refer to Beskos et al. (2006b), Sermaidis et al. (2013),
Gonçalves, Łatuszyński and Roberts (2017a) for discussions of the approximation
based inference for diffusions, and in particular the difficult to quantify bias that it
introduces, and how the computational cost scales as the desired inferential error
decreases.

An alternative to the approximation based inference is the exact inference for
diffusions introduced in Beskos et al. (2006b). The approach avoids any discreti-
sation error and allows to design MCMC algorithms that target the exact posterior
(6) on an extended state space via introducing an auxiliary variable Ymis that rep-
resents the missing continuous paths of Y between discrete observations Yobs. The
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first approximation of how such an MCMC algorithm would be designed, is to
conceptualise a Gibbs sampling alternating the following two steps:

Ymis ∼ L(Ymis|Yobs, θ); (7)

θ ∼ L(θ |Yobs, Ymis). (8)

The practical execution of the above Gibbs algorithm, in particular of step (7), is
based on exact sampling of diffusion bridges developed in Beskos, Papaspiliopou-
los and Roberts (2006a, 2008), termed Exact Algorithm (EA). However, for EA to
be applicable, we need to work a bit more. Exact Algorithm is a rejection sampler
on the diffusion path space. It proposes a diffusion bridge between two data points
from a driftless diffusion (i.e., one with b ≡ 0) and accepts or rejects this proposal
based on the Radon–Nikodym derivative given by the Girsanov theorem. In (4),
the diffusion coefficient σ depends on θ and this presents a problem as there is
a perfect correlation between the diffusion path (precisely speaking, its quadratic
variation) and the diffusion coefficient, so the Gibbs sampler above would not mix
at all. Second, the driftless diffusion bridge proposals for Ymis in the EA need to
be simulable, which in practice means that the diffusion coefficient in (4) can not
depend on Ys .

Hence, in order to perform MCMC inference, the diffusion (4) is transformed
into a stochastic differential equation with unit diffusion coefficient using Lamperti
transformation. This allows us to obtain a parameter-free dominating measure to
write the likelihood function of a complete diffusion path, and in particular to
design diffusion Bridge proposals based on the standard Brownian motion. The
Lamperti transform

Xs = η(Ys; θ) =
∫ Ys

v

1

σ(u; θ)
du, (9)

where v is some arbitrary element of the state space of Y , implies that X is a
diffusion solving the SDE

dXs = α(Xs; θ) ds + dWs, X0 = x0(θ) = η(y0, θ), (10)

where

α(u; θ) = b(η−1(u; θ); θ)

σ (η−1(u; θ); θ)
− σ ′(η−1(u; θ); θ)

2
. (11)

Note that Xs is a function of θ , in particular the observed data becomes(
x0(θ), . . . , xn(θ)

) = (
η(y0; θ), . . . , η(yn; θ)

)
.

The second transformation, now only for the bridges of X (between the observa-
tions), is given by

Ẋs = ϕ−1
θ (Xs)

:= Xs −
(

1 − s − ti−1

ti − ti−1

)
xi−1(θ) −

(
s − ti−1

ti − ti−1

)
xi(θ),

(12)
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for s ∈ (ti−1, ti). This transformation guarantees that the measure of each bridge
Ẋs is dominated by the measure of a standard Brownian bridge of same time
length. We denote the transformation in (12) as ϕ−1

θ , so that we have the handy
notation ϕθ(Ẋs) for its inverse.

By Ẋmis denote the bridges of Ẋ. Defining Ycom = {Yobs, Ẋmis}, where Yobs =
(y0, y1, . . . , yn) and Xmis are all the bridges of Ẋ, Lemma 2 from Beskos et al.
(2006b) gives the likelihood L(θ;Ycom) of a complete diffusion path in [0, T ] and
the joint posterior density of (θ,Xmis) satisfies π(θ,Xmis|Yobs) ∝ L(θ;Ycom)π(θ),
which gives us the full conditional densities for the Gibbs sampler, as detailed in
Sections 4.2 and 4.3.

Exact methodologies for inference in diffusion processes have been firstly pro-
posed in Beskos et al. (2006b) and are based on the Exact Algorithm (EA), which
simulates a class of diffusion processes exactly via rejection sampling. However,
the feasibility of all those methodologies rely on the assumption that a given func-
tion of the diffusion components is bounded below (see condition (13) below),
while their efficiency depends on the tightness of this bound. Although broad, the
class of processes that satisfy this assumption exclude some appealing processes,
such as the Cox–Ingersoll–Ross model and Wright–Fisher family of diffusions
(Jenkins and Spanó (2016)). The methodology we present in this section is general
enough not to require such assumption and, therefore, can be applied to models
such as the ones just mentioned. We present an example with a model from the
Wright–Fisher family.

As mentioned, the existing exact inference methodologies rely heavily on the
assumption that a certain function is bounded below. The function in question
is (α2 + α′)(u; θ), where α is defined in (11), and the derivative is in the space
variable u. In case of one dimensional real valued diffusions, the precise condition
reads

inf
u∈R

{(
α2 + α′)(u; θ)

} ≥ a(θ) > −∞. (13)

Hence the function is required to be uniformly bounded below in the state space
of X, for all θ in the parametric space. The methodology presented here, however,
does not require this boundedness assumption, as we make it clear further ahead
in this section.

4.2 Sampling the missing paths

The transformed missing bridges Xmis are sampled via Barker’s with standard
Brownian bridge proposals. Given that the bridges are conditionally independent,
due to the Markov property, the Barker’s step for each bridge may be performed
in parallel. Our description shall focus on the update step of a single interval:
(ti−1, ti).
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The Barker’s acceptance probability αX of a proposed bridge Ḃ given a current
bridge Ẋ in (ti−1, ti) is obtained using the measure of a standard Brownian bridge
as the dominating measure and is given by

αX = αX(Ẋ, Ḃ) = G(ϕθ(Ḃ); θ)

G(ϕθ (Ḃ); θ) + G(ϕθ(Ẋ); θ)
,

where G is derived from Girsanov’s formula (see, for example, Sermaidis et al.
(2013) in a similar context): for an arbitrary path Y

G(Y ; θ) = exp
{
−

∫ ti

ti−1

(
α2 + α′

2

)
(Ys; θ) ds

}
.

Now we intend to follow the strategy of conditioning by an auxiliary variable
adopted in the simple example of Section 3. However, to do this we require an
upper bound on G. For some diffusion models, the functional form of α2 + α′ is
bounded below which leads to an upper bound for G. However for many mod-
els (including the Wright–Fisher model we shall go on to consider) we will need
to have additional information about the sample path Y to provide the necessary
bounds. To this end, we adopt the layered Bownian bridge construction of Beskos
et al. (2006b), Beskos, Papaspiliopoulos and Roberts (2008). Giving a detailed de-
scription of this construction is beyond the scope of this paper though the complete
details can be found in Beskos, Papaspiliopoulos and Roberts (2008), Gonçalves,
Łatuszyński and Roberts (2017a). The important feature of this construction for
our purposes is that the layer of a path, in particular of the proposal path Ḃ , can be
directly simulated, and leads to upper and lower bounds on its potential trajectories
that are of the form L < infs∈(ti−1,ti ) Ḃs < sups∈(ti−1,ti )

Ḃs < U for some L,U ∈ R.

This in turn allows us to produce a local lower bound on of α2 +α′ on the compact
set [L,U ] which apply for any path consistent with that layer. For trajectory X,
we shall call this lower bound 2ai(X; s, θ), so that

(α2 + α′)(ϕθ (Ẋs))

2
≥ ai(X; s, θ) (14)

for all paths X consistent with the layer of X. Note that ai may not depend upon
s as we are here only considering s ∈ [ti−1, ti] although in the next section we
shall need to consider dependence on s as X will have different layers in different
intervals. Furthermore, tighter bounds may be obtained if the layers are obtained
for a standard bridge and then transformed to the original one, making the bounds
a linear function of s. Thus we shall write

αX = sBpB

sBpB + sXpX

, where (15)

sX = exp
{−Iai

(θ)
}
, (16)

pX = exp
{
−

∫ ti

ti−1

(
α2 + α′

2

)(
ϕθ(Ẋs); θ) − ai(X; s, θ) ds

}
,
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Iai
(θ) =

∫ ti

ti−1

ai(X; s, θ) ds, moreover, (17)

ai(X; s, θ) ≤
(

α2 + α′

2

)(
ϕθ(Ẋs); θ)

, s ∈ [ti−1, ti]. (18)

Consequently, sB and sX are known positive numbers and pB and pX are unknown
probabilities. However, coins with probabilities pB and pX can be simulated using
an algorithm called the Poisson coin. We refer to Beskos, Papaspiliopoulos and
Roberts (2006a, 2008), Gonçalves, Łatuszyński and Roberts (2017a) for a detailed
construction and use of the Poisson coin, the brief description is as follows.

Note that by (14) the integrand in (17) is strictly positive and the layered Brow-
nian bridge construction will also yield a bound ri(X, θ) ∈ R+, valid for any path
consistent with the simulated layer, and such that

ri(X, θ) ≥ sup
s∈(ti−1,ti )

{(
α2 + α′

2

)(
ϕθ(Ẋs); θ) − ai(X; s, θ)

}
. (19)

Now let 
 be a Poisson process with intensity ri(X, θ) on [ti−1, ti] × [0,1]. Its
realisation is a collection of points {φk,χk}κk=1 on [ti−1, ti] × [0,1], where κ ∼
Poiss[(ti − ti−1)ri(X, θ)]. If N is the number of points below the graph

s −→ (α2+α′
2 )(ϕθ (Ẋs); θ) − ai(X; s, θ)

ri(X, θ)
,

then

P[N = 0|X] = pX.

Sampling the Poisson process 
 is standard and verifying if its points are be-
low or above the graph requires revealing Ẋs at a finite collection of timepoints
φ1, . . . , φκ , which in the case of Brownian bridge proposals is also routine.

Thus all the steps of the 2-coin algorithm can be performed in order to sample
an event of probability αX and accept or reject the proposed Brownian bridge Ḃ in
the missing path update step of the Gibbs sampler.

4.3 Sampling the parameters

The parameter vector θ is also sampled by a Barker’s step. The proposal distri-
bution is a symmetric random walk, but not necessarily Gaussian. The Barker’s
acceptance probability αθ for a proposal θ∗, given a current value θ , is obtained
using the dominating measure from the prior density π(θ) and is given by

αθ = sθ∗pθ∗

sθ∗pθ∗ + sθpθ

, where

sθ = exp

{
A

(
xn(θ); θ) − A

(
x0(θ); θ) −

n∑
i=1

Iai
(θ)

}
π(θ),
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pθ = exp

{
−

n∑
i=1

∫ ti

ti−1

(
α2 + α′

2

)(
ϕθ(Ẋs); θ) − ai(X; s, θ) ds

}
,

A(u; θ) =
∫ u

0
α(y; θ) dy.

Once again, the acceptance decision of probability αθ can be performed us-
ing the 2-coin algorithm and the Poisson coin in a manner analogous to that de-
scribed in Section 4.2. The efficiency of the proposed methodology relies heav-
ily on the probability of the two second coins which, in turn, relies on the lower
bounds ai(X; s, θ). A detailed description of how to obtain efficient lower bounds
ai(X; s, θ) can be found in Gonçalves, Łatuszyński and Roberts (2017a).

Finally, note that our MCMC steps do not require function (α2 + α′) to be
bounded below. The form of the Barker’s acceptance probability and the dynam-
ics of the 2-coin algorithm requires only that bounds for the diffusion path are
obtained. More specifically, the bounds for the Brownian bridge construction are
used to obtain a lower bound for (α2 + α′) which allows us to write the Barker’s
acceptance probability in the 2-coin algorithm form.

4.4 Example

The Wright–Fisher family of diffusions

dYs = β(Ys) ds + √
Ys(1 − Ys) dWs

is widely used in statistical applications, especially in genetics, see Schraiber, Grif-
fiths and Evans (2013) and references therein. It is an example for which after ap-
plying the lamperti transformation the function (α2 + α′) of the resulting drift α

is not bounded below. Jenkins and Spanó (2016) propose algorithms to perform
exact simulation of processes in that family but, although this could potentially
be used to developed exact inference methodology, the authors do not pursue this
direction in their paper.

We apply the Barker’s methodology presented above to perform exact inference
about drift parameters for the neutral Wright–Fisher diffusion with mutation which
admits the following parametric SDE:

dYs = 1

2

(
θ1(1 − Ys) − θ2Ys

)
ds + √

Ys(1 − Ys) dWs,

Y0 = y0, θ1, θ2 > 0.

(20)

For inference purposes, we consider the following reparametrisation:

γ1 = θ1 + θ2 and γ2 = θ1

θ1 + θ2
.

The two new parameters γ2 and γ1 represent the process’ reversible mean and
the drift force towards it, respectively, and are expected to have low posterior cor-
relation. This is useful since it makes an uncorrelated random walk proposal for
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Figure 2 Posterior distribution of the parameter set: trace plots and marginal posterior densities.

Table 1 Posterior statistics for the parameters

Mean s.d. 95% C.I.

γ1 7.649 0.729 (6.502,8.895)

γ2 0.507 0.012 (0.486,0.527)

(γ1, γ2) a reasonable choice. After this reparametrisation, the Lamperti transform
leads to a diffusion with unit diffusion coefficient and drift of the form

α(u; θ) = 1

2 sin(u)

(
γ1(2γ2 − 1) + (γ1 − 1) cos(u)

)
, u ∈ (0, π).

One can check that (α2 +α′) is not uniformly bounded below in the state space for
some region of the parametric space, however it can be bounded conditionally once
upper and lower bounds for the diffusion path are obtained through the layered
Brownian bridge construction discussed above.

We simulate 201 equally spaced observations in [0,200] for γ1 = 8 and γ2 =
0.5. Uniform independent priors on the positive real line are adopted for γ1 and
γ2. The chain runs for 50 thousand iterations with two consecutive updates for
Ẋ at each iteration to improve the mixing of the chain. The proposal distribution
for (γ1, γ2) is a uniform random walk for each coordinate—U(γ1 ± 0.65) and
U(γ2 ± 0.01). The acceptance rate of the Barker’s step for the parameter vector
was 0.357. The estimated posterior correlation of γ1 and γ2 was −0.005. Results
are presented in Figure 2 and Table 1. A burn-in of 2 thousand iterations is used to
compute the posterior estimates.
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Gonçalves, F. B., Łatuszyński, K. G. and Roberts, G. O. (2017a). Exact Monte Carlo likelihood-based
inference for jump-diffusion processes. Available at arXiv:1707.00332.
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