
Brazilian Journal of Probability and Statistics
2017, Vol. 31, No. 4, 668–685
https://doi.org/10.1214/17-BJPS365
© Brazilian Statistical Association, 2017

Comparing consensus Monte Carlo strategies for
distributed Bayesian computation1
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Abstract. Consensus Monte Carlo is an algorithm for conducting Monte
Carlo based Bayesian inference on large data sets distributed across many
worker machines in a data center. The algorithm operates by running a sep-
arate Monte Carlo algorithm on each worker machine, which only sees a
portion of the full data set. The worker-level posterior samples are then com-
bined to form a Monte Carlo approximation to the full posterior distribution
based on the complete data set. We compare several methods of carrying out
the combination, including a new method based on approximating worker-
level simulations using a mixture of multivariate Gaussian distributions. We
find that resampling and kernel density based methods break down after 10 or
sometimes fewer dimensions, while the new mixture-based approach works
well, but the necessary mixture models take too long to fit.

1 Introduction

This article compares several implementations of consensus Monte Carlo methods
for performing Monte Carlo based Bayesian inference in big data problems. By
“big data” I mean a data set too large to be processed by a single machine. This is
the definition used by computer engineers, who are largely responsible for creating
the big data phenomenon by introducing widely used tools for managing massive
data sets on distributed clusters (e.g., Dean and Ghemawat, 2008, Chang et al.,
2008). In principle, these same tools could be used to implement scalable Bayesian
inference on massive data sets stored in data centers.

Data centers are extremely large, shared, clusters of computers which can con-
tain many tens of thousands of machines. Compute time in a data center is very
cheap. Low end machines can be rented for as little as one or two cents per hour,
which makes it inexpensive to pool hundreds or even thousands of machines to
solve challenging computational problems. The data center computing model of-
fers effectively infinite processing power, memory, and disk. The challenge is that
communicating between machines in a data center is expensive. Scott et al. (2016)
presented an example where repeated broadcast communications on a 500 ma-
chine cluster took a median of roughly 0.25 seconds per broadcast. This degree of
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latency makes parallel versions of traditional Bayesian computations untenable in
a data center. For example, consider a data augmentation algorithm that alternates
between worker machines imputing latent variables and a central node simulating
parameters given complete data. With 0.25 second communication latency, such
a scheme could produce at most 2 draws per second, even if none of the nodes
actually did any computing.

If communication is expensive, a natural strategy is to avoid communicating
altogether by partitioning the data among workers, running a full posterior simu-
lation on each worker, and then combining the simulations as workers finish their
simulation runs. Scott et al. (2016) named this approach “consensus Monte Carlo”
(CMC). Motivating CMC is the fact that posterior distributions tend to be math-
ematically separable. Let y denotes the full data set, partitioned into S “shards”
y = (y1, . . . ,yS). Assuming conditional independence given θ across shards, the
posterior distribution can be written as a product of independent distributions

p(θ |y) ∝ p(θ)

S∏
s=1

p(ys |θ) = ∏
s

p(ys |θ)p(θ)1/S

∝ ∏
s

p(θ |ys).

(1)

Wang and Dunson (2013) refer to p(θ |ys) as a “subposterior” distribution. Each
data shard is assigned to a worker machine, which generates a Monte Carlo sam-
ple θ

(s)
1 , . . . , θ

(s)
G ∼ p(θ |ys) from its associated subposterior. The main challenge

with consensus Monte Carlo is how the simulated values from different workers
can be combined into a global set of “consensus” draws approximating the full
posterior distribution. This paper is primarily concerned with comparing different
combination methods, which fall into three categories: averaging, resampling, and
explicitly modeling the subposterior distributions. We also introduce a previously
unexplored strategy of combining subposteriors using finite- and Dirichlet process
mixture models.

CMC is orthogonal to other “big data” efforts in the Bayesian literature which
focus on improving the poor scaling characteristics of typical MCMC algorithms.
Dramatic speed increases can sometimes be achieved using subsampling methods
(e.g., taking a random subsample of the data with each MCMC iteration, see for
example Maclaurin and Adams, 2014, Bardenet, Doucet and Holmes, 2014, Ahn
et al., 2014, Quiroz, Villani and Kohn, 2016, or Chen et al., 2016), or by multi-
threaded implementations of standard algorithms implemented on multi-core pro-
cessors or massively multi-core graphics processing units (Suchard et al., 2010,
Lee et al., 2010). These techniques are important complements to consensus Monte
Carlo because they allow individual worker machines to quickly simulate from
subposteriors based on larger data shards. However they only help with proces-
sor bottlenecks, not memory or disk, and because they assume the full data set is
available they are largely irrelevant to the discussion of data center computing.
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It should be mentioned that many statisticians rarely encounter problems where
memory and disk are serious limitations. A standard laptop with 8GB of memory
can hold 1 billion double-precision numbers. By any reasonable standard that is a
lot of data, and most scientific questions can be resolved with less. If granted access
to a data set with billions of observations, most statisticians would instinctively
take a random sample of manageable size. However, there are applications where
the full data set is needed, so randomly sampling the data is the wrong approach.

At many large Internet firms, such as Google, Amazon, and Netflix, the fun-
damental problem is to link individual users with specific content (e.g., a movie
recommendation from Netflix, a shopping recommendation from Amazon, or the
right web site in response to a Google search query). The number of users and
the amount of content are incredibly large, and users’ needs are both personal and
evolving. Taking a sample in this setting to understand the preferences of “a typical
user” might be helpful for certain specific analyses, but massive data are needed
to fit the personalized user-level models required for effective service. While user-
level modeling sounds like an embarrassingly parallel undertaking, some form of
shrinkage across users and across content is needed to combat data sparsity, not-
ing the obvious irony that even in big data problems, data about how a particular
individual reacts to a particular stimulus remains scarce. Bayesian methods are
motivated by the need for shrinkage, and because they provide uncertainty quan-
tification which can be useful in managing the “explore-exploit tradeoff” associ-
ated with the online learning problem where models are repeatedly trained on data
influenced by previously fit models (see, e.g., Scott, 2010, 2015).

The remainder of this article is structured as follows. Section 2 describes the
consensus Monte Carlo algorithm in more detail, and reviews three existing meth-
ods for combining draws. Section 3 introduces a new combination method based
on finite mixtures. Section 4 presents simulation experiments illustrating how each
method performs in different scenarios, with particular attention paid to increas-
ing problem dimensions and non-overlapping subposterior distributions. Section 5
gives a concluding discussion.

2 Consensus Monte Carlo

Equation (1) highlights the fact that the full posterior distribution is the product of
S independent subposterior distributions. This suggests that one can independently
obtain a Monte Carlo sample from each p(θ |ys), and then combine them to form
the full posterior distribution. Imagine each worker as a member of a team tasked
with doing a large analysis job. Each worker does part of the job based on partial
information. When a worker’s job is complete, the finished product is sent off to
the boss, who compiles the work done by all the employees into an organizational
“consensus” belief reflecting the analysis done by all the individual team members.
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The algorithm is similar in spirit to meta-analysis, but with the constraint that the
raw data from one worker cannot be arbitrarily accessed by another.

The consensus approach raises two questions. The first is how one should should
deal with the prior distribution. Equation (1) suggests fractionating the prior and
giving a piece to each worker. This can be a good strategy in some cases, but it can
also lead to trouble in others. For example, when p(θ) is a weak-but-informative
proper prior, p(θ)1/S could be improper, which could endanger the propriety of
p(θ |ys). We recognize this issue, but will not focus on it further. The second is-
sue, and our primary concern, is how to combine the draws from the worker-level
subposterior distributions. Three methods that have emerged in the literature are
averaging, resampling, and subposterior modeling. These are described below.

2.1 Consensus through averaging (CMC)

Scott et al. (2016) showed that if all subposteriors are Gaussian, then averaging
the draws produces draws from the full posterior. To see this, imagine x1 ∼ p1 =
N (μ1,�1) is a draw from worker 1 and x2 ∼ p2 = N (μ2,�2) is an independent
draw from worker 2. Imagining p1 as the “prior” and p2 as the “likelihood” leads
to the familiar result that the full-data posterior is p1p2 ∝N (μ̃, �̃) where

�̃−1 = �−1
1 + �−1

2 and μ̃ = �̃
(
�−1

1 μ1 + �−1
2 μ2

)
. (2)

Now consider the deviate z = �̃(�−1
1 x1 +�−1

2 x2), which is a weighted average
of x1 and x2. Clearly z is normal with mean μ̃. Expanding the variance of the linear
combination gives

Var(z) = �̃
(
�−1

1 �1�
−1
1 + �−1

2 �2�
−1
2

)
�̃

= �̃
(
�−1

1 + �−1
2

)
�̃

= �̃.

For regular models with large sample sizes, the Bernstein–von Mises theorem
(the “Bayesian central limit theorem”) assures approximately Gaussian posteriors.
Note that Gaussian subposteriors are a sufficient condition to justify averaging, but
necessary conditions have yet to be established. Scott et al. (2016) provided several
examples of non-Gaussian subposteriors where averaging is able to capture salient
features of the posterior distribution, such as skewness, that would be missed by
a direct normal approximation (i.e., by approximating each subposterior by its
moments, and then combining the moments).

Averaging is a method with obvious flaws, but also powerful advantages. It is
robust in the sense that it does not depend on an algorithm that might fail. It is
computationally inexpensive, and it is invariant to dimension. The last point should
not be taken lightly, because models that require big data tend to involve very large
numbers of parameters. The main disadvantage is that there are situations where
averaging does not make sense prima facie, such as when the posterior distribution
is discrete or multi-modal.
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2.2 Sequential consensus Monte Carlo (SCMC)

Sequential Monte Carlo (SMC) is a seemingly natural way to combine draws from
different workers by viewing data on remote machines as information with which
to sequentially update locally produced MCMC draws.

2.2.1 Background on SMC. Sequential Monte Carlo methods (Doucet, De Fri-
etas and Gordon, 2001) operate by exploiting the relationship between implicitly
and explicitly weighted Monte Carlo samples. An explicitly weighted Monte Carlo
sample describes a distribution p using a collection of points θj (often called “par-
ticles”) and a corresponding set of weights wj , satisfying

∑
j f (θj )wj∑

j wj

→ Ep

(
f (θ)

)
. (3)

An implicitly weighted sample weights each θj implicitly by its frequency, so the
wj ’s in equation (3) become uniform. An explicitly weighted sample can be turned
into an implicitly weighted sample at any time by sampling {θj } with replacement
using {wj } as sampling weights. Resampling the particles in this way produces
multiple values of some θj , while others are omitted.

The canonical SMC algorithm (called “sampling with importance resampling”)
represents a posterior distribution p(θ |y1, . . . , yt ) using an implicitly weighted set
of particles {θ(t)

j }. The distribution is updated to reflect a new observation yt+1 by

attaching weight w
(t+1)
j = p(yt+1|θ(t)

j ) to θ
(t)
j . An unweighted sample {θ(t+1)

j } is

then obtained by sampling {θ(t)
j } with replacement using sampling weights w

(t+1)
j .

Notice that the resampling step can be delayed if desired. For example, if yt+1
and yt+2 were observed simultaneously, one could incorporate them in a single
update using w

(t+2)
j = p(yt+2|θ(t)

j )p(yt+1|θ(t)
j ). The resampling step is typically

thought of as good housekeeping because it removes particles with inconsequential
weights. However, there is a risk that a particle which is dropped during resampling
(because its current weight is small) might have been viewed as important (and
thus assigned a much larger weight) by future data. A related issue is that the
particle ensemble can collapse, meaning that almost all weight attaches to a small
subset of particles, or even a single particle. In some time series problems there
are natural ways to perturb the particles between resampling steps, which can help
prevent ensemble collapse, but opportunities to do this are very much problem
dependent. The primary method of preventing ensemble collapse is to start the
algorithm with a very large number of particles.

2.2.2 SCMC for big data. SMC can be applied to the consensus Monte Carlo
problem as follows. As before, worker s generates J draws {θ(s)

j } ∼ p(θ |ys), in-
dependently from other workers, using Markov chain Monte Carlo or some other
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Monte Carlo method. Each draw is then weighted by

w
(s)
j = ∏

r �=s

p
(
yr |θ(s)

j

)
,

and resampled using these weights. Each worker in the SCMC algorithm produces
J draws (not all of which are unique) so the algorithm as a whole yields S × J

deviates.
SCMC requires one additional communication relative to the algorithm in Sec-

tion 2.1, in which each worker broadcasts its particles to all the others. The extra
communication is only a minor burden. SCMC also requires more computation,
because each worker will have J (S − 1) likelihood calculations to perform in the
weighting step. If necessary the extra work can be done in parallel, by replicating
workers and distributing likelihood computations among replicates. However like-
lihood evaluation is typically much faster than simulation, so replicating workers
will often be unnecessary.

SCMC is the most theoretically pure of the methods we consider. It requires
no assumptions about the shape of the distributions being combined. It can be ap-
plied to arbitrary parameter spaces, so discrete parameter spaces can be handled
gracefully, for example. It also allows the full prior distribution to be used in the
initial MCMC step, so adjustments to the prior which are required by methods
based on averaging can be avoided. The primary drawback is the potential for en-
semble collapse, which experiments in Section 4 show to occur at disappointingly
low dimensions. Increasing the number of draws J is unlikely to help, because
the original particles are the result of a presumably expensive MCMC algorithm,
which would make substantially longer initial runs infeasible.

2.3 Approximating the subposterior densities with kernels (KCMC)

The averaging method from Section 2.1 gives exact simulations from the desired
distribution when the subposteriors are Gaussian. Neiswanger, Wang and Xing
(2013) observed that the method could be extended to non-Gaussian subposteriors
by decomposing each subposterior into a mixture of Gaussians. The specific mix-
ture chosen by Neiswanger, Wang and Xing (2013) was a kernel density estimate,
which is problematic for several reasons. The first is that it implies a very large
number of mixture components, with one component centered on every subpos-
terior draw. Second, the variances of the mixture components are chosen a priori
without regard to the covariance structure of the data. A practical consequence of
these issues is that kernel density estimates become unreliable after a relatively low
number of dimensions. Scott and Sain (2005) suggest the limit is as low as six, al-
though they note that KDE’s might still be useful in higher dimensions for certain
applications, such as classification. To deal with the very large number of mix-
ture components, Neiswanger, Wang and Xing (2013) employ a second MCMC
algorithm when combining draws across multiple chains.
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3 A consensus procedure based on mixtures (MxCMC)

Some of the issues that make kernel density estimates difficult to apply in high di-
mensions can be more gracefully handled by finite mixture models. Finite mixtures
use many fewer mixture components than kernel density estimates, in part because
the variance parameters in the mixture components adapt to fit the data. Though
slower to fit than kernel density estimates, special purpose implementations of fi-
nite mixtures have been applied to problems of much larger dimension. Examples
include Tadesse, Sha and Vannucci (2005) (d = 1000) and McLachlan, Peel and
Bean (2003) (d = 2000), both of which involve problems where non-Gaussian
structure is limited to a low dimensional subset or projection of the data.

Consider two workers which have produced draws θ
(1)
1 , . . . , θ

(1)
N1

∼ p1 =
p(θ |y1) and θ

(2)
1 , . . . , θ

(2)
N2

∼ p2 = p(θ |y2). Approximate p1 ≈ π1f1 +· · ·+πKfK

and p2 ≈ w1g1 +· · ·+wMgM , where (π1, . . . , πK) and (w1, . . . ,wM) are discrete
probability distributions and f1, . . . , fK,g1, . . . , gM are multivariate normal dis-
tributions with parameters fk = N (μ1k,�1k), and gm = N (μ2m,�2m). Then the
product p1p2 is also an approximate mixture of normals,

p1p2 ≈ ∑
k

∑
m

πkwmfkgm ∝ ∑
k

∑
m

w̃kmf̃km. (4)

The mixture components from equation (4) are f̃km = N (μ̃km, �̃km), where

�̃−1
km = �−1

1k + �−1
2m and μ̃km = �̃km

(
�−1

1k μ1k + �−1
2mμ2m

)
. (5)

The mixing weight w̃km is not simply πkwm, but proportional to πkwm

∫
fk(θ) ×

gm(θ) dθ . Let Qsk(μ) = (μsk − μ)T �−1
sk (μsk − μ). Then the mixing weights can

be written

w̃km ∝ πkwm

|�−1
1k | 1

2 |�−1
2m | 1

2

|�−1
1k + �−1

2m | 1
2

exp
(
−1

2

[
Q1k(μ̃km) + Q2m(μ̃km)

])
. (6)

Equation (6) shows that equation (4) gives greater weight to pairs of components
that are both heavily weighted in their respective subposterior mixture approxima-
tions (so that both πk and wm are large), have similar means (where both μ1k and
μ2m are close to μ̃km), and similarly sized information matrices (where both �−1

1k

and �−1
2m are large relative to their sum).

3.1 Combining draws from pairs of workers using local averaging

Although the mixture approximation in equation (4) could be sampled directly, for
reasons analogous to the discussion of averaging in Section 2.1 it is preferable to
combine the original draws rather than sample from an approximate model of their
distribution. The mixture approximations of p1 and p2 are presumably imperfect,
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so the hope is that minor deviations from normality that would be lost by directly
sampling from the approximation will be preserved through averaging.

If we were to simulate directly from equation (4), an obvious method would
be to first simulate a draw (k,m) from the discrete distribution with probabilities
{w̃km}, then simulate a deviate from f̃km. The proposed local averaging procedure
replaces the f̃km draw with a weighted average of a random draw from component
k of worker 1 and component m from worker 2. To identify these draws, let P1
and P2 be the matrices of posterior allocation probabilities for the samples from
workers 1 and 2, respectively. That is, P1 is a matrix with K columns and N1 rows,
with elements pik ∝ πkfk(θ

(1)
i ), with P2 defined similarly for worker 2. Sample

an index i with sampling weights proportional to column k of P1, and a random
index j with weights proportional to column m of P2. The consensus draw is
obtained by averaging θ

(1)
i and θ

(2)
j with weights proportional to �−1

1k and �−1
2m as

in Section 2.1.

3.2 Choosing a mixture decomposition

There are several potentially important details regarding the finite mixture decom-
position that are beyond the scope of the current investigation. A finite mixture ap-
proximation of p(θ |ys) is typically non-unique, and it is not clear how one would
want to resolve a tie between two mixtures that approximate p(θ |ys) roughly
equally well. Mixtures with smaller numbers of components should probably be
preferred, as should mixtures with components that are well populated. It would
also be helpful if this stage of model fitting required little human supervision.
Dirichlet process mixtures are appealing because they do not require the number
of mixture components to be specified. Oversaturated finite mixtures (Rousseau
and Mengersen, 2011) can also be used to handle uncertainty about the number of
mixture components.

The parameters of the mixture approximation can be obtained either using
MCMC or as point estimates through maximum likelihood or maximum a poste-
riori estimation (e.g., McLachlan and Peel, 2000), or by variational methods (e.g.,
Blei, Jordan et al., 2006, McGrory and Titterington, 2007). The advantage of point
estimates is that there is only a single mixture decomposition to consider, which
speeds up computing in the local averaging procedure. A single multinomial draw
of size N can replace N individual draws from {w̃km}, the matrices P1 and P2

need only be formed once, and subsamples from {θ(1)
i } and {θ(2)

j } can be taken
in batch. To the extent that some mixture decompositions work better than others,
and we don’t know a priori which ones they will be, it is more conservative to fit
the mixture approximation using MCMC methods that can average over multiple
decompositions. MCMC is potentially much slower because the procedure from
Section 3.1 must be done one draw at a time, with different parameters for each
draw.
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The time required to fit a finite mixture distribution can be considerable
in high dimensions, with a major piece of the computational cost arising
from determinants and quadratic forms involving the component variances �k .
Suchard et al. (2010) have demonstrated that GPU-based algorithms can re-
duce the computing time in low dimensional mixtures, and their method can
likely be used in much higher dimensions, although some form of paramet-
ric modeling for �k will become be necessary as the problem dimension
grows.

3.3 Combining draws from many workers

If there are only a few workers, then equation (4) can be extended in obvious
ways to accommodate a product of more subposterior densities. However the
number of mixture components in the approximating density is the product of
the number of components in each subposterior mixture, which rapidly becomes
untenable as the number of workers grows. An alternative is to apply the pair-
wise combination procedure from Section 3.1 multiple times. Doing so requires
log2 S rounds of combination, with a finite mixture approximation being fit to
the draws produced at the end of each round of combination, other than the
last.

4 Examples

We now turn to a series of experiments comparing the various methods of forming
consensus described above. We study three scenarios. In each, the subposteriors
are chosen so that their product will have a known closed form which can be easily
and exactly sampled, so that the consensus results can be compared with ground
truth.

All examples assume eight synthetic “workers.” Computations for KCMC
used the implementation provided by Miroshnikov and Conlon (2014). Three
rounds of pairwise combinations were used for the mixture-based consensus al-
gorithm MxCMC. Mixtures were fit with a Dirichlet process mixture of multi-
variate normal distributions using the collapsed Gibbs sampler, described as “Al-
gorithm 3” in Section 3 of Neal (2000). The Gibbs sampler was hand coded in
C++, but none of the other optimizations mentioned in Section 3.2 were at-
tempted.

4.1 Multivariate normal posteriors

The first example focuses on multivariate normal posteriors of increasing dimen-
sion. In this setting averaging gives perfect simulations, so the point is to study
how SMC, kernel, and mixture based methods perform in regular “well behaved”
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Figure 1 Monte Carlo density estimates for the first element of a d-dimensional multivariate nor-
mal deviate. (a) d = 5, (b) d = 10, (c) d = 20. The means and MxCMC results overplot one another.

problems. Simulations from each subposterior distribution are drawn from identi-
cal N (μ,�) distributions, where μ = (1, . . . , d), for different values of d , and �

is a “random effects” matrix with off-diagonal elements all set to 0.9 and diagonal
elements set to 1.0. Each worker begins by simulating 10,000 independent draws
from its subposterior distribution.

Figure 1 shows kernel density estimates for the first element of the consen-
sus posterior draws produced by the different consensus methods. The remaining
d − 1 elements are qualitatively similar, albeit with different means. There are
10,000 consensus draws for the mean-based and mixture based CMC algorithms,
but 80,000 draws (10,000 from each worker) for the SCMC algorithm. When d = 5
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Figure 2 Subposterior and consensus draws for the beta distribution example in Section 4.2.
(a) Subposterior draws from workers with very different data. (b) Consensus Monte Carlo approx-
imations to the exact posterior density. The means and kernel based methods are nearly identical.
SCMC is bimodal and far from the center. MxCMC is centered in the right place but the variance is
much too wide.

all three algorithms perform acceptably well. As the dimension grows to 10 and
20 the discreteness from SCMC becomes unacceptably large. In another context
one might argue that the discreteness could be smoothed out by increasing the
number of initial particles, but keep in mind that this is a proxy for a hypotheti-
cal subposterior distribution for which simulating 10,000 draws might represent a
considerable amount of work. The KCMC method performs well when d = 5, but
it gets the location, scale, and shape wrong in higher dimensions. The MxCMC
algorithm works well in all cases, as the underlying mixture model correctly de-
tects that only a single mixture component is needed. This experiment suggests
that both SCMC and KCMC should be used with caution in ten or more dimen-
sions.

In regards to time, both CMC and SCMC took less than 1 second to run, whereas
MxCMC needed several minutes (25 in the d = 20 case) to fit the necessary mix-
tures. The time required to fit the mixtures for MxCMC might be reduced by a
more efficient fitting algorithm, but it is a potentially serious issue with the method,
which otherwise performs quite well in this scenario.

4.2 Non-overlapping beta posteriors

The second example considers subposterior distributions represented by non over-
lapping draws. The example is in one dimension, but it illustrates a phenomenon
that one expects in higher dimensions because of the curse of dimensionality. This
scenario challenges all four consensus methods.
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Consider two subposterior distributions based on binomial data. The first has
y1 = 900 successes out of n1 = 1000 trials. The second has y2 = 100 successes
out of n2 = 1000 trials. Each subposterior is assigned a Be(0.5,0.5) prior, corre-
sponding to a Be(1,1) prior for the overall system, though in this case the sample
sizes are large enough that the prior has little effect. Figure 2(a) shows histograms
of draws from the subposteriors being combined. Figure 2(b) compares the four
consensus methods with the distribution of exact draws. The means and kernel
density methods both capture the mean and essential shape of the correct distri-
bution, but fail to describe the variance correctly. The failure occurs because the
variance of the beta distribution is a function of the mean, and the estimated vari-
ances at the subposterior level are computed near zero and one, where the variance
is smaller.

All the mass of the full posterior distribution is in a region that is far into the
tails of both subposteriors. This causes problems for both the SCMC and Mx-
CMC methods. SCMC winds up choosing the smallest draws from worker 1 and
the largest draws from worker 2, with neither set of draws in a relevant region
for the full posterior. The result is a bimodal approximation when the truth is
unimodal. MxCMC produces draws centered on the correct region, but with un-
reasonably large variance. To understand why MxCMC struggles, examine Fig-
ure 3, which describes the mixture decomposition of the subposterior draws from
worker 1, the right-hand mode in Figure 2(a). Figure 3(a) shows the histogram of
the draws being fit by the mixture, while superimposing pointwise marginal den-
sity estimates of the density curve implied by the mixture model, verifying that
the mixture is fitting the distribution well. Panel (b) plots the posterior distribu-
tion of the number of mixture components in the Dirichlet process, showing that
the mixture is using 2, 3, or 4 components. Panels (c) and (d) plot the marginal
distributions of the mean and variance parameters describing the mixture compo-
nents in the 2-component case. Plots for 3 and 4 components are not shown, but
are similar. Collectively, Figure 3 shows that the mixture approximation captures
the slight left skew of the beta distribution by adding normal components with
smaller mean and larger variance than the primary component. As a mirror image
to worker 1, the mixture decomposition of worker 2 has primary component de-
scribing data near 0.1, with extra components capturing the skewness in the upper
tail.

When the MxCMC algorithm combines the subposterior draws, equation (6)
overwhelmingly favors the high variance components with means closer to 0.5.
The uncertainty in the variance parameters, which are the weights used in the
computation, translates into the wide distribution seen in Figure 2(b). The mix-
ture approximation is obviously doing a good job of describing the data in regions
of high density, but it does a poor job of modeling the distant tails where the full
posterior has virtually all of its mass. I also tried replacing the MCMC ensemble
by a single mixture model parameters set to MAP estimates. This resulted in con-
sensus estimates that had lower variance than MxCMC in Figure 2(b), but with
substantial bias.
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Figure 3 Mixture approximation to the worker level data from Figure 2. (a) The marginal distribu-
tion of the density curve superimposed on the histogram of subposterior draws. (b) Distribution of the
number of mixture components. (c) Distribution of mean parameters, and (d) variances parameters
conditional on 2 mixture components.

This experiment suggests that sophisticated methods of combining draws can
fail when the subposterior draws do not have sufficient overlap, which is likely to
occur for at least some low dimensional projections of parameters in high dimen-
sional problems.

4.3 Inverse Wishart

The third simulation experiment assumes inverse Wishart subposterior distribu-
tions of dimension d × d , denoted IWd(ν, S), where ν can be interpreted as
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a sample size and S as a sum of squares matrix. The inverse Wishart distribu-
tion is a multivariate distribution with a Gaussian limit, but it is decidedly non-
Gaussian for moderate values of ν. For the results presented here, subposterior i

has ν = (d + 1) + 20 and S = S0 + Si , where S0 is the random effects variance
matrix used in Section 4.1, and Si is the matrix sum of squares from 20 N (0, S0)

deviates.
Two test problems were considered, one with d = 3 and one with d = 5. Devi-

ates from the inverse Wishart distribution are symmetric positive definite matrices,
which were vectorized so that only unique elements were considered. Thus the
3 × 3 case is a 6-dimensional problem and the 5 × 5 case is 15 dimensional. In-
creasing d much beyond this proved to be a challenge for the Dirichlet process
implementation used for this exercise.

Figure 4 plots marginal density estimates for the first four unique elements in the
3×3 example, while Figure 5 plots the first four elements of the 5×5 example. As
with previous experiments, the SCMC estimates begin to fall apart in relatively low
dimensions. The kernel based estimate exhibits a consistent bias in both examples.
Interestingly, the kernel density estimate gets the shape of the consensus density
about right in Figure 4. While the kernel method gets the shape wrong in Figure 5,
it at least matches the shape produced by MxCMC.

The CMC and MxCMC posterior estimates are very close in Figure 4, but they
begin to diverge in Figure 5, where MxCMC does a better job describing the shape
of the marginal distributions, but mean-based CMC does a better job of captur-
ing the distribution’s center. The location shift in the MxCMC algorithm is much
smaller than KCMC, but it is still evident in Figure 5, and the direction of the bias
is the same for the two methods.

5 Conclusion

The simulations in Section 4 were all performed under scenarios where averaging
had a reasonable shot of doing well. The subposteriors were unimodal, and the
parameters varied smoothly over subsets of Rd . In these settings averaging is hard
to beat, primarily because it can be applied to problems of arbitrary dimension.
It is rare to encounter a problem with only 5 or 6 parameters that is sufficiently
complex to require a big data solution, yet this seems to be the threshold where
SMC and kernel methods break down.

Averaging has obvious limitations, and it is not hard to come up with exam-
ples where it does not perform very well. Several such examples can be found in
Srivastava, Li and Dunson (2015), Wang et al. (2015), and Neiswanger, Wang and
Xing (2013), among others. Thus there is clearly a need for alternative consen-
sus methods to averaging. However, all the methods we have considered seem to
fail for one reason or another as the dimension grows. Particle based resampling
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Figure 4 First four elements in Inverse Wishart draws for a 3 × 3 random variable.

methods are well known to be challenged by dimension, and there nothing obvious
about the structure of large distributed data sets that lends itself to particle regen-
eration. Likewise, kernel based methods also fail in relatively low dimensions, so
approximating equation (1) with a product of kernel density estimates leads to the
poor results we have seen for KCMC.

The mixture based MxCMC method introduced here is theoretically interesting,
but the mechanics of fitting mixtures to high dimensional distributions is a serious
practical challenge. Yet of the general methods considered, its challenges are the
most likely to be overcome.
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Figure 5 First four elements in Inverse Wishart draws for a 5 × 5 random variable.
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