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Abstract. We propose an extension of Hidden Markov Model (HMM) to
support second-order Markov dependence in the observable random process.
We propose a Bayesian method to estimate the parameters of the model and
the non-observable sequence of states. We compare and select the best model,
including the dependence order and number of states, using model selection
criteria like Bayes factor and deviance information criterion (DIC). We apply
the procedure to several simulated datasets and verify the good performance
of the estimation procedure. Tests with a real dataset show an improved fitting
when compared with usual first order HMMs demonstrating the usefulness of
the proposed model.

1 Introduction

Hidden Markov models have been applied in many research areas. A few exam-
ples are econometrics (Hamilton, 1989, Chib, 1996, Krolzig, 1997, Biblio, Mon-
fort and Robert, 1999), finance (Rydén, Teräsvirta and Asbrink, 1998) and speech
recognition (Rabiner, 1989). A growth in the amount of DNA sequence available
for analysis and an increasing need to develop efficient computational techniques
and statistics to analyze these biological data transformed HMM into an inter-
esting method to analyze DNA sequence. HMM has been used, successively, by
Churchill (1989, 1992), Muri (1998) and Boys et al. (2000, 2002, 2004).

This model is useful in molecular biology and genetic, particularly, to find
genes, introns, exons, etc, in the DNA sequence or to detect and align remotely
homologous sequences which provide information about the protein’s function,
structure or evolution (Gough et al., 2001, Söding, 2005, Leea et al., 2009).

Baum and Petrie (1966) and Baum et al. (1970) propose maximum likelihood
estimators for the case where the number of non-observable states, N , is known.
These estimators are obtained using expectation-maximization (EM) algorithm.
When N is unknown, estimators are based on model selection methods such as
likelihood ratio test, Akaike (AIC) and Bayesian information criteria (BIC). Ref-
erences about these tests are McLachlan (1987), Rydén, Teräsvirta and Asbrink
(1998) and Gassiat and Kéribin (2000). Schimert (1992), du Preez (1998), Hadar
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and Messer (2009) and Seifert (2010) describe extensions of the mathematical
theory of first-order HMMs to higher-order HMMs. One disadvantage of the max-
imum likelihood estimators is that they require many training sequences since the
autoregressive higher-order HMM can have a large number of parameters, depend-
ing on N and dependence order of sequences, and a small dataset could be insuf-
ficient to estimate then properly.

The Bayesian approach allows to include a priori information about the un-
certainty of the parameters and it may help to improve the convergence of the
method, especially for complex models. Robert, Celeux and Diebolt (1993), Chib
(1996) and Robert and Titterington (1998) propose Bayesian estimators for HMMs
with known number of non-observable states. Seifert et al. (2012, 2014) propose
the Bayesian Baum-Welch algorithm to estimate higher-order HMM when the ob-
servable states have Gaussian distribution. The method combines EM algorithm
with a priori knowledge of the parameters and locally maximizes the log a pos-
teriori distribution by a two-step procedure. Seifert et al. (2014) also include a
autoregressive dependence in observable sequence and define the average of the
Gaussian distributions as linear combinations of predecessors observations.

In cases where the non-observable states are continuous, particle filter or
Kalman filter are used to compute marginal likelihood and characterize the dis-
tribution of the states. A review of this topic and applications may be found at
Martino et al. (2015), Doucet et al. (2001), Doucet and Johansen (2009), Ristic,
Arulampalam and Gordon (2004) and Djurić et al. (2003).

We consider a second-order autoregressive hidden Markov model and propose
a Bayesian method to estimate its parameters and the non-observable sequence of
states. We propose this model since in the usual model the non-A review of this
topic and applications may be found at Martino et al. (2015), Doucet et al. (2001),
Doucet and Johansen (2009), Ristic, Arulampalam and Gordon (2004) and Djurić
et al. (2003) observable states are a first-order Markov chain and the observable
states are conditionally independent (given the non-observable states) and there is
no biological reason to restrict ourselves to such a strong supposition (conditional
independence). Also, the genetic DNA code is translated to proteins using triplets
of nitrogenous bases, the amino acids, suggesting that the second-order depen-
dence in the observable process may fits better than the independence model when
analyzing a DNA sequence. Finding homogeneous segments in DNA sequence is
our main application. We compare and select the best model, including the depen-
dence order and number of states, using model selection criteria like Bayes factor
and deviance information criterion (DIC). Compared with Bayesian EM Baum-
Welch algorithm, the proposed Markov chain Monte Carlo (MCMC) method sam-
ples from the jointly a posteriori distribution in a single step and also allows in-
terval estimates of parameters without using asymptotic properties. The proposed
MCMC method avoids usual EM problems as sensibility to starting points and
convergence local maximum.
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Figure 1 Directed acyclic graph of a second-order autoregressive HMM in the observable se-
quence.

The article is organized as follows. Section 2 presents the model and propose
the MCMC schema to estimate the parameters and sequence of states. In Section 3,
we apply the proposed model to a simulated and real datasets. We conclude with
the discussion in Section 4.

2 The second-order autoregressive HMM

The proposed autoregressive HMM is composed by two random processes with
length T , the non-observable first-order Markov chain S = {S1, S2, . . . , ST }, where
St ∈ {1,2, . . . ,N}, for t = 1,2, . . . , T , and the observable second-order Markov
chain Y = {Y1, Y2, . . . , YT }, where Yt |St , Yt−1, Yt−2 ∼ fYt |St ,Yt−1,Yt−2(yt ), for t =
3,4, . . . , T .

The relationship between variables is specified by the conditional independence
given by

St ⊥ {S1, Y1, . . . , St−2, Yt−2, Yt−1}|St−1, for t = 2,3, . . . , T and

Yt ⊥ {S1, Y1, . . . , St−3, Yt−3, St−2, St−1}|Yt−2, Yt−1, St , for t = 3,4, . . . , T .

This relationship can be visualized by the directed acyclic graph (DAG) in Fig-
ure 1.

Assuming Yt ∈ {1,2, . . . ,M} as discrete random variables and S1, Y1 and Y2
with independent discrete uniform distributions, this HMM is specified by

1. A = {akl}, the transition matrix between non-observable states, where akl =
Pr(St+1 = l|St = k), for k = 1,2, . . . ,N and l = 1,2, . . . ,N , and

2. P = {P (1),P (2), . . . ,P (N)}, where P (k) = {p(k)
hij } the transition matrix be-

tween observable states conditioned to non-observable state St = k and p
(k)
hij =

Pr(Yt = j |St = k,Yt−1 = i, Yt−2 = h), for k = 1,2, . . . ,N , h = 1, . . . ,M ,
i = 1, . . . ,M and j = 1, . . . ,M .
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The likelihood function for the model parameters P and A given both the ob-
servable sequence Y = y and the non-observable sequence S = s is

L(P,A|y, s) = Pr(Y = y,S = s|A,P)

= Pr(S1 = s1)Pr(S2 = s2|s1)

2∏
t=1

Pr(Yt = yt )

×
(

T∏
t=3

Pr(St = st |st−1)Pr(Yt = yt |yt−2, yt−1, st )

)

= 1

NM2

(
N∏

k=1

N∏
l=1

a
mkl

kl

)(
N∏

k=1

M∏
h=1

M∏
i=1

M∏
j=1

(
p

(k)
hij

)n(k)
hij

)
, (1)

where mkl = ∑T −1
t=1 I (St = k, St+1 = l), n

(k)
hij = ∑T

t=3 I (Yt−2 = h,Yt−1 = i, Yt =
j, St = k) and I (A) = 1 if A is true or I (A) = 0 otherwise.

Baum and Petrie (1966) and Baum et al. (1970) propose maximum likelihood
estimators for the model in which the observable sequence is independent given
the non-observable sequence. These estimators and the non-observable sequence
are obtained using EM algorithm. Here, as the autoregressive HMM of order two
has a large number of parameters (N(N + M3) parameters), we propose Bayesian
estimators for them and include a priori information about the uncertainty of pa-
rameters.

2.1 A priori distributions

In order to set up a priori distributions for the parameters A and P, let p(k)
hi be one

row of P (k), ak be one row of the transition matrix between non-observable states
A, for k = 1,2, . . . ,N , h, i, j = 1,2, . . . ,M and p(k)

hi ’s, ak’s, P and A are supposed
to be independent.

We assume M-vector p(k)
hi and N -vector ak has a Dirichlet distribution (D) de-

fined on the simplex with density given, respectively, by

π
(
p(k)

hi

) ∝
M∏

j=1

(
p

(k)
hij

)α(k)
hij−1

,

for 0 < p
(k)
hij < 1,

∑M
j=1 p

(k)
hij = 1, k = 1,2, . . . ,N , h, i, j = 1,2, . . . ,M and where

α
(k)
hi = {α(k)

hij } are positive hyperparameters of the distribution, and

π(ak) ∝
N∏

l=1

a
βkl−1
kl ,
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for 0 < akl < 1,
∑n

l=1 akl = 1, k = 1,2, . . . ,N and where βk = {βkl} are positive
hyperparameters of the distribution. Therefore, a priori distribution for A and P is
given by

π(P,A) = π(A)π(P)

∝
(

N∏
k=1

π(ak)

)(
N∏

k=1

M∏
h=1
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i=1

π
(
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=
(
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a
βkl−1
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)(
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h=1
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(
p
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)α(k)
hij−1

)
. (2)

2.2 A posteriori distributions

Combining the likelihood function given in (1) with the a priori information about
A and P in (2) and using the Bayes theorem, the a posteriori distribution for A and
P is

π(P,A|y, s) ∝ L(P,A|y, s)π(P,A)

= 1

NM2

(
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kl
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)
. (3)

The conditional a posteriori distributions of p(k)
hi and ak , for h, i = 1,2, . . . ,M

and k = 1,2, . . . ,N , are

π
(
p(k)

hi |y, s,A,P−p(k)
hi

) ∝
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j=1

(
p

(k)
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)n(k)
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,

where P−p(k)
hi

denotes P with row p(k)
hi removed and

π(ak|y, s,A−ak
,P) ∝

N∏
l=1

a
mkl+βkl−1
kl ,

where A−ak
denotes A with ak removed, that is, p(k)

hi |y, s,A,P−p(k)
hi

∼ D(n(k)
hi +

α
(k)
hi ) for h, i = 1,2, . . . ,M and k = 1,2, . . . ,N , n(k)

hi = {nk
hij } for j = 1,2, . . . ,M ,

ak|y, s,A−ak
,P ∼ D(mk + βk) for k = 1,2, . . . ,N and mk = {mkl} for l =

1,2, . . . ,N .
Therefore, A and P are updated through Gibbs sampling algorithm using their

conditional a posteriori distributions described above.
As the sequence S is non-observable, it must be also simulated and updated

in our process through its conditional a posteriori distribution, namely π(S =
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s|y,A,P) = Pr(S = s|y,A,P). An efficient simulation strategy for obtaining re-
alizations from it is proposed by Boys, Henderson and Wilkinson (2000) for a
first-order autoregressive HMM and is based on conditional independence between
St and Yi (i > t) given St+1 and Yt = (Y1, Y2, . . . , Yt ). Dropping the dependence
on P and A in the notation to simplify,

Pr(St = st |st+1,y) = Pr
(
St = st |st+1,yt )

= Pr(St = st , St+1 = st+1|yt )

Pr(St+1 = st+1|yt )

= Pr(St = st |yt )Pr(St+1 = st+1|st ,yt )

Pr(St+1 = st+1|yt )

= ast st+1 Pr(St = st |yt )

Pr(St+1 = st+1|yt )
, (4)

for t = 1,2, . . . , T − 1, st ∈ {1,2, . . . ,N} and where

Pr
(
St = st |yt ) = Pr

(
St = st |yt ,yt−1) = Pr(St = st , Yt = yt |yt−1)

Pr(Yt = yt |yt−1)

∝ Pr
(
St = st , Yt = yt |yt−1)

=
N∑

l=1

Pr
(
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=
N∑

l=1

(
Pr

(
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Pr
(
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×Pr
(
Yt = yt |St−1 = l, st ,yt−1) )

= p(st )
yt−2yt−1yt

N∑
l=1

alst Pr
(
St−1 = l|yt−1)

and (5)

Pr
(
St+1 = st+1|yt ) =

N∑
k=1

Pr
(
St+1 = st+1, St = k|yt )

=
N∑

k=1

Pr
(
St = k|yt ) Pr

(
St+1 = st+1|St = k,yt )

=
N∑

k=1

akst+1 Pr
(
St = k|yt ). (6)

Equation (5) provides a (forward) iterative scheme to evaluate Pr(St = st |yt ),
t = 1, . . . , T . The initial distribution for the iterations is provided by the discrete
uniform distribution on (Y1, S1) and (Y2, S2). Values for Pr(St+1 = st+1|yt ) and
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Pr(St = st |st+1,y) can then be computed by using equations (6) and (4), respec-
tively.

A realization of the non-observable random process can be simulated. First, a
value for sT is obtained by using the distribution Pr(ST = sT |yT ) and the remain-
ing values are obtained by a backward process t = T − 1, T − 2, . . . ,1, using
equation (4).

2.3 Algorithm

The procedure to update and estimate the parameters and non-observable sequence
is expressed as an algorithm.

1. Initialize a configuration s;
2. for bth iteration, b = 1, . . . ,B do:

• sample ak, k = 1, . . . ,N , from its conditional a posteriori distribution;
• sample p(k)

hi , k = 1, . . . ,N and i, h = 1, . . . ,M , from its conditional a poste-
riori distribution;

• update Pr(St = st |yt ), t = 1, . . . , T ;
• sample ST from Multinomial(1, (dT 1, . . . , dT N)), where dT k = Pr(ST =

k|yT ), k = 1, . . . ,N and;
• sample St , t = T − 1, . . . ,1 from Multinomial(1, (dt1, . . . , dtN)), where

dtk = Pr(St = k|st+1,yt ), k = 1, . . . ,N .

B is the enough number of iterations to ensure algorithm’s convergence. The
performance of the Gibbs sampling and, in particular, its convergence properties
can be checked by using a variety of graphical and numerical diagnostics, for ex-
ample, Gelman and Rubin (1992). This algorithm is implemented in R language
and the codes are available in supplementary information. R is a free software en-
vironment for statistical computing and graphics and more details are found in its
homepage https://www.r-project.org.

3 Applications

We apply the proposed model to simulated and real datasets and compare it with
the first-order autoregressive HMM using model selection methods (Bayes factor
and DIC).

3.1 Simulated data

We analyze a simulated sequence of length T = 3000. The sequence is generated
from a autoregressive HMM of order two with N = 2 non-observable states, M =
4 observable states and fixed s as st = 1 for t = 1,2, . . . ,1000,2001,2002, . . . ,

3000 and st = 2 for t = 1001,1002, . . . ,2000, in order to provide DNA sequence
characteristics to the simulated data.

https://www.r-project.org
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Figure 2 Histogram of absolute error between the real probabilities p
(k)
hij and their a posteriori

estimates (average).

The a priori distributions for transition probabilities in P (1) and P (2) are Dirich-
let with parameters α

(k)
hi = (1,1,1,1), for i, h = 1, . . . ,4 and k = 1,2 that provide

weak a priori information about these parameters.
For transition between non-observable states we choose informative a priori

distribution. This is based on previous knowledge of these segments length that
biologists often have and can improve the convergence of the method. We set β11 =
β22 = 99 and β12 = β12 = 2, implying that, a priori, E(a11) = E(a22) = 0.98 and
Var(a11) = Var(a22) = 0.0002.

We run the MCMC algorithm from two different starting points in order to use
the Gelman–Rubin diagnostic of convergence. Both sequences produce similar
results and the Gelman–Rubin diagnostic is lower than 1.1 for all parameter se-
quences indicating convergence of the chains. The Gelman–Rubin diagnostic of
some parameters (randomly chosen) are available in supplementary information.
We report here a run consisting of 11,000 iterations with a burn-in of the first 1000
iterations. Estimates are based on R = 2000 simulated values since we record one
out of 5 values.

Figure 2 shows the histogram of absolute error between the real probabilities
p

(k)
hij and their a posteriori estimate (average). We observe the absolute errors are

concentrated close to zero and it shows the transition probabilities are well esti-
mated. More than 64% of absolute errors are lower than 0.03 and only 4% of the
transition probabilities have absolute error higher than 0.10.

We estimate the a posteriori probabilities of non-observable states St , for t =
1, . . . , T , by

P̂r(St = k|y) = 1

R

R∑
r=1

I
(
s
(r)
t = k

)
, (7)
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where I (A) = 1 if A is true or I (A) = 0 otherwise and R is the lenght of the
MCMC final sample after burn-in and jumps. The change points of the non-
observable sequence are also well estimated. The real change points are located
at t = 1001 and t = 2001 in the simulated sequence and their estimates are 1007
and 2002.

3.2 Bacteriophage lambda genome

We apply the autoregressive HMM with order two to analyze the genome of bac-
teriophage lambda, a parasite of the intestinal bacterium Escherichia coli. This
sequence is T = 48,502 pairs of bases long. Previously, Skalka, Burgi and Her-
shey (1968), Churchill (1989), da Silva (2003) and Boys and Henderson (2004)
analyzed this sequence.

This DNA sequence y = {y1, y2, . . . , yT } can be thought of as a realization
of the observable random process Y = {Y1, Y2, . . . , YT }, where Yt ∈ {a, c, g, t} ≡
{1,2,3,4}, for t = 1,2, . . . , T . The letters represent the four nucleic acids or bases:
adenine, cytosine, guanine and thymine. Suppose there are N types of homoge-
neous segments in this DNA sequence. The non-observable sequence of these
homogeneous segments is a realization of the non-observable random process
S = {S1, S2, . . . , ST }, where St ∈ {1,2, . . . ,N}, for t = 1,2, . . . , T and N known.

For the non-observable states transition matrix, we choose to use the informa-
tion available as the a priori distribution since biologists usually know approxi-
mately the length of segments in a DNA sequence. In this case, we assume that
transitions between segment types are rare enough to allow us suppose E(akk) is
close to 1. We set β11 = β22 = 2.9 and β12 = β12 = 0.03, implying that, a priori,
E(a11) = E(a22) = 0.99 and Var(a11) = Var(a22) = 0.0026.

We consider autoregressive HMMs of order one and two and values of N ∈
{2,3,4}. These models are presented in Table 1 where HMM(1,1) represents the
autoregressive HMM of order one and HMM(1,2) of order two.

We use Bayes factor and DIC (deviance information criterion) as suggested by
Spiegelhalter et al. (2002), to identify the best fitted model. Tables 1 and 2 show
DIC and Bayes factor, respectively, where Bij represents Bayes factor comparing
the models Ma and Mb, for a = 1, . . . ,5 and b = a + 1, . . . ,6.

Table 1 shows the DIC estimates of the six estimated models. It is clear that all
second-order models fit better to data than first-order models and, among them,
M4 with N = 2, is the best model. We can draw the same conclusion from Bayes
factors estimates shown in Table 2. All comparisons between first and second-
order result in favor of second-order models, that is, B14, B15, B16, B24, B25, B26,
B34, B35 and B36 are lower than 1 and, among the second-order models, the best
model is M4.

One interesting aspect in HMM is identifying from which non-observable state
each observation of the sequence comes from. This information may be gath-
ered by estimating Pr(St = k|y) by (7). Figure 3 displays P̂r(St = 1|y) in (a) and
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Table 1 DIC estimates

Model N DIC

M1:HMM(1,1) 2 132,568
M2:HMM(1,1) 3 132,699
M3:HMM(1,1) 4 132,942
M4:HMM(1,2) 2 130,936
M5:HMM(1,2) 3 131,145
M6:HMM(1,2) 4 131,017

Table 2 Bayes factor estimates

Bij Bij Bij

B12 2.2 × 1011 B23 2.2 × 1048 B35 7.52×10−302

B13 4.95 × 1059 B24 6.04×10−263 B36 1.17×10−243

B14 1.35×10−251 B25 1.66×10−253 B45 3.67 × 109

B15 3.72×10−242 B26 2.59×10−195 B46 4.28 × 1067

B16 5.79×10−184 B34 2.7 × 10−311 B56 1.16 × 1058

Figure 3 P̂r(St = k|y), for k = 1 (a) and k = 2 (b).

P̂r(St = 2|y) in (b) for bacteriophage lambda genome. The first part of the se-
quence is composed by just one segment and the other part is composed by shorter
sub-sequences. We observe 8 change points in this sequence, see also Braun, Braun
and Muller (2000).
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These results are obtained using burn-in of 1000 iterations followed by 10,000
iterations in which only every 5th iterate is recorded, producing R = 2000 sim-
ulated values. Each run spends 20 hours, approximately, in a personal computer.
Convergence is monitored with Gelman–Rubin diagnostics using two sequences
with overdispersed starting values. Both sequences produce similar results and the
Gelman–Rubin diagnostic is lower than 1.1 for all parameter sequences indicat-
ing convergence of the chains. The trace graphics of some parameters (randomly
chosen) are available in supplementary information.

4 Discussion

We propose a second-order autoregressive hidden Markov model and its Bayesian
estimator using MCMC. Simulations show that estimation of parameters and se-
quence of states works well and, despite the large number of parameters in this
model, the method does not show problem of convergence. The application to real
data example presented here, bacteriophage lambda genome, illustrates a situation
where a second-order dependence fits the data better than a first-order, indicating
that second-order autoregressive HMM have a place in model fitting, especially in
genetics. Higher order models could be tried, but always respecting the parsimony
principle since the number of parameters to be estimated is also larger. The accu-
racy in estimating the sequence of states and finding the change points, illustrated
by Figure 3, is also a plus.
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