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A note on curvature influence diagnostics in elliptical
regression models
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University of Campinas

Abstract. In this paper, we derive analytical expressions for the curvature
influence statistic proposed by Cook [J. Roy. Statist. Soc. Ser. B 48 (1986)
133–169] in elliptical regression models under a data perturbation scheme.
A relationship between the curvature statistics and the residuals is established
and the effects of the shape parameter are assessed. The results reveal the
role of the shape parameter in applying the curvature influence diagnostics
technique.

1 Introduction

The local influence method introduced by Cook (1986) is a useful paradigm for
detecting observations that have a strong effect on a model; see Zhu et al. (2007)
and references therein. Taking advantage of the concepts of differential geometry,
Cook (1986) assessed the effect (influence) of minor perturbations in the model
through the curvature of the influence graph.

Galea et al. (1997, 2000) and Liu (2000), among others, have investigated the
use of curvature influence diagnostics in linear regression models with elliptical
errors. The class of elliptical errors includes the normal distribution, Student-t
distribution, logistic distribution, and exponential power distribution.

Following the strategy of Schwarzmann (1991), here we derive analytic expres-
sions for curvature influence diagnostics in elliptical regression models under a
data perturbation scheme. The results are important to understand the role of the
shape parameter in finding influential points through appropriate curvature statis-
tics. In addition, practical consequences in terms of data analysis are discussed.
Previous works on this topic have calculated the curvature numerically, mainly
focusing on a subset of parameters, say the regression or scale parameters.

The remainder of this paper is organized as follows. In Section 2, we present the
main results, and some conclusions and the final remarks are given in Section 3.

2 Curvature influence statistic and residuals

Let y = (y1, . . . , yn)
� be observations generated by the (postulated) model

y = Xβ + ε, (2.1)
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where X is a known n×p matrix of rank p, β is a p×1 vector of unknown param-
eters and ε is a random n× 1 perturbation vector following an elliptical symmetric
distribution with zero mean and covariance φI , with I being the identity matrix.
Thus, the density of y is

f (y) = n√
φ

g(s, η), (2.2)

s = 1

φ
(y − Xβ)�(y − Xβ), s ≥ 0, (2.3)

where φ > 0, g is an elliptical density generator and η is the shape parameter.
This model is called the elliptical linear regression model; see Fang and Anderson
(1990) and Galea et al. (1997) for details. In Table 1, we show the expressions for
the function g associated with some very well-known elliptical distributions; see
Galea et al. (2000).

The density of y depends on three parameters: β , φ and η. However, in this
paper we consider the shape parameter η as fixed and known. Therefore, we only
estimate the parameter vector θ = (β,φ), maximizing the log-likelihood denoted
by l(θ). The maximum likelihood estimators satisfy

β̂ = (
X�X

)−1
X�y, (2.4)

φ̂ = −2Ŵ‖e‖2/n, (2.5)

where Ŵ is the expression of

W = 1

g

(
∂g

∂s

)
(2.6)

evaluated at the maximum likelihood estimates of θ and e is the vector of residuals,

e = y − Xβ̂. (2.7)

Suppose y is perturbed according to a data perturbation scheme

ỹ = y + ω (2.8)

Table 1 Some multivariate elliptical distributions. Expression A is defined in (2.15) and for each
distribution c is a normalizing constant.

Density g(s, η) A

Normal c exp(−s/2) 2
Logistic c exp(−s)/[1 + exp(−s)]2 2 + 2n exp(ŝ)/[1 − exp(ŝ)]2
Student-t c(1 + s/η)−(η+n)/2 2 − 2n/(n + η)

Power Exponential c exp(−sη/2) 2η
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with perturbation vector ω = (ω1, . . . ,ωn)
�. As a result, we obtain the perturbed

log-likelihood

l(θ |ω) = −n

2
lnφ + lng

(
1

φ
(y + ω − Xβ)�(y + ω − Xβ),η

)
. (2.9)

Let ω0 = (0, . . . ,0)� be the point of null perturbation, the point which satisfies
l(θ |ω0) = l(θ). Let θ̂ and θ̂ω be the maximum likelihood estimates under l(θ) and
l(θ |ω), respectively, and note that θ̂ = θ̂ω0 .

To assess the influence of minor perturbations ω on the postulated model, Cook
(1986) suggested using the likelihood displacement LD(ω) = 2[l(θ̂)− l(θ̂ω)]. The
objective is to find the vector of the maximum normal curvature evaluated at ω0

and θ̂ , denoted by C = (c1, . . . , cn)
�. This is done by solving

|F − λI | = 0, (2.10)

where

F = ∂2 LD(ω)

∂ω∂ω� = 	�(−G−1)
	, (2.11)

I is the identity matrix,

	 = ∂2l(θ)

∂θ∂ω� (2.12)

is a matrix of order q × n and −G is the observed information matrix:

G = ∂2l(θ)

∂θ∂θ� . (2.13)

The curvature vector C is the normalized eigenvector associated with the largest
absolute eigenvalue of F , λc, and the curvature is Cmax = 2λc.

For elliptical regression models, Galea et al. (1997) and Liu (2000) derived
the expressions for the observed information matrix and 	, respectively. In this
paper we rewrite these expressions in a convenient way. Thus, the components of
	� = [	�

1 ,	�
2 ] evaluated at ω0 and θ̂ are

	�
1 = − 2

φ̂
ŴX, 	�

2 = − Ŵ

φ̂2
Ae, (2.14)

where

A = 2 − n

Ŵ 2

(
∂Ŵ

∂s

)
, (2.15)

and A for some multivariate elliptical distribution is given in Table 1. The observed
information matrix evaluated at ω0 and θ̂ is

−G−1 = diag
{
− φ̂

2Ŵ

(
X�X

)−1
,

4φ̂2

n
A−1

}
. (2.16)
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Then, substituting (2.14) and (2.16) in (2.11) yields

F = −2Ŵ

φ̂
X

(
X�X

)−1
X� + 2ŴA

φ̂

(
2Ŵ‖e‖2

nφ̂

)
hh�, (2.17)

where h = e/‖e‖ is the normalized residual vector. By replacing (2.5) in the last
expression, we obtain

F = n

‖e‖2 H + An

‖e‖2 hh�,

where H = X(X�X)−1X� and hh� are projection matrices with Hh = 0.
Therefore the F matrix has eigenvalues λ1 = n/‖e‖2 (with multiplicity p) and
λ2 = An/‖e‖2 (with multiplicity 1). This result generalizes the findings of
Schwarzmann (1991) for normal errors. The next theorem summarizes these find-
ings.

Theorem 2.1. Let a elliptical regression model (2.1)–(2.2) and assume the data
perturbation scheme (2.8). Then, matrix F defined in (2.11) can be writen as

F = n

‖e‖2 H + An

‖e‖2 hh�, (2.18)

where H = X(X�X)−1X� and h = e/‖e‖ is the normalized least squares residual
vector. In addition, Hh = 0 and F has eigenvalues λ1 = n/‖e‖2 (with multiplicity
p) and λ2 = An/‖e‖2 (with multiplicity 1).

In the curvature influence diagnostics, we usually choose the eigenvector as-
sociated with the largest eigenvalue. The eigenvector associated with λ2 is the
normalized residual vector h. This is the appropriate curvature statistic for assess-
ing influence under data perturbation schemes because the eigenvectors associated
with λ1 (which are the eigenvectors of H ) do not consider the response variable y.
Therefore, we are interested in finding the conditions where the appropriate curva-
ture statistic is chosen, that is, when λ2 > λ1 holds. From Theorem 2.1, this occurs
if and only if the quantity A defined in (2.15) satisfies A > 1. We establish this
result as a corollary.

Corollary 2.1. Under the conditions of Theorem 2.1, the eigenvector associated
with the largest eigenvalue of F is h if and only if A > 1.

Next, we discuss when the condition A > 1 holds, for some well-known ellipti-
cal densities reported in Table 1. For instance, the condition is always satisfied by
the normal and logistic densities. For the exponential power density, the condition
is η > 1/2, which includes heavy-tailed case (η > 1). However, for the Student-t
density, the normalized residuals are chosen if and only if the degree of freedom
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parameter is larger than the sample size (η > n). This means that for the Cauchy
distribution, which is a particular case of the Student-t distribution when η = 1, the
residual vector is never chosen as the curvature vector. Moreover, if, for example,
the degree of freedom parameter of the Student-t distribution is small (in order to
reproduce heavy tails), the appropriate curvature statistic only might be chosen for,
accordingly, very small data sets.

In order to highlight the consequences of the main findings of the paper in terms
of local influence analysis, we present next two examples.

Example 2.1. Suppose that data were generated by a Student-t model with η < n.
To find the curvature influential points a researcher who is not aware of the results
given in this paper calculates the curvature numerically. From (2.18), this means
the researcher will find eigenvectors of F associated with λ1 = n/‖e‖2, which
are non-unique, and are the eigenvectors associated with the eigenvalue 1 of H =
X(X�X)−1X� (because H is a projection matrix, it has eigenvalues equal to 0
or 1). For instance, consider a linear regression where the columns of matrix X

are 1 = (1,1, . . . ,1) and x = (x1, x2, . . . , xn). The eigenvector v associated with
the eigenvalue 1 must satisfy Hv = v. Since HX = X, the columns of X are
eigenvectors. The eigenvectors corresponding to the eigenvalue 1 are not unique;
they are elements of the eigenspace generated by 1 and x. For example, v = x− x̄1,
where x̄ = ∑n

i=1 xi/n, is also an eigenvector. Therefore, according to the curvature
influence diagnostics, we could choose, for example, the following normalized
eigenvectors:

v1 = (1, . . . ,1)/
√

n, (2.19)

v2 = (x1 − x̄, . . . , xn − x̄)/
√

λ, (2.20)

where λ = ∑n
i=1(xi − x̄)2.

If the researcher chooses v1, the curvature is constant and then there are no
influential points, regardless of the data, which is nonsense. When v2 is chosen,
because the leverage is equal to

hii = 1

n
+ (xi − x̄)2∑n

i=1(xi − x̄)2 , i = 1, . . . , n, (2.21)

that is, hii = n−1 + v2
2i , where v2i is the ith element of v2, the influential points

are the points with high leverage. However, the researcher can choose other eigen-
vectors and accordingly identify other influential points.

Therefore, a researcher who is not aware of the results given in this paper does
not obtain a unique answer in terms of the identification of influential points. In
fact, the answers ranged from the non-existence of influential points to the identi-
fication of the x’s points with high leverage. Even worse, those solutions are inde-
pendent of the response values y which should be considered for data perturbation
scheme analysis.
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Example 2.2. In this example, we present an empirical illustration. We analized
the water salinity data of Ruppert and Carroll (1980) where the response variable
is biweekly salinity (y) and the explanatory variables are the salinity lagged two
weeks (x1), a dummy variable which indicates the time period (x2) and river dis-
charge (x3). Regression diagnostics is performed by these authors as well as by
Atkinson (1985), Carroll and Ruppert (1985) and Davison and Tsai (1992). Be-
sides, curvature influence diagnostics using elliptical models was performed by
Galea et al. (1997) assuming model perturbation and by Liu (2000) assuming data
perturbation scheme.

We perform local influence via Cook’s curvature diagnostics assuming data
perturbation scheme on an elliptical model with regressors 1 = (1,1, . . . ,1), x1,
x2, x3. First, we calculated the eigenvector associated with λ2, h, which is the
normalized least square residual vector. Since eigenvectors associated with matrix
H are non-unique we decided to calculate an orthonormal basis via the Gram–
Schmidt process on {1, x1, x2, x3}. The five curvature vectors are depicted in Fig-
ure 1, being h the black solid line and the four vectors associated with H in
dashed lines. Here we can see that the curvature vector h indicates no influen-
tial point. Then, assuming that errors follow Normal and Logistic distributions we
do not identify influential points. The same applies assuming Power Exponential

Figure 1 Absolute values of eigenvectors: of H in red dashed lines, in solid black line for the
residuals in the unperturbed case and in solid blue line for the residuals in the perturbed case.
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with η > 1/2. However, if we assume a Student-t distribution with η = 3 since
n = 28 > 3 then the curvature vector is any of the four vectors associated with H .

In addition, we perturbed the first response observation y1 by y1(ω) = y1 + 9
(as a reference, the standard deviation of y is 3.01 and the standard deviation of
the residuals in the OLS fit with the unperturbed data is 1.25) and perform again
the curvature influence analysis. The new residual vector is the solid blue line in
Figure 1. We can clearly see that this vector identify, correctly, the first observation
as the perturbed observation. However, if we assume a Student-t distribution with
η < 28 then the curvature vectors associated with H indicates no influential point.

3 Conclusions and further research

In this paper, we derived analytic expressions for curvature influence diagnostics
in elliptical regression models under a data perturbation scheme. The results re-
veal the role of the shape parameter in applying the curvature influence diagnos-
tics technique. Since the proper statistic for a data perturbation scheme, that is,
the residuals, is only chosen under some conditions on the shape parameter, the
specification of the distribution of the errors is crucial when dealing with data.
Therefore, the application of local influence approach to regression diagnostics in
the case of perturbation of the response values should not be done automatically,
as illustrated by the examples in Section 2.

In practice, the shape parameter has to be estimated. Thus, a topic of further
research is to derive the analytic expression of the curvature statistic in this situ-
ation.1 An additional topic of further research is the analysis of the independent
case where the errors are defined as following univariate elliptical distributions.
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