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Bias correction in power series generalized nonlinear models
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Universidade Federal de Pernambuco

Abstract. Power series generalized nonlinear models [Comput. Statist. Data
Anal. 53 (2009) 1155–1166] can be used when the Poisson assumption of
equidispersion is not valid. In these models, we consider a more general fam-
ily of discrete distributions for the response variable and a nonlinear structure
for the regression parameters, although the dispersion parameter and other
shape parameters are assumed known. We derive a general matrix formula
for the second-order bias of the maximum likelihood estimate of the regres-
sion parameter vector in these models. We use the results by [J. Roy. Statist.
Soc. B 30 (1968) 248–275] and bootstrap technique [Ann. Statist. 7 (1979)
1–26] to obtain the bias-corrected maximum likelihood estimate. Simulation
studies are performed using different estimates. We also present an empirical
application.

1 Introduction

Count data occur in several different areas. In recent years, the number of pub-
lished papers dealing with statistical analysis for univariate count data within the
framework of regression models has been increased steadily. Poisson and nega-
tive binomial distributions are the most useful models in the regression analysis
of count data [see, the book by Cameron and Trivedi (1998)]. The Poisson dis-
tribution is the cornerstone model for count data. For many observed count data,
however, it is common to have the sample variance to be greater or smaller than
the sample mean which are referred to as over-dispersion and under-dispersion,
respectively. These types of data may arise due to one or more possible causes
such as heterogeneity and aggregation for over-dispersion and repulsion for under-
dispersion. Consequently, there have been both studies of the effect of over-
dispersion on inferences made under a Poisson model and other models have been
suggested for accommodating over-dispersion in statistical analysis. Several meth-
ods have been proposed for dealing with extra-Poisson variation when doing re-
gression analysis of count data.

Power series generalized nonlinear models (PSGNLMs), pioneered by
Cordeiro, Andrade and De Castro (2009), are defined by a modified power se-
ries family of distributions for the response (parameterized in terms of the mean)
and a possible nonlinear link function for the mean response. This class of models
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unifies several important discrete models in the same framework thus extending the
classical log-nonlinear models, binomial nonlinear models and negative binomial
nonlinear models to cope with several other discrete distributions.

The random component of the PSGNLM is defined by a subclass of the mod-
ified power series family of distributions originally defined and studied by Gupta
(1974). However, we express the family parameterized in terms of the mean pa-
rameter as developed and studied by Consul (1990). This wider discrete family of
distributions combined with the systematic component of the exponential family
nonlinear model (EFNLM), first defined by Cordeiro and Paula (1989), constitutes
a flexible tool for statistical modeling of discrete data and a rich illustration on the
use of univariate discrete regression models for practical applications.

A central object in asymptotic likelihood theory is the calculation of the second-
order biases of the maximum likelihood estimates (MLEs). To improve the accu-
racy of these estimates, substantial effort has gone into computing the cumulants
of log-likelihood derivatives which are, however, notoriously cumbersome. The
MLEs typically have biases of order O(n−1) for large sample size n, which are
commonly ignored in practice, the justification being that they are small when
compared to the standard errors of the parameter estimates that are of order
O(n−1/2). For small samples sizes, however, these biases can be appreciable and of
the same magnitude of the corresponding standard errors. In these cases, the biases
cannot be neglected, and for turning feasible estimation of their size in practical
applications, corresponding formulae for their calculation need to be established
for a wide range of regression models.

The paper is organized as follows. In Section 2, we define the PSGNLMs. In
Section 3, we obtain the bias-corrected MLEs in these models. Simulation results
are presented and discussed in Section 4. Concluding remarks are given in Sec-
tion 5.

2 Power series generalized nonlinear models

We consider discrete random variables Y1, . . . , Yn in Y which are independent and
each Yi follows a family of distributions with mean parameter μi > 0 and dis-
persion parameter φ > 0 defined by the probability mass function with respect to
Lebesgue measure

π(y;μi,φ) = a(y,φ)g(μi,φ)y

f (μi,φ)
, y ∈ As, (2.1)

where the support of Yi is a subset As of integers {s, s + 1, . . .} defined here
not depending upon unknown parameters, s ≥ 0, a(y;φ) is positive, and the an-
alytic functions f = f (μ;φ) and g = g(μ;φ) (of the mean parameter μ and
the common dispersion parameter φ) are positive, finite and twice-differentiable.
The dispersion parameter φ is assumed known. We have E(Y ) = μ = f ′g

fg′ and
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Var(Y ) = V (μ,φ) = g
g′ . From now on, the primes denote differentiation with

respect to μ. We introduce a nonlinear regression structure for the mean vector
μ = E(Y ) of the class of distributions (2.1) given by the systematic component

h(μi) = ηi = η(xi;β), i = 1, . . . , n, (2.2)

where h(·) is a known one-to-one differentiable link function, η(·; ·) is a spec-
ified nonlinear function of unknown parameters, xi is a q × 1 vector and β =
(β1, . . . , βp)� (for p < n) is a set of unknown parameters to be estimated. Further,
we assume that β is defined in a subset �β of IRp (p < n) and η(xi;β) is an injec-
tive and continuously differentiable function with respect to β such that the n × p

derivative matrix of the nonlinear predictor X̃ = X̃(β) = ∂η/∂β� has rank p for
all β . The local model matrix X̃ in general depends on the unknown parameter
vector β .

Let � = �(β) be the total log-likelihood function for the PSGNLM defined
above. We have

l(β) =
n∑

i=1

log
{
a(yi, φ)

} +
n∑

i=1

[
yi log

{
g(μi,φ)

} − log
{
f (μi,φ)

}]
. (2.3)

The log-likelihood is assumed to satisfy the usual regularity conditions of large
sample likelihood theory; see, for instance, Cox and Hinkley (1974).

The expected information matrix for β conditioning on φ is given by Kβ =
X̃�WX̃, where W = diag{V −1

i h′−2
i } and Vi = V (μ;φ). The information matrix

depends only on the model matrix, the variance function and the first derivative
of the link function. A nonlinear optimization method such as the Fisher scoring
algorithm is required to obtain the MLE β̂; see Cordeiro, Andrade and De Castro
(2009).

3 Bias of the estimate of β

Bias correction has been extensively studied in the statistical literature and there
has been considerable interest in finding simple matrix expressions for second-
order biases of MLEs in some classes of regression models that do not involve cu-
mulants of log-likelihood derivatives. The methodology has been applied to several
regression models in recent years. We cite the following models: normal nonlin-
ear models [Cook, Tsai and Wei (1986)], generalized linear models [Cordeiro and
McCullagh (1991)], multivariate nonlinear regression models [Cordeiro and Vas-
concellos (1997)], symmetric nonlinear regression models [Cordeiro et al. (2000)],
Student t regression models with unknown degrees of freedom [Vasconcellos and
Silva (2005)] and beta regression models [Ospina, Cribari-Neto and Vasconcellos
(2006)].
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The purpose of this section is to use Cox and Snell (1968) formula (20) for
the n−1 bias of the MLE in order to obtain the second-order bias of β̂ . We de-
rive a simple matrix formula for the bias of β̂ . We shall use the following no-
tation for the derivatives of the log-likelihood function: Ur = ∂�/∂βr , Urs =
∂2�/∂βr ∂βs , Urst = ∂3�/∂βr ∂βs ∂βt , and so on. The notation used for the mo-
ments of such derivatives is that of Lawley (1956): κrs = E(Urs), κr,s = E(UrUs),
κrst = E(Urst ), etc., where all κ ′s refer to a total over the sample and are, in gen-
eral, typically of order O(n). We also define the derivatives of the cumulants by
κ

(t)
rs = ∂κrs/∂βt , etc. Further, we use the notation proposed by Cordeiro and Paula

(1989): x̃ir = ∂ηi/∂βr , x̃irs = ∂2ηi/∂βr ∂βs and x̃irst = ∂3ηi/∂βr ∂βs ∂βt .
The first, second- and third-order derivatives of the log-likelihood function (2.3)

are

Ur =
n∑

i=1

d0i x̃ir , Urs =
n∑

i=1

(d1i x̃is x̃ir + d0i x̃irs)

and

Urst =
n∑

i=1

(
d3i x̃it x̃is x̃ir + d1i (x̃ist x̃ir + x̃is x̃irt + x̃it x̃irs) + d0i x̃irst

)
,

where d0i = yiti − qi , dji = yit
(j)
i − q

(j)
i {(h′

i )
j }−1, d3i = d2i − d1ih

(2)
i {(h′

i )
2}−1,

ti = g′
i{gih

′
i}−1 and qi = f ′

i {fih
′
i}−1. Here, the superscript (j) indicates the j th

differentiation with respect to the mean μ for j = 1,2 and i = 1, . . . , n. Taking
expected values of such derivatives, we obtain the joint cumulants

κrs =
n∑

i=1

w1i x̃is x̃ir , κ(t)
rs =

n∑
i=1

{w̃1i x̃it x̃is x̃ir + x̃ist x̃ir + w1i x̃is x̃irt },

and

κrst =
n∑

i=1

{
w3i x̃it x̃is x̃ir + w1i (x̃ist x̃ir + x̃is x̃irt + x̃it x̃irs)

}
,

where

wji =
(

f ′
i gi

fig
′
i

t
(j)
i − q

(j)
i

)
1

h′
i

, w3i = w2i − w1ih
′′
i

(h′
i )

2 ,

w̃ji = ϕji − (j − 1)qiVit
(j)
i h′′

i − q
(j+1)
i

(h′
i )

j+1 + j
q

(j)
i h′′

i

(h′
i )

j+2 ,

ϕji = q ′
iVi t

(j)
i + qiV

′
i t

(j)
i + qiVit

(j+1)
i

(h′
i )

j
.

These quantities involve derivatives that depend upon well-known functions f , g,
h and V of the PSGNLMs.
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Cox and Snell (1968) obtained a general formula for the second-order bias (i.e.
of order O(n−1)) of the MLE β̂ of the parameter vector β = (β1, . . . , βp)�. Let
B(β̂b) be the second-order bias of the estimate β̂b. We can write (for b = 1, . . . , p)

B(β̂b) = ∑
r,s,t

κbrκst

(
κ(t)
rs − 1

2
κrst

)
, (3.1)

where the indices r, s and t refer to the components of β . Here, −κrs = κr,s de-
notes the (r, s)th element of the inverse expected information matrix. The quantity
κ

(t)
rs − 1

2κrst in (3.1) can be written as

κ(t)
rs − 1

2
κrst =

n∑
i=1

ci x̃it x̃is x̃ir + 1

2

n∑
i=1

w1i (x̃ist x̃ir + x̃is x̃irt − x̃it x̃irs),

where ci = w̃1i − 1
2{w2i − w1ih

′′
i (h

′
i )

−2}, for i = 1, . . . , n. Thus,

B(β̂b) = ∑
r,s,t

κbrκst
∑
i

ci x̃it x̃is x̃ir + 1

2

∑
r,s,t

κbrκst
∑
i

w1i x̃ist x̃ir .

In matrix notation, we can write the O(n−1) bias of β̂ as

B(β̂) = (
X̃�WX̃

)−1
X̃�Wδ. (3.2)

Here, δ = (Zdc + 1
2Dδ1), Zd and D are diagonal matrices of order n, Z =

X̃(X̃�WX̃)−1X̃�, di = tr{(X̃�WX̃)−1 ˜̃Xi}, ˜̃Xi is a square matrix of order p de-
fined by the elements x̃irs , c and δ1 are vectors of order n × 1 whose elements are
ci and w1i , respectively.

Thus, the bias vector B(β̂) is simply the set of coefficients from the weighted
linear regression of δ on the columns of X̃ with weighted matrix W . In the regres-
sion calculations, all quantities have to be evaluated at β̂ . For generalized linear
models (GLMs), (3.2) coincides with the result (4.2) due to Cordeiro and Mc-
Cullagh (1991). For the linear model, ˜̃Xi = 0 and, consequently, δ = Zdc. Equa-
tion (3.2) is the main result of this paper and can be used to produce a bias-reduced
estimate by subtracting the bias approximation from the MLE. Alternatively, an
examination of the form of the bias may suggest a reparametrization of the model
to yield less biased estimates.

A number of remarks are worth making with respect to (3.2). First, B(β̂) is a
function of the local model matrix X̃, the first two derivatives of the scalars t , q

and link function and the first derivatives of the scalars f , g and variance func-
tion. Second, to evaluate the n−1 bias we need only to compute the asymptotic
covariance matrix Z of the estimate η̂ and the diagonal matrices Zd and D and the
square matrices ˜̃Xi for i = 1, . . . , n. It is obvious that (3.2) does depend on the fit-
ted model through the quantities above. Third, it is possible to obtain a closed-form
expression for B(β̂) in models with closed-form information matrix. Fourth, the
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right-hand side of (3.2) can be evaluated at β̂ to define the bias–corrected estimate
β̃ = β̂ − B̂(β̂), where B̂(·) is the value of B(·) at β̂ . The bias-corrected estimate
β̃ is expected to have better sampling properties than the classical estimate β̂ . In
fact, several simulation results presented in the literature by Botter and Cordeiro
(1998), Cordeiro et al. (2000), Vasconcellos and Silva (2005) and Ospina, Cribari-
Neto and Vasconcellos (2006) have shown that the bias-corrected estimates β̃ have
smaller biases than their corresponding uncorrected estimates, thus suggesting that
the bias corrections have the effect of shrinking the corrected estimates toward to
the true parameter values. However, we can not conclude that the bias-corrected
estimates offer always some improvement over the MLEs, since they can have
larger mean squared errors than the uncorrected estimates.

An alternative approach to obtain bias-corrected MLEs is through Efron (1979)
bootstrap resampling. Consider a random sample y = (y1, . . . , yn)

� of a variable
Y with distribution function F = Fθ(y), where θ is the parameter that indexes
the distribution, that is, it is viewed as a functional of F , say θ = t (F ). Let θ̂

be an estimator for θ based on y, say θ̂ = s(y). The application of the bootstrap
technique consists in obtaining, from the original sample y, a large number of
pseudo-samples y∗ = (y∗

1 , . . . , y∗
n)� and then extracting information from these

copies to improve inference. In the parametric version, the bootstrap samples are
generated from F(θ̂), which is denoted by F

θ̂
. Hence, the bias can be expressed

as BF (θ̂, θ) = E(θ̂ − θ) = EF [s(y)] − t (F ), where the subscript F indicates that
expectation is taken with respect to F . The bootstrap bias estimate can be obtained
by replacing the true distribution F , which generated the original sample, by F

θ̂
in the above expression. Then, the parametric estimate of the bias is given by
B

F̂
θ̂
(θ̂ , θ) = E

F̂
θ̂
[s(y)] − t (F̂

θ̂
).

If N bootstrap samples y∗1, . . . , y∗N are generated independently from the orig-
inal sample y, and the corresponding bootstrap replications θ̂∗1, . . . , θ̂∗N are cal-
culated, where θ̂∗i = s(y∗i) for i = 1, . . . ,N , then it is possible to approximate the
expectation EF

θ̂
[s(y)] by the sample mean θ̂∗(·) = 1

N

∑N
i=1 θ̂∗i . So, the bootstrap

bias estimate based on N replications of θ̂ is given by B̂
F̂

θ̂
(θ̂ , θ) = θ̂∗(·) − s(y). Fi-

nally, we define the bootstrap bias-corrected estimate by θ̆2 = s(y) − B̂
F̂

θ̂
(θ̂ , θ) =

2s(y) − θ̂∗(·).
Asymptotic confidence intervals for any regression parameter can be con-

structed based on the multivariate normal approximations β̂ ∼ Np(β,K(β)−1) and
β̃ ∼ Np(β,K(β)−1). Hence, for large n, the asymptotic confidence interval (ACI)
and the corrected asymptotic confidence interval (CACI) for β with confidence
level 100(1 − γ )% are given by (β̂ − z1− γ

2
(K(β̂)−1)1/2, β̂ + z1− γ

2
(K(β̂)−1)1/2)

and (β̃ − z1− γ
2
(K(β̃)−1)1/2, β̃ + z1− γ

2
(K(β̃)−1)1/2), respectively.

The Bootstrap-t confidence interval (BtCI) is calculated from the distribution
of the T statistic defined by T = (β̂ − β)/ŝe(β̂), which can be computed from
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a random sample y = (y1, . . . , yn)
� under the assumption of normality, where

ŝe(β̂) is the estimated standard error of β̂ . We generate N bootstrap samples
(y∗1, . . . , y∗N) from the original sample y and, for each bootstrap sample, we de-

termine T ∗b = (β̂
∗b − β)/ŝe∗b, for b = 1, . . . ,N , where β̂ = s(y) is the estimated

value of β calculated from the original sample y, β̂
∗b = s(y∗b) is the estimated

value of β and ŝe∗b is the estimated standard error of β̂
∗b

for the bootstrap sample
y∗b. The percentiles γ /2 and 1 − γ /2 of T ∗b are estimated by t̂ (γ /2) and t̂ (1−γ /2),
respectively, such that

#(T ∗b ≤ t̂ (γ /2))

N
= γ

2
and

#(T ∗b ≤ t̂ (1−γ /2))

N
= 1 − γ

2
.

In this way, the Bootstrap-t confidence interval is given by (β̂ − t̂ (1−γ /2)ŝe(β̂),
β̂ − t̂ (γ /2)ŝe(β̂)). The quantities t̂ (γ /2) and t̂ (1−γ /2) are calculated as follows: we
sort all N bootstrap values of T ∗b and the numbers of replications N × (γ /2) and
N × (1 − γ /2) are the quantities t̂ (γ /2) and t̂ (1−γ /2), respectively, assuming that
N × (γ /2) and N × (1 − γ /2) are integers. If N × (γ /2) and N × (1 − γ /2) are
not integers, we can use the following approach: assuming that 0 < γ < 1/2, let k

be the greatest integer ≤ (N + 1) × (γ /2). Then, the quantities t̂ (γ /2) and t̂ (1−γ /2)

correspond to the kth and (N + 1 − k)th ordered elements of T ∗b, respectively.

4 Numerical evidence

We present some Monte Carlo simulation results on the finite sample behavior
of the MLE of β and its bias-adjusted counterpart. First, we use the nonlinear
regression model ηi = β0 + β1x1i + exp(β2x2i ), i = 1, . . . , n. The response was
generated from the Consul, generalized negative binomial (GNB) and generalized
Poisson (GP) distributions, respectively. For the GNB and GP models, we gener-
ate the response variate by fixing the parameters at β0 = β1 = β2 = 0,25, whereas
for the Consul model, we take β0 = β1 = 0,25 and β2 = 1. The independent vari-
able x1 and x2 are chosen as independent random draws from the uniform U(0,1)

distribution. The sample size was taken as n = 25,35,45 and 100 and the simu-
lations are based on 10,000 replications. All simulations are performed using Ox
[Doornik (2009)]. We obtain the MLE β̂ and compute the adjusted estimate β̃ .
Then, we perform B = 600 replications of the parametric bootstrap in order to
compute the bootstrap bias-corrected estimate, say β̌ .

The figures in Tables 1, 2 and 3 refer to the estimates of β for the GNB, Consul
and GP models, respectively. Here, we take different sample sizes. In these ta-
bles, we present the relative biases for different estimates. It is noteworthy that the
corrected estimates β̃ have relative biases in magnitude smaller than those of the
corresponding MLEs for almost all sample sizes. The bias-corrected estimates ob-
tained by the analytical approach are usually larger than the true parameter values,
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Table 1 Point estimation of β—GNB nonlinear model

β0 β1 β2

n Estimate bias RB (%) MSE bias RB (%) MSE bias RB (%) MSE

25 β̂ −0.01346 −5.3830 0.00018 0.01991 7.9626 0.00040 −0.36879 −147.5200 0.13601
β̃ 0.01081 4.3219 0.00012 0.01274 5.0974 0.00016 0.29076 116.3000 0.08454
β̆ 0.02302 9.2065 0.00053 0.00259 1.0360 0.00001 −0.12964 −51.8560 0.01681

35 β̂ −0.01428 −5.7134 0.00020 0.00891 3.5657 0.00008 −0.18050 −72.2020 0.03258
β̃ 0.00413 1.6527 0.00002 0.00483 1.9303 0.00002 0.05699 22.7950 0.00325
β̆ 0.01267 5.0671 0.00016 −0.00714 −2.8548 0.00005 0.01945 7.7794 0.00038

45 β̂ −0.01095 −4.3806 0.00012 0.00733 2.9328 0.00005 −0.12069 −48.2760 0.01457
β̃ 0.00157 0.6277 0.00000 0.00377 1.5079 0.00001 0.01979 7.9149 0.00039
β̆ 0.00418 1.6701 0.00002 −0.00211 −0.8436 0.00000 0.02625 10.5000 0.00069

100 β̂ −0.00638 −2.5503 0.00004 0.00329 1.3179 0.00001 −0.03543 −14.1730 0.00126
β̃ −0.00027 −0.1093 0.00000 0.00088 0.3531 0.00000 0.00258 1.0336 0.00001
β̆ 0.00004 0.0179 0.00000 −0.00032 −0.1279 0.00000 0.02822 11.2860 0.00080
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Table 2 Point estimation of β—Consul nonlinear model

β0 β1 β2

n Estimate bias RB (%) MSE bias RB (%) MSE bias RB (%) MSE

25 β̂ −0.04912 −19.6480 0.00241 0.04250 17.0000 0.00181 −0.09605 −9.6052 0.00923
β̃ 0.00162 0.6481 0.00000 0.00678 2.7120 0.00005 0.03357 3.3573 0.00113
β̆ 0.00240 0.9583 0.00001 −0.00810 −3.2395 0.00007 0.03982 3.9815 0.00159

35 β̂ −0.03749 −14.9980 0.00141 0.01488 5.9517 0.00022 −0.03500 −3.5004 0.00123
β̃ 0.00026 0.1024 0.00000 0.00496 1.9853 0.00002 0.00401 0.4006 0.00002
β̆ 0.00708 2.8332 0.00005 −0.01029 −4.1159 0.00011 0.01781 1.7808 0.00032

45 β̂ −0.03018 −12.0710 0.00091 0.01474 5.8950 0.00022 −0.02971 −2.9714 0.00088
β̃ −0.00099 −0.3971 0.00000 0.00521 2.0840 0.00003 0.00228 0.2285 0.00001
β̆ 0.00254 1.0157 0.00001 −0.00446 −1.7848 0.00002 0.00980 0.9801 0.00010

β̂ −0.01278 −5.1129 0.00016 0.00388 1.5520 0.00002 −0.01204 −1.2035 0.00014
100 β̃ −0.00011 −0.0456 0.00000 0.00088 0.3512 0.00000 0.00082 0.0822 0.00000

β̆ 0.00187 0.7470 0.00000 −0.00058 −0.2337 0.00000 0.00088 0.0876 0.00000
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Table 3 Point estimation of β—GP nonlinear model

β0 β1 β2

n Estimate bias RB (%) MSE bias RB (%) MSE bias RB (%) MSE

25 β̂ −0.01477 −5.9072 0.00022 0.01921 7.6838 0.00037 −0.38494 −153.9800 0.14818
β̃ 0.01101 4.4019 0.00012 0.01354 5.4166 0.00018 0.34852 139.4100 0.12146
β̆ 0.02582 10.3280 0.00067 0.00305 1.2188 0.00001 −0.15162 −60.6460 0.02299

35 β̂ −0.01491 −5.9645 0.00022 0.00894 3.5778 0.00008 −0.18724 −74.8940 0.03506
β̃ 0.00439 1.7553 0.00002 0.00513 2.0533 0.00003 0.06964 27.8570 0.00485
β̆ 0.01488 5.9534 0.00022 −0.00756 −3.0221 0.00006 0.00205 0.8208 0.00000

45 β̂ −0.01020 −4.0782 0.00010 0.00731 2.9228 0.00005 −0.25702 −102.8100 0.06606
β̃ 0.00291 1.1633 0.00001 0.00389 1.5575 0.00002 −0.08515 −34.0600 0.00725
β̆ 0.00531 2.1250 0.00003 −0.00220 −0.8800 0.00000 0.02368 9.4729 0.00056

β̂ −0.00664 −2.6571 0.00004 0.00337 1.3489 0.00001 −0.03711 −14.8450 0.00138
100 β̃ −0.00032 −0.1270 0.00000 0.00093 0.3708 0.00000 0.00377 1.5099 0.00001

β̆ 0.00007 0.0287 0.00000 −0.00001 −0.0034 0.00000 0.02493 9.9719 0.00062
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although the bootstrap correction in several cases underestimate the parameters.
Among the three estimates, β̂ is the one with poorest performance. All estimates
become more efficient if the sample size increases as it is expected.

Our simulation results indicate that the estimated biases of β̃ and β̌ are in ab-
solute value smaller than the estimated biases of β̂ independent of n. The only
exception corresponds to the estimated biases of β̌0 with n = 25 which are equal
to 0.02302 and 0.02582 for the GNB and GP models, respectively. These values
are larger than the estimated biases 0.01346 and 0.01477 of β̂0 for these models.
We can verify that the estimates β̃ and β̌ are more precise than β̂ based on their
mean squared errors. Between the estimates β̃ and β̌ , there is no indication that
one estimate is superior to the other.

The performance of the estimates was evaluated by assuming that β0 = β1 =
0.25 for fixed n = 35 and varying β2. Tables 4, 5 and 6 report results for the BNG,
Consul and GP models, respectively. For all models, the estimates β̃ are closer to
the true parameters than the other estimates. For example, for the GP model and
β2 = 0.5, the estimated biases of β̃ are equal in magnitude to 0.00029,0.00487
and 0.02325, whereas for β̂ they are 0.02128,0.00967 and 0.08210 and for β̌

they are 0.00581,0.00745 and 0.05261. The estimate β̂ tends to underestimate
β0 and β2 and to overestimate β1, whereas the bias-corrected estimates tend to
yield the opposite effects. In the majority of cases, β̃ yields positive biases for all
parameters. However, in almost all cases, β̌ yields positive biases for β0 and β2

and negative biases for β1.
We present some simulated intervals ACI, CACI and BtCI for the parameters

β0, β1 and β2 in the Consul, GNB and GP regression models. We evaluate 81
confidence intervals with nominal coverage 0.95 and sample sizes n = 35,45 and
100. These intervals were constructed in such a way that they contained the true
value of the parameter with probability 0.95, with probability 0.025 of the lower
limit to be greater than the true value of the parameter, and with probability 0.025
of the upper limit to be smaller than the true value. For each confidence interval,
the observed coverage probability was computed by the frequency that the 10,000
confidence intervals contain the true value of the parameter. Tables 7–9 give the
simulated confidence intervals for β0 = 0.25, β1 = 0.25 and β2 = 1.0 when n =
35, 45 and 100, respectively, under the above regression models.

We can observe that the average lengths of the ACI and CACI are close, al-
though the average length of the CACI is slightly inferior for all sample sizes.
Further, the BtCI has the longest average length than the corresponding two other
intervals for all sample sizes. When the sample size increases, the average lengths
of all intervals decrease as expected, that is, the interval estimates become more
precise. Tables 7–9 indicate that the BtCI yields greatest coverage probabilities
and then following by the ACI and CACI, respectively. When the sample size in-
creases, the coverage probabilities tend to the nominal coverage.
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Table 4 Point estimation of β2—GNB nonlinear model—n = 35

β0 β1 β2

β2 Estimate bias RB (%) MSE bias RB (%) MSE bias RB (%) MSE

0.25 β̂ −0.01428 −5.7134 0.00020 0.00891 3.5657 0.00008 −0.18050 −72.2020 0.03258
β̃ 0.00413 1.6527 0.00002 0.00483 1.9303 0.00002 0.05699 22.7950 0.00325
β̆ 0.01267 5.0671 0.00016 −0.00714 −2.8548 0.00005 0.01945 7.7794 0.00038

0.5 β̂ −0.02102 −8.4071 0.00044 0.01004 4.0162 0.00010 −0.07023 −14.0450 0.00493
β̃ −0.00033 −0.1310 0.00000 0.00506 2.0246 0.00003 0.01622 3.2440 0.00026
β̆ 0.00474 1.8960 0.00002 −0.00772 −3.0890 0.00006 0.05825 11.6500 0.00339

0.75 β̂ −0.02324 −9.2954 0.00054 0.00970 3.8808 0.00009 −0.03610 −4.8128 0.00130
β̃ −0.00097 −0.3862 0.00000 0.00459 1.8369 0.00002 0.00700 0.9340 0.00005
β̆ 0.00481 1.9242 0.00002 −0.00807 −3.2281 0.00007 0.02531 3.3747 0.00064

1 β̂ −0.02421 −9.6828 0.00059 0.00945 3.7819 0.00009 −0.02691 −2.6913 0.00072
β̃ −0.00156 −0.6236 0.00000 0.00440 1.7601 0.00002 0.00495 0.4948 0.00002
β̆ 0.00522 2.0878 0.00003 −0.00772 −3.0881 0.00006 0.00556 0.5556 0.00003
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Table 5 Point estimation of β2—Consul nonlinear model—n = 35

β0 β1 β2

β2 Estimate bias RB (%) MSE bias RB (%) MSE bias RB (%) MSE

0.25 β̂ −0.02424 −9.6954 0.00059 0.01209 4.8341 0.00015 −0.49742 −198.9700 0.24743
β̃ 0.00847 3.3889 0.00007 0.00651 2.6025 0.00004 1.58820 635.2700 2.52230
β̆ 0.03081 12.3250 0.00095 −0.00953 −3.8137 0.00009 0.69055 276.2200 0.47686

0.5 β̂ −0.03138 −12.5510 0.00098 0.01367 5.4674 0.00019 −0.28810 −57.6190 0.08300
β̃ 0.00251 1.0046 0.00001 0.00526 2.1042 0.00003 −0.02344 −4.6882 0.00055
β̆ 0.01308 5.2311 0.00017 −0.00957 −3.8289 0.00009 0.49339 98.6780 0.24343

0.75 β̂ −0.03604 −14.4140 0.00130 0.01455 5.8185 0.00021 −0.06748 −8.9966 0.00455
β̃ 0.00030 0.1192 0.00000 0.00494 1.9777 0.00002 0.02725 3.6327 0.00074
β̆ 0.00719 2.8743 0.00005 −0.00961 −3.8437 0.00009 0.10189 13.5860 0.01038

1 β̂ −0.03749 −14.9980 0.00141 0.01488 5.9517 0.00022 −0.03500 −3.5004 0.00123
β̃ 0.00026 0.1024 0.00000 0.00496 1.9853 0.00002 0.00401 0.4006 0.00002
β̆ 0.00708 2.8332 0.00005 −0.01029 −4.1159 0.00011 0.01781 1.7808 0.00032
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Table 6 Point estimation of β2—GP nonlinear model—n = 35

β0 β1 β2

β2 Estimate bias RB (%) MSE bias RB (%) MSE bias RB (%) MSE

0.25 β̂ −0.01491 −5.9645 0.00022 0.00894 3.5778 0.00008 −0.18724 −74.8940 0.03506
β̃ 0.00439 1.7553 0.00002 0.00513 2.0533 0.00003 0.06964 27.8570 0.00485
β̆ 0.01488 5.9534 0.00022 −0.00756 −3.0221 0.00006 0.00205 0.8208 0.00000

0.5 β̂ −0.02128 −8.5119 0.00045 0.00967 3.8681 0.00009 −0.08210 −16.4190 0.00674
β̃ 0.00029 0.1153 0.00000 0.00487 1.9487 0.00002 0.02325 4.6502 0.00054
β̆ 0.00581 2.3258 0.00003 −0.00745 −2.9800 0.00006 0.05261 10.5220 0.00277

β̂ −0.02421 −9.6819 0.00059 0.00916 3.6634 0.00008 −0.04057 −5.4091 0.00165
0.75 β̃ −0.00082 −0.3265 0.00000 0.00424 1.6979 0.00002 0.00863 1.1511 0.00007

β̆ 0.00479 1.9146 0.00002 −0.00799 −3.1969 0.00006 0.03449 4.5987 0.00119

1 β̂ −0.02564 −10.2550 0.00066 0.00877 3.5066 0.00008 −0.03433 −3.4326 0.00118
β̃ −0.00176 −0.7053 0.00000 0.00396 1.5857 0.00002 0.01903 1.9033 0.00036
β̆ 0.00555 2.2211 0.00003 −0.00818 −3.2702 0.00007 0.02874 2.8744 0.00083
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Table 7 95% asymptotics CI, bootstrap-t CI and coverage probabilities for the indicated parameters in the Consul model

Lower limit Upper limit Coverage

Estimate Intervals n = 35 n = 45 n = 100 n = 35 n = 45 n = 100 n = 35 n = 45 n = 100

ACI −0.460 −0.378 −0.181 0.888 0.824 0.652 89.720 90.100 90.910
β0 CACI −0.417 −0.346 −0.167 0.921 0.849 0.664 89.720 89.910 89.920

BtCI −0.519 −0.438 −0.233 1.094 1.001 0.761 94.350 94.760 94.540

ACI −0.683 −0.591 −0.326 1.198 1.110 0.836 88.810 89.460 90.180
β1 CACI −0.689 1.185 −0.598 1.098 −0.328 0.833 88.770 89.420 90.130

BtCI −0.886 −0.773 −0.439 1.409 1.293 1.281 94.610 94.830 94.950

ACI 0.565 0.621 0.759 1.360 1.317 1.218 89.380 89.950 90.150
β2 CACI 0.624 0.665 0.776 1.379 1.335 1.227 90.550 90.610 90.780

BtCI 0.402 0.491 0.689 1.292 1.281 1.225 87.030 88.790 92.800

Table 8 95% asymptotics CI, bootstrap-t CI and coverage probabilities for the indicated parameters in the GNB model

Lower limit Upper limit Coverage

Estimate Intervals n = 35 n = 45 n = 100 n = 35 n = 45 n = 100 n = 35 n = 45 n = 100

ACI −0.323 −0.253 −0.095 0.769 0.724 0.583 89.680 90.240 90.580
β0 CACI −0.299 −0.235 −0.088 0.792 0.740 0.590 89.780 90.210 90.610

BtCI −0.373 −0.303 −0.139 0.924 0.858 0.667 94.070 94.240 94.260

ACI −0.528 −0.460 −0.229 1.041 0.957 0.732 89.790 89.740 89.690
β1 CACI −0.537 −0.468 −0.232 1.039 0.954 0.731 89.800 89.750 89.740

BtCI −0.679 −0.600 −0.319 1.220 1.110 0.833 94.630 94.630 93.320

ACI 0.625 0.671 0.784 1.316 1.283 1.195 90.210 90.180 90.600
β2 CACI 0.663 0.702 0.797 1.341 1.304 1.204 90.680 90.210 90.760

BtCI 0.522 0.589 0.737 1.306 1.289 1.216 89.280 91.010 93.260
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Table 9 95% asymptotics CI, bootstrap-t CI and coverage probabilities for the indicated parameters in the GP model

Lower limit Upper limit Coverage

Estimate Intervals n = 35 n = 45 n = 100 n = 35 n = 45 n = 100 n = 35 n = 45 n = 100

ACI −0.359 −0.292 −0.125 0.820 0.760 0.603 90.150 90.670 90.230
β0 CACI −0.332 −0.272 −0.116 0.836 0.772 0.610 89.940 90.580 90.200

BtCI −0.409 −0.348 −0.164 0.991 0.906 0.696 94.580 95.000 94.570

ACI −0.541 −0.465 −0.235 1.047 0.971 0.741 89.910 89.730 90.250
β1 CACI −0.548 −0.469 −0.237 1.044 0.967 0.739 89.860 89.700 89.740

BtCI −0.688 −0.599 −0.324 1.219 1.122 0.842 94.440 94.660 94.900

ACI −0.242 −0.099 0.150 1.068 0.977 0.813 89.710 89.450 90.360
β2 CACI −0.032 0.022 0.182 1.071 0.995 0.828 89.600 89.940 90.920

BtCI −1.561 −0.741 0.032 0.796 0.803 0.781 79.050 81.250 89.990
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Table 10 Calls to a technical support help line in the weeks immediately following a product release

weeks 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
calls 0 2 2 1 1 3 5 8 5 9 17 9 24 16 23 27

Figure 1 Fitted number of calls under the Poisson model whose estimates are in Table 11.

5 Application

In this section, we present an illustration the example 54.2 provided by SAS/
STAT(R) 9.2 User’s Guide. This example shows how to analyze count data for
calls to a technical support help line in the weeks immediately following a product
release. This information could be used to decide upon the allocation of technical
support resources for new products. You can model the number of daily calls as a
Poisson random variable, where the average number of calls modeled by a nonlin-
ear function of the number of weeks that have elapsed since the product’s release.
The data are given in Table 10. During the first several weeks after a new product
is released, the number of questions that technical support receives concerning the
product increases in a sigmoidal fashion. The expression for the mean value in the
classic Poisson regression involves the identity link. The mean function is modeled
as follows:

μi = β0 exp(β1weeksi ), i = 1, . . . ,16. (5.1)

The likelihood for every observation callsi is callsi ∼ P(μi).
In Figure 1, we plot the estimated number of calls against number of weeks

using the uncorrected and corrected estimates.
Table 11 gives the uncorrected and corrected estimates and their asymptotic

standard errors between parentheses. The corrected estimates in β̃ are smaller than
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Table 11 Estimates of the model parameters (standard errors between
parentheses)—Poisson model

β̂ β̃

Parameter Estimate Standard error Estimate Standard error

β0 0.82610 0.25494 0.80406 0.25252
β1 0.43983 0.046276 0.43760 0.047134

the uncorrected estimates in β . The bias correction suggests that the uncorrected
estimates underestimate β .

6 Concluding remarks

Recently, there has been considerable interest to obtain explicit expressions for
second-order biases of the maximum likelihood estimates (MLEs) in some regres-
sion models when they do not involve cumulants of log-likelihood derivatives. We
discuss a general class of power series generalized nonlinear models (PSGNLMs)
[Cordeiro, Andrade and De Castro (2009)], which is quite useful to analyze count
data. We derive a simple matrix formula for the biases of the MLEs of the model
parameters in these models. In addition, some Monte Carlo simulations have been
investigated to compare the performance of the MLE β̂ and the two bias-corrected
counterparts β̃ and β̆ based on an analytical bias correction [Cox and Snell (1968)]
and a bootstrap parametric technique, respectively.

The simulations show that the estimated biases of β̂ are much larger than those
of the corresponding bias-corrected estimates. They also indicate that the bias-
corrected estimates β̃ and β̆ are closer to the true parameter values than the un-
adjusted estimates β̂ , thus correctly signalizing the direction of the bias correc-
tions. Overall, the estimate β̃ is the best one in terms of bias size, since it usually
yields estimated bias smaller in magnitude than those of β̂ and β̆ . The bias cor-
rection has less impact as n increases and the corrected estimates β̃ and β̆ tend
to have slightly smaller standard errors than the uncorrected estimates β̂ at least
for samples of moderate to large sizes. In these cases, the bias correction can lead
to substantial improvement in terms of bias and mean square error. Overall, the
simulations indicate that bias correction in PSGNLMs can then be used to obtain
improved estimates with more reliable finite sample behavior.
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