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Abstract. We study the contact process with stirring on Z
d . In this process,

particles occupy vertices of Zd ; each particle dies with rate 1 and generates
a new particle at a randomly chosen neighboring vertex with rate λ, provided
the chosen vertex is empty. Additionally, particles move according to a sym-
metric exclusion process with rate N . For any d and N , there exists λc such
that, when the system starts from a single particle, particles go extinct when
λ < λc and have a chance of being present for all times when λ > λc. Durrett
and Neuhauser proved that λc converges to 1 as N goes to infinity, and Konno,
Katori and Berezin and Mytnik obtained dimension-dependent asymptotics
for this convergence, which are sharp in dimensions 3 and higher. We obtain
a lower bound which is new in dimension 2 and also gives the sharp asymp-
totics in dimensions 3 and higher. Our proof involves an estimate for two-type
renewal processes which is of independent interest.

1 Introduction

The contact process on Z
d with birth rate λ > 0 and stirring rate N > 0 is the

Markov process (ξt )t≥0 on {0,1}Zd
with generator L = L(N)

exc + L(λ)
cont defined, for

any function f : {0,1}Zd →R that only depends on finitely many coordinates and
any ξ ∈ {0,1}Zd

, by:(
L(N)

exc f
)
(ξ) = N · ∑

{x,y}⊆Zd :
x∼y

(
f

(
ξx↔y) − f (ξ)

)
,

(1.1)

where ξx↔y(z) =
⎧⎨
⎩

ξ(y) if z = x,

ξ(x) if z = y,

ξ(z) otherwise,(
L(λ)

contf
)
(ξ) = ∑

x∈Zd :
ξ(x)=1

(
f

(
ξx←0) − f (ξ)

) + λ

2d
· ∑

x∈Zd :
ξ(x)=1

∑
y∈Zd :
y∼x

(
f

(
ξy←1) − f (ξ)

)
,

(1.2)
where ξx←i(z) =

{
i if z = x,

ξ(z) otherwise,
i ∈ {0,1}
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and we write x ∼ y if |x − y|1 = 1. We interpret each vertex x ∈ Z
d as a region

of space which can either be empty (represented by state 0) or contain a particle
(state 1). The dynamics can be described as follows:

• Lexc describes the motion of particles, which is according to an exclusion dy-
namics with rate N . This means that for each pair x ∼ y with ξ(x) = 1 and
ξ(y) = 0, the particle at x jumps to y with rate N . For each pair x ∼ y with
ξ(x) = ξ(y) = 1, it will be useful to think that the particles at x and y exchange
positions with rate N (though this amounts to no change in the configuration ξ ).

• Lcont describes the birth and death of particles, which is according to a contact
process with rate λ, described as follows. Each particle dies with rate 1 and
gives birth with rate λ; when a birth occurs, a new particle is placed at a position
chosen uniformly at random among the neighbors of the parent (if the chosen
position is not empty, no new particle is born).

This process is then a mixture of two well-studied classes of interacting particle
systems: the exclusion process, introduced in Spitzer (1970), and the contact pro-
cess, introduced in Harris (1974). It was first considered in Durrett and Neuhauser
(1994), who were motivated by the earlier work (De Masi, Ferrari and Lebowitz,
1986). In De Masi, Ferrari and Lebowitz (1986), the authors added exclusion dy-
namics to particles on Glauber-type spin systems and showed that, if the rate of the
exclusion is taken to infinity, the system converges to the solution of an associated
reaction-diffusion equation.

Our interest will be to consider the contact process with stirring from the point
of view of its extinction-survival phase transition. To explain what we mean by
this, let us first consider the basic contact process (that is, take the above definition
with N = 0). Assume ξ0 = 1{0} (the indicator function of the origin) and consider
the probability (which depends on d and λ)

P
[
for all t there exists x such that ξt (x) = 1

]
. (1.3)

This is non-decreasing in λ. We say that the process dies out if (1.3) is zero and
survives if it is positive. The phase transition for the contact process is the state-
ment that there exists λc(Z

d) ∈ (0,∞) such that the process survives if and only
if λ > λc(Z

d) (for a proof of this, and of all the facts we state here about the basic
contact process, see Liggett, 2013).

Since attempted births on occupied vertices (which we call “collisions”) pro-
duce no new particles, it is easy to show that the process given by the total number
of particles, (

∑
x∈Zd ξt (x))t≥0, is stochastically dominated by a branching process

with birth rate λ and death rate 1. This comparison yields λc(Z
d) ≥ 1, and in fact

it is known that

2d

2d − 1
≤ λc

(
Z

d) ≤ 2, d ≥ 1.
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When stirring is introduced, one can consider λc(Z
d,N), still defined as the

infimum of the values of λ for which (1.3) is positive. In Durrett and Neuhauser
(1994), it was proved that

lim
N→∞λc

(
Z

d,N
) = 1, d ≥ 1. (1.4)

This result roughly means that, as we take N → ∞—thus allowing particles to
move more and more between each birth or death event—collisions have less effect
and the critical rate approaches that of the associated branching process.

Regarding the rate of convergence in (1.4), it was shown in (Konno, 1995) that
for every d there exist positive constants cd , Cd such that, for all N ≥ 1,

λc

(
Z

d,N
) − 1 ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
cd

N
,
Cd

N

]
if d ≥ 3;[

cd logN

N
,
Cd logN

N

]
if d = 2;[

cd

N1/3 ,
Cd

N1/3

]
if d = 1.

(1.5)

For d ≥ 3, in Katori (1994), this was improved to

1

2d(2d − 1)
< lim inf

N→∞ N
(
λc

(
Z

d,N
) − 1

)
< lim sup

N→∞
N

(
λc

(
Z

d,N
) − 1

)
(1.6)

<
G(0,0) − 1

2d
,

where G(·, ·) is the Green function of discrete-time, simple random walk on Z
d ;

that is, if β1, β2, . . . are independent and uniformly distributed on {z : z ∼ 0}, then

G(x,y) = 1{x=y} +E

[
#

{
n ≥ 1 :

n∑
i=1

βi = y − x

}]
,

where # denotes the cardinality of a set. More recently, Berezin and Mytnik proved
that, for d ≥ 3, the upper bound in (1.6) is sharp:

lim
N→∞N · (

λc

(
Z

d,N
) − 1

) = G(0,0) − 1

2d
. (1.7)

We now state our main results. For a measurable set A ⊆ R, |A| denotes the
Lebesgue measure of A.

Theorem 1.1. Assume d ≥ 2 and let (As,Bs)s≥0 denote the positions of two parti-
cles under exclusion dynamics on Z

d with rate 1 (per edge) and A0 ∼ B0. Suppose
(λN)N≥1 is a sequence satisfying

lim sup
N→∞

λN − 1

(1/(dN)) ·E[|{t ≤ N : At ∼ Bt }|] < 1.

Then, if N is large enough, the contact process with birth rate λN and stirring rate
N dies out.
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The following helps relate this theorem to the bounds given earlier.

Proposition 1.2. Let As,Bs be as in Theorem 1.1. Let A′
s and B ′

s be independent,
continuous-time simple random walks on Z

d which jump from each vertex with
rate 2d , and A′

0 ∼ B ′
0. If d ≥ 3, then

E
[∣∣{t < ∞ : At ∼ Bt }

∣∣] = E
[∣∣{t < ∞ : A′

t ∼ B ′
t

}∣∣] = G(0,0) − 1

2
. (1.8)

If d = 2, then

lim
t→∞

E[|{s < t : At ∼ Bt }|]
log t

= lim
t→∞

E[|{s < t : A′
t ∼ B ′

t }|]
log t

= 1

2π
. (1.9)

(1.8) already appeared in Berezin and Mytnik (2014). (1.9), which presents a
higher technical challenge, is new. By putting together Proposition 1.2 and Theo-
rem 1.1, we reobtain the sharp bound of Berezin and Mytnik for d ≥ 3 and obtain
a new bound for d = 2:

Corollary 1.3. If d ≥ 3, then

lim inf
N→∞ N · (

λc

(
Z

d,N
) − 1

) ≥ G(0,0) − 1

2d
.

If d = 2, then

lim inf
N→∞

N

logN
· (

λc

(
Z

d,N
) − 1

) ≥ 1

4π
. (1.10)

Our bound for d = 2 is of the correct order given in (1.5). No matching upper
bound has been proved, but since both cases d = 2 and d ≥ 3 are treated by the
unified statement of Theorem 1.1, and since the resulting bound is sharp in the
second case, it is reasonable to expect that (1.10) is also sharp.

In our proof of Proposition 1.2, we study the processes (As −Bs)s≥0 and (A′
s −

B ′
s)s≥0. The latter is exactly a random walk on Z

d and the former is the same
random walk except that its jump rates at the set of neighbors of the origin are
modified, and in particular it can never reach the origin. Hence, denoting by N0
the set of neighbors of 0,(

1{As − Bs ∈ N0})s≥0 and
(
1
{
A′

s − B ′
s ∈ N0 ∪ {0}})s≥0,

are two-type (0 and 1) renewal processes, and the amounts of time they spend at
stage 0 have the same distribution.

Motivated by this, we consider the following more general setting. Let U(1),
U(2) and V be positive random variables and consider three independent sequences
of independent random variables,

U
(1)
0 ,U

(1)
1 ,U

(1)
2 , . . . ∼ U(1), U

(2)
0 ,U

(2)
1 ,U

(2)
2 , . . . ∼ U(2),

(1.11)
V0,V1,V2, . . . ∼ V.
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For i ∈ {1,2}, define sequences (S
(i)
n )n≥0 as follows:

S
(i)
0 ≡ 0 and, for all n ≥ 0, S

(i)
2n+1 − S

(i)
2n = U(i)

n and S
(i)
2n+2 − S

(i)
2n+1 = Vn. (1.12)

Also define, for i ∈ {1,2} and t > 0,

κ
(i)
t =

∣∣∣∣∣[0, t] ∩
( ∞⋃

n=0

[
S

(i)
2n , S

(i)
2n+1

])∣∣∣∣∣ = t −
∣∣∣∣∣[0, t] ∩

( ∞⋃
n=0

[
S

(i)
2n+1, S

(i)
2n+2

])∣∣∣∣∣. (1.13)

We think of the sequence (S
(i)
n )n≥0 as describing a renewal process which alter-

nates between a “u(i)-state” (where it stays for an amount of time distributed as
U(i)) and a “v-state” (where it stays for an amount of time distributed as V ). Then,
κ

(i)
t represents the total amount of time spent in the u(i)-state before instant t . We

prove the following theorem.

Theorem 1.4. If E[(U(1))2], E[(U(2))2] < ∞ and E[V ] = ∞, then

lim
t→∞

E[κ(1)
t ]

E[κ(2)
t ] = E[U(1)]

E[U(2)] . (1.14)

We think this result could be useful in other settings, particularly in other esti-
mates involving local times of exclusion processes with finitely many particles.

The paper is organized as follows. In Section 2, we give a construction of the
contact process with stirring that allows us to separately consider the genealogy
of particles and their motion. The construction is also very convenient to compare
the process, particle by particle, with the associated branching process that bounds
it from above. Although this construction and comparison were already described
with words (and somewhat vaguely) in Durrett and Neuhauser (1994) and Berezin
and Mytnik (2014), as far as we know this is the first time that they are given
explicitly. In Section 3, we show how Theorem 1.4 implies Proposition 1.2 and
then use the construction of Section 2 to prove Theorem 1.1. In Section 4, we
prove Theorem 1.4.

2 Construction of coupled processes

Basic genealogical process

We start by giving a construction of a continuous-time branching process which
will be useful for coupling, and then comparing, processes of interest. Our con-
struction will depend on the parameter λ > 0.

Let T be the tree defined as follows. The vertex set of T (which, by abuse of
notation, is also denoted T), is {o}∪ (

⋃∞
n=1 N

n), where o is a distinguished element
called the root. The edge set is

E(T) = {{o, i} : i ∈ N
} ∪ ⋃

n≥2

{{
(i1, . . . , in), (i1, . . . , in, in+1)

} : i1, . . . , in+1 ∈N
}
.
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In case α = (i1, . . . , in) and β = (i1, . . . , in, in+1), we say that α is the parent of
β (and denote this by α = p(β)) and β is the in+1th child of α (denoted β =
sin+1(α)). The same terminology and notation is used in case α = o and β = i ∈ N.

Let HT = {Bα,Dα}α∈T be a family of independent Poisson point processes on
[0,∞) so that each Bα has rate λ and each Dα has rate 1. We regard each Bα or
Dα as a random discrete subset of [0,∞).

We will define a process (�t)t≥0 with state space {0,1,−1}T. Our terminology
will be as follows: each vertex in T is called a particle; a particle is present if it is
in state 1 and absent if in state 0 or −1. We start setting �0 = 1{o}. Now assume
�t has already been defined up to time t ≥ 0. Let

t ′ = inf
{
s > t : s ∈ Bα ∪ Dα for some α with �t(α) = 1

}
.

We set �s = �t for every s ∈ (t, t ′); in particular, this means that, if �t(α) �= 1 for
every α, then t ′ = ∞ and �s = �t for every s > t . In case t ′ < ∞, define �t ′ as
follows. For the unique α such that t ′ ∈ Bα ∪ Dα , consider the two cases:

• if t ′ ∈ Dα , we set �t ′(α) = −1 and �t ′(β) = �t(β) for all β �= α;
• if t ′ ∈ Bα , let n be the smallest natural number for which �t(sn(α)) = 0, and set

�t ′(sn(α)) = 1 and �t ′(β) = �t(β) for all β �= sn(α).

It should be clear that, with this construction, the number of present particles at
time t , #{α : �t(α) = 1}, is a continuous-time branching process with birth rate
equal to λ and death rate equal to 1. This consideration also shows that the above
prescription defines the process (�t) for all t ≥ 0, that is, no finite-time explosion
occurs in the application of the recursive procedure.

Particle positions

In addition to λ, we now also fix N > 0.
We now take two more random objects, independent of each other and indepen-

dent of HT:

• a family HZd = {Le : e ∈ E(Zd)} (E(Zd) denotes the set of nearest neighbors
edges of Z

d ). Each Le is a Poisson point process with rate 1 on [0,∞), and
these processes are all independent;

• a family M = {Mα(t) : α ∈ T \ {o}, t ≥ 0} of independent random vectors of
Z

d (that is, if (α1, t1), . . . , (αk, tk) are all distinct, then Mα1(t1), . . . ,Mαk
(tk) are

independent). Each Mα(t) is uniformly distributed on the set of the neighbors
of the origin of Zd .

Given a realization of HZd , we define a function ρ : {(x, s, t) : x ∈ Z
d,0 ≤ s ≤

t} → Z
d , which we call a flow, as follows: for each x ∈ Z

d and s ≥ 0, t �→
ρ(x, s, t) is the unique function that is constant by parts and satisfies ρ(x, s, s) = x
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and, for all t ≥ s,

ρ(x, s, t) = ρ(x, s, t−) if t /∈ ⋃
z:z∼ρ(x,s,t−)

L{ρ(x,s,t−),z},

(2.1)
ρ(x, s, t) = z �= ρ(x, s, t−) if t ∈ L{ρ(x,s,t−),z}

(we hence view t ∈ L{x,y} as an “order” either to jump from x to y or to jump from
y to x, and ρ is the path obtained by following all the orders that are encountered).
We also let

ρN(x, s, t) = ρ(x,Ns,Nt).

For each α ∈ T, let

τ−
α = inf

{
t : �t(α) = 1

}
, τ+

α = sup
{
t : �t(α) = 1

}
.

Then define

Xo(t) =
{

ρN(0,0, t) if 0 ≤ t < τ+
o ;

� otherwise,

where � denotes a “cemetery” state. Now assume that processes (Xα(t))t≥0 on
Z

d ∪ {�} have been defined for all α ∈ ⋃n
m=0 N

m, and that these processes satisfy
Xα(t) �= � if and only if �t(α) = 1. Fix α ∈ N

n+1. In case τ−
α = ∞, put Xα(t) =

� for all t . Otherwise,

Xα(t) =
{

ρN

(
Xp(α)

(
τ−
α

) + Mα

(
τ−
α

)
, τ−

α , t
)

if t ∈ [τ−
α , τ+

α );
� otherwise.

(2.2)

This inductively defines Xα(t) for all α ∈ T and t ≥ 0, so that Xα(t) �= � if and
only if �t(α) = 1. We call Xα(t) the location of particle α at time t (with the un-
derstanding that absent particles are located in the cemetery state). The definition
(2.2) thus means that when a particle appears, it is placed on a location obtained as
a random neighbor of its parent’s location at the time, and then it moves according
to the flow ρN until it disappears.

Remark 2.1. Define the process

ψt(x) = #
{
α ∈ T : �t(α) = 1,Xα(t) = x

}
, x ∈ Z

d, t ≥ 0.

Although we will not need it in the sequel, it is instructive to discuss its behavior at
this point. In this process, particles occupy positions in Z

d ; it is possible that any
number of particles occupy a single position. Each particle disappears with rate 1
and gives birth at a randomly chosen neighboring position with rate λ (births are
not forbidden at occupied sites). Moreover, edges of Zd contain jump instructions
which are Poisson(N) clocks; the effect of a jump instruction at {x, y} is that
all particles from x jump to y simultaneously, and vice-versa. This is the process
studied in Katori (1994), inspired by the “binary contact path process” of Griffeath
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(1983). Our task now is to construct, in this same probability space, the contact
process with stirring (ξt )t≥0: this will amount, quite simply, to keeping track of
particle positions and forbidding births at occupied sites. With this construction,
at any point in time, the set of particles present in ξt will be a subset of the set of
particles in ψt .

Contact process with stirring

We will now construct the contact process with stirring on Z
d (denoted (ξt )t≥0,

with state space {0,1}Zd
) and its underlying genealogical process ((�t)t≥0 on

{0,1,−1}T). The construction of these processes will depend on (HT,HZd ,M)

that have been used above and on the paths {(Xα(t))t≥0 : α ∈ T} that have been
defined (hence λ and N are fixed throughout).

We will give a recursive definition of � that mimics that of � and will set

ξt (x) = #
{
α ∈ T : �t(α) = 1,Xα(t) = x

}
, x ∈ Z

d, t ≥ 0. (2.3)

The construction will guarantee that, for all s ≥ 0,

ξs(x) ∈ {0,1} for all s ≥ 0, x ∈ Z
d; (2.4){

α : �s(α) = 1
} ⊆ {

α : �s(α) = 1
}; (2.5)

if �s(α) = 1, then inf
{
n : �s

(
sn(α)

) = 0
} = inf

{
n : �s

(
sn(α)

) = 0
}
. (2.6)

We set �0 = 1{o}. Assume that (�s)0≤s≤t has already been defined up to time
t ≥ 0 (and hence, by (2.3), (ξs)0≤s≤t is also defined) and that they satisfy (2.5),
(2.6) and (2.4) for all s ≤ t . We let

t ′ = inf
{
s > t : s ∈ Bα ∪ Dα for some α with �t(α) = 1

}
.

For s ∈ (t, t ′), we let �s = �t (note that this, together with (2.3), implies that ξ

is then defined in [0, t ′)). If t ′ < ∞, for the unique α for which t ′ ∈ Bα ∪ Dα , we
consider the cases:

• if t ′ ∈ Dα , set �t ′(α) = −1 and �t ′(β) = �t(β) for all β �= α;
• if t ′ ∈ Bα , let n be the smallest natural number for which �t(sn(α)) = 0, and let

β = sn(α). We consider two further cases:
– if ξt ′−(Xα(t ′−) + Mβ(t ′−)) = 0 (that is, if the position where β is supposed

to appear is empty), set �t ′(β) = 1 and �t ′(γ ) = �t(γ ) for all γ �= β;
– if ξt ′−(Xα(t ′−) + Mβ(t ′−)) �= 0 (that is, if that position is occupied), set

�t ′(β) = −1 and �t ′(γ ) = �t(γ ) for all γ �= β .

These rules define � and ξ for all times. Each step in the induction preserves (2.5),
(2.6) and (2.4), so they are satisfied for all times. Also note that

if �s(α) = 1 for some s,

then inf
{
t : �t(α) = 1

} = inf
{
t : �t(α) = 1

} = τ−
α and (2.7)

sup
{
t : �t(α) = 1

} = sup
{
t : �t(α) = 1

} = τ+
α ,
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that is, if a particle α ever becomes present in �, then the set of times for which it
is present is the same for � and � . Also,

if, for α,β ∈ T, τ−
α < τ−

β < ∞ and Xα

(
τ−
β −) = Xp(β)

(
τ−
β −) + Mβ

(
τ−
β −)

,
(2.8)

then �t(β) �= 1 for all t ≥ 0,

that is, a particle β cannot appear at position x ∈ Z
d if, at the time of the attempted

appearance, x is occupied by a particle α that appeared earlier.
For t ≥ 0, we denote by Ft the smallest sigma-algebra under which the point

processes HT ∩ [0, t],HZd ∩ [0, t] and the processes {(Mα(s))0≤s≤t : α ∈ T} are
measurable. Note that (�t ,�t , ξt )t≥0 is then adapted to (Ft )t≥0.

3 Proof of main result

Given α ∈ T and t ≥ 0 so that �t(α) = 1, let n be the smallest natural number so
that �t(sn(α)) = 0 (or equivalently, by (2.6), so that �t(sn(α)) = 0). Then con-
sider the subgraph of T given by

T̂(α, t) = {α} ∪ {
β : the unique path in T from β to o intersects

{
sm(α) : m ≥ n

}}
(together with all edges that are incident to two vertices in the above set). We call
T̂(α, t) the set of fresh descendants of α at time t . It is a connected subtree of T.
We also define, for α and t such that �t(α) = 1 and t ′ > t ,

N�(
α, t, t ′

) = #
{
β ∈ T̂(α, t) : �t ′(β) = 1

}
,

N�(
α, t, t ′

) = #
{
β ∈ T̂(α, t) : �t ′(β) = 1

}
.

We observe that, for all α, t with �t(α) = 1,

N�(
α, t, t ′

) ≤ N�(
α, t, t ′

)
(3.1)

and, since (N�(α, t, t + s))s≥0 is a branching process with birth rate λ and death
rate 1, we have

on
{
�t(α) = 1

}
, for all t ′ ≥ t, E

[
N�(

α, t, t ′
) | Ft

] = e(λ−1)(t ′−t). (3.2)

We now define two classes of events, I (α, t) and J (α, t), which will both cor-
respond to situations where there is a 0 → 1 transition in � which does not occur
in �. We will be able to guarantee that, if one of these events occurs, the number
of particles present in � is strictly smaller than that in � . Both definitions will
depend on the following quantity:

t∗ = 1

logN
. (3.3)
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We start with the definition of I (α, t). Fix α ∈ T, t ≥ 0 and let n be the smallest
natural number such that �t(sn(α)) = 0. Let β = sn(α) and γ = sn+1(α). Assume
that the following occurs:

�t(α) = 1, (Dα ∪ Dβ ∪ Dγ ∪ Bβ ∪ Bγ ) ∩ [
t, t + t∗

] =∅,
(3.4)

#
(
Bα ∩ [

t, t + t∗
]) = 2.

Additionally, letting Bα ∩ [t, t + t∗] = {T1, T2} with T1 < T2, assume that

Xα(T2−) + Mγ (T2−) = Xβ(T2−). (3.5)

(This implies that either β obstructs the appearance of γ , or some earlier particle
obstructs the appearance of β and possibly γ as well.) Let I (α, t) be the event
described in (3.4) and (3.5). We then have

on I (α, t), N�(
α, t, t + t∗

) ≤ 2 and N�(
α, t, t + t∗

) = 3. (3.6)

We now turn to the similar definition of J (α, t). Again fix α ∈ T, t ≥ 0, n the
smallest natural number such that �t(sn(α)) = 0 and β = sn(α). Also let γ ′ =
s1(β). Assume that

�t(α) = 1, (Dα ∪ Dβ ∪ Dγ ′ ∪ Bγ ′) ∩ [
t, t + t∗

] = ∅,
(3.7)

#
(
Bα ∩ [

t, t + t∗
]) = #

(
Bβ ∩ [

t, t + t∗
]) = 1.

Letting Bα ∩[t, t + t∗] = {T1} and Bβ ∩[t, t + t∗] = {T2}, we will also require that

T1 < T2, Xα(T2−) = Xβ(T2−) + Mγ ′(T2−). (3.8)

(This implies that either α obstructs the appearance of γ ′, or some earlier particle
obstructs the appearance of β and possibly γ ′ as well.) We define J (α, t) as the
event specified by all the requirements in (3.7) and (3.8), and note that

on J (α, t), N�(
α, t, t + t∗

) ≤ 2 and N�(
α, t, t + t∗

) = 3. (3.9)

Due to the invariance under time shift of HT,HZd and M ,

on
{
�t(α) = 1

}
,

(3.10)
P

[
I (α, t)|Ft

] = P
[
I (o,0)

]
and P

[
J (α, t)|Ft

] = P
[
J (o,0)

]
.

Also, inspecting the above definitions one can show that

P
[
I (o,0)

] = P
[
J (o,0)

]
. (3.11)

We are now ready for the key estimate of this section. For any t ≥ 0,

E
[
#
{
α ∈ T : �t+t∗(α) = 1

}|Ft

]
= E

[ ∑
α∈T:�t (α)=1

N�(
α, t, t + t∗

)|Ft

]
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(3.1),(3.6),(3.9)≤ E

[ ∑
α∈T:�t (α)=1

N�(
α, t, t + t∗

)∣∣∣Ft

]

−E

[ ∑
α∈T:�t (α)=1

(1I (α,t) + 1J (α,t))
∣∣∣Ft

]

(3.2),(3.10)= #
{
α ∈ T : �t(α) = 1

} · (
et∗(λ−1) − P

[
I (o,0)

] − P
[
J (o,0)

])
(3.11)= #

{
α ∈ T : �t(α) = 1

} · (
et∗(λ−1) − 2P

[
I (o,0)

])
.

Applying this estimate recursively, for any k ∈ N we have

E
[
#
{
x ∈ Z

d : ξkt∗(x) = 1
}] (2.3)= E

[
#
{
α ∈ T : �kt∗(α) = 1

}]
≤ (

et∗(λ−1) − 2P
[
I (o,0)

])k
.

This shows that

if et∗(λ−1) − 2P
[
I (o,0)

]
< 1,

then P[ξt �= ∅ for all t] = lim
k→∞P[ξkt∗ �= ∅] (3.12)

≤ lim
k→∞E

[
#
{
x : ξkt∗(x) = 1

}] = 0.

We now estimate P[I (o,0)]. We denote β = s1(o), γ = s2(o) and

E = {
(Do ∪ Dβ ∪ Dγ ∪ Bβ ∪ Bγ ) ∩ [

0, t∗
] = ∅,#

(
Bo ∩ [

0, t∗
]) = 2

}
,

so that

P[E] = (λt∗)2

2
exp

{−3t∗ − 3λt∗
}
. (3.13)

On E, let T1 < T2 denote the two elements of Bo ∩ [0, t∗]. Let f denote the joint
density function of T1, T2 conditioned on E; then, f (t1, t2) = 2

(t∗)2 · 1{0<t1<t2<t∗}.
Now,

P
[
I (o,0) | E]

= ∑
z1,z2∈Zd :
z1,z2∼0

P
[
Mβ(T1) = z1,Mγ (T2) = z2

]

× ∑
x,y∈Zd

∫ t∗

0

∫ t∗

t1

2

(t∗)2P
[
ρN(0,0, t1) = x,ρN(0,0, t2) = y,

ρN(x + z1, t1, t2) = y + z2
]
dt2 dt1

= 1

2d
· ∑
z1∈Zd :
z1∼0

P
[
Mβ(T1) = z1

]
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·
∫ t∗

0

∫ t∗

t1

2

(t∗)2 · P[
ρN(0,0, t2 − t1) ∼ ρN(z1,0, t2 − t1)

]
dt2 dt1

= 1

2d
·
∫ t∗

0

∫ t∗

t1

2

(t∗)2 · P[
ρN(0,0, t2 − t1) ∼ ρN(z̄,0, t2 − t1)

]
dt2 dt1

for any fixed z̄ ∼ 0 in Z
d . Changing variables twice, this is further equal to

1

2d
· 2

(t∗)2

∫ t∗

0
P

[
ρN(0,0, s) ∼ ρN(z̄,0, s)

] · (
t∗ − s

)
ds

(3.14)

= 1

dt∗N

∫ t∗N

0
P

[
ρ1(0,0, u) ∼ ρ1(z̄,0, u)

] ·
(

1 − u

t∗N

)
du.

We now fix ε ∈ (0,1) whose value will be chosen later. The expression in (3.14) is
larger than

1

dt∗N
· (1 − ε)

∫ εt∗N

0
P

[
ρ1(0,0, u) ∼ ρ1(z̄,0, u)

]
du

(3.15)

= 1 − ε

dt∗N
·E[∣∣{u ≤ εt∗N : ρ1(0,0, u) ∼ ρ1(z̄,0, u)

}∣∣].
We abbreviate

g(t) = E
[∣∣{u ≤ t : ρ1(0,0, u) ∼ ρ1(z̄,0, u)

}∣∣];
by Proposition 1.2, to be proved in the next subsection, we have limN→∞ g(εt∗N)

g(N)
=

1 for any d ≥ 2. Putting together this fact, (3.13) and (3.15) we see that, if N is
large enough (depending on ε),

P
[
I (o,0)

] ≥ (1 − ε)2

dt∗N
· g(N) · (λt∗)2

2
· exp

{−3t∗ − 3λt∗
}
.

If we further assume that λ = λN
N→∞−→ 1 and use (3.3), then for N large enough

we have

P
[
I (o,0)

] ≥ (1 − ε)3 · t∗g(N)

2dN
. (3.16)

We are now ready to conclude. Assume that λ = λN = 1 + θ
g(N)
dN

for some

θ < 1 (so in particular, by Proposition 1.2, we have λN
N→∞−→ 1). Then, if N is

large enough,

et∗(λ−1) − 1 ≤ (1 + ε) · θ t∗g(N)

dN

(�)
< (1 − ε)3 · t∗g(N)

dN

(3.16)
< 2P

[
I (o,0)

]
,

where the inequality (�) holds if ε is small enough that (1−ε)3

1+ε
> θ . The desired

result now follows from (3.12).
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3.1 Exclusion dynamics of two particles: Proof of Proposition 1.2

We will denote the vectors in the canonical basis of Zd by �e1, . . . , �ed . We write

N0 = {�e1,−�e1, . . . , �ed,−�ed}, N 0 =N0 ∪ {0}.
For d ≥ 3, as in the Introduction, we denote by G(x,y) the Green function of
discrete-time, simple random walk on Z

d and by (As,Bs)s≥0 the process given by
the positions of two particles moving on Z

d under exclusion dynamics with rate 1
per edge of Zd . This means that (As,Bs)s≥0 is the Markov process on (Zd)2 with
generator

(Lexcf )(a, b) = ∑
z∈N0

[
1{a+z �=b} · (

f (a + z, b) − f (a, b)
)

+ 1{b+z �=a} · (
f (a, b + z) − f (a, b)

)
+ 1{a+z=b}∪{b+z=a} · (

f (b, a) − f (a, b)
)]

.

We always assume that A0 − B0 ∈ N0, that is, the particles are initially at neigh-
boring positions.

Now let

Xs = As − Bs, s ≥ 0;
observe that Xs ∈ Z

d \ {0} for all s and that X0 ∈ N0. The generator of (Xs) is

(LXf )(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
∑

z∈N0

(
f (x + z) − f (x)

)
if x /∈ N0;

(
f (−x) − f (x)

) + 2
∑

z∈N0\{−x}

(
f (x + z) − f (x)

)
otherwise.

For comparison purposes, it will be useful to also consider the process (Ys)s≥0,
which has generator

(LY f )(x) = 2
∑

z∈N0

(
f (x + z) − f (x)

);
we also assume Y0 ∈ N0. (Ys) is hence a continuous-time simple random walk on
Z

d that jumps from each vertex with total rate 4d . (Xs) and (Ys) have the same
behavior except when (Xs) is in some position z ∈ N0, in which case, instead of
jumping to 0 with rate 2, it jumps to −z with rate 1.

Now let

UX = inf{t ≥ 0 : Xt /∈ N0};
UY = inf{t ≥ 0 : Yt /∈ N 0};

UY,N0 = ∣∣{t ∈ [
0,UY ] : Yt ∈ N0

}∣∣; UY,0 = ∣∣{t ∈ [
0,UY ] : Yt = 0

}∣∣,
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so that UY = UY,N0 + UY,0. By a simple computation involving geometrically
distributed random variables, it is easy to check (or see the proof of Lemma 3.4 in
Berezin and Mytnik, 2014) that

E
[
UX] = E

[
UY,N0

] = 1

4d − 2
, E

[
UY ] = 2d + 1

8d2 − 4d
. (3.17)

Proof of Proposition 1.2. First, assume d ≥ 3. Let q denote the probability that
(Xs) never returns to N0 after first leaving it. Note that this is the same as the
probability that (Ys) never returns to N 0 after first leaving it. We then have

E
[∣∣{s < ∞ : Xs ∈ N0}

∣∣]
= E[UX]

q

(3.17)= E[UY,N0]
q

= E
[∣∣{s < ∞ : Ys ∈ N0}

∣∣]

= 1

4d

∑
z∈N0

G(0, z) = 1

2

(
G(0,0) − 1

)
,

where the last equality follows from G(0,0) = 1 + 1
2d

∑
z∈N0

G(z,0) = 1 +
G(0, �e1), by symmetry of the Green function.

For d = 2 we have

lim
t→∞

E[|{s ≤ t : Xs ∈ N0}|]
log t

(3.18)

= lim
t→∞

E[|{s ≤ t : Ys ∈ N 0}|]
log t

· E[|{s ≤ t : Xs ∈ N0}|]
E[|{s ≤ t : Ys ∈ N 0}|]

.

Now, Theorem 1.4 implies that

lim
t→∞

E[|{s ≤ t : Xs ∈N0}|]
E[|{s ≤ t : Ys ∈ N 0}|]

= E[UX]
E[UY ]

(3.17)= 2d

2d + 1
= 4

5
. (3.19)

Now let us treat the first quotient in (3.18). By the Local Central Limit Theorem
(Theorem 2.5.6 in Lawler and Limic, 2010), for any z ∈ Z

d ,

P[Ys = z]
f4s(z)

s→∞−→ 1,

where ft (x) = 1
2πt

e−|x|2/(2t) is the probability density function of a Gaussian vec-
tor (V ,W) so that V and W are independent and have mean 0 and variance t .
Hence,

E[|{s ≤ t : Ys ∈ N 0}|]
log t

= 1

log t

∑
z∈N 0

∫ t

0
P[Ys = z]ds

t→∞−→ 2d + 1

2π · 4
= 5

8π
(3.20)
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and similarly,

E[|{s ≤ t : Ys ∈ N0}|]
log t

t→∞−→ 2d

2π · 4
= 1

2π
. (3.21)

Now, (3.18), (3.19), (3.20) and (3.21) imply the desired result. �

4 Two-type renewal processes: Proof of Theorem 1.4

Take (Vn)n≥0, (U
(i)
n )n≥0, (S

(i)
n )n≥0 and κ

(i)
t , for i = 1,2, as in (1.11), (1.12),

(1.13). Theorem 1.4 follows immediately from the two lemmas:

Lemma 4.1. If U(1) ≡ 1, E[U(2)] = 1 and E[(U(2))2] < ∞, then

lim
t→∞

E[κ(1)
t ]

E[κ(2)
t ] = 1. (4.1)

Lemma 4.2. Let α(1), α(2) > 0. If U(1) ≡ α(1), U(2) ≡ α(2) and E[V ] = ∞, then

lim
t→∞

E[κ(1)
t ]

E[κ(2)
t ] = α(1)

α(2)
. (4.2)

Before we prove these results, let us give a definition. For i ∈ {1,2} and t ≥ 0,
we let N

(i)
t be the unique value of n such that S

(i)
2n ≤ t < S

(i)
2n+2; note that

κ
(i)
t =

N
(i)
t −1∑
n=0

U(i)
n + min

(
t, S

(i)

2N
(i)
t +1

) − S
(i)

2N
(i)
t

(4.3)

= t −
N

(i)
t −1∑
n=0

Vn − max
(
0, t − S

(i)

2N
(i)
t +1

)
. (4.4)

(Here and in what follows, we interpret sums of the form
∑b

n=a with a > b to be
equal to zero.) We also observe that, since U(i) and V are assumed to be positive
random variables, we have

lim
t→∞

a.s.

N
(i)
t = ∞ and lim

t→∞E
[
N

(i)
t

] = ∞. (4.5)

We also claim that

if E
[
U(i) + V

] = ∞, then lim
t→∞

1

t
E

[
N

(i)
t

] = 0. (4.6)

Indeed, the fact that Nt/t → 0 almost surely as t → ∞ follows from the Law of
Large Numbers, so it is sufficient to prove that supt≥1 E[(Nt/t)2] < ∞. This can
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be shown by fixing ε > 0, δ > 0 such that P[U(i) + V > δ] > ε and noting that

N
(i)
t ≤ min

{
m ≥ 0 :

m−1∑
n=0

1
{
U(i)

n + Vn > δ
}
> �t/δ�

}
;

the right-hand side is distributed as a sum of �t/δ� geometric random variables
with parameter larger than ε; this gives E[(N(i)

t )2] ≤ � t
δ
� · 2−ε

ε
. Hence, (4.6) is

proved.

Proof of Lemma 4.1. Define

�m = max

{∣∣t − t ′
∣∣ :

m−1∑
n=0

U(1)
n ≤ t ≤

m∑
n=0

U(1)
n ,

m−1∑
n=0

U(2)
n ≤ t ′ ≤

m∑
n=0

U(2)
n

}
,

m ≥ 0.

We will now prove two claims.

Claim 4.3. There exists C > 0 such that, for all k ≥ 1,

E

[
max

0≤m≤k
�m

]
≤ Ck3/4. (4.7)

To prove this, start noting that, since U(1) ≡ 1, �m is equal to

max

{∣∣∣∣∣m −
m∑

n=0

U(2)
n

∣∣∣∣∣,
∣∣∣∣∣m + 1 −

m−1∑
n=0

U(2)
n

∣∣∣∣∣
}

≤ max

{∣∣∣∣∣m + 1 −
m∑

n=0

U(2)
n

∣∣∣∣∣,
∣∣∣∣∣m −

m−1∑
n=0

U(2)
n

∣∣∣∣∣
}

+ 1,

so that

max
0≤m≤k

�m ≤ max
1≤m≤k+1

∣∣∣∣∣m −
m−1∑
n=0

U(2)
n

∣∣∣∣∣ + 1.

Since the U
(2)
n are independent and identically distributed with mean 1, the Reflec-

tion Principle (Lawler and Limic, 2010, Proposition 1.6.2) implies that

E

[
max1≤m≤k+1 �m

k3/4

]
≤ 2 ·E

[ |k + 1 − ∑k
n=0 U

(2)
n |

k3/4

]
+ 1

k3/4 .

Write Wk = |k + 1 − ∑k
n=0 U

(2)
n |. By the law of the iterated logarithm,

lim sup
k→∞

a.s.

Wk√
k log logk

< ∞ hence lim
k→∞

a.s.

Wk

k3/4 = 0. (4.8)
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Then,

E

[
Wk

k3/4

]
≤ E

[
Wk

k3/4 · 1{Wk/k3/4≤1}
]

+E

[(
Wk

k3/4

)2]

= E

[
Wk

k3/4 · 1{Wk/k3/4≤1}
]

+ Var(Wk)

k3/2

= E

[
Wk

k3/4 · 1{Wk/k3/4≤1}
]

+ k + 1

k3/2 · Var
(
U(2)).

The expectation on the right-hand side vanishes as k → ∞ by (4.8) and the domi-
nated convergence theorem. This completes the proof of the claim.

Claim 4.4. ∣∣κ(2)
t − κ

(1)
t

∣∣ ≤ max
0≤m≤N

(1)
t

�m, t > 0. (4.9)

To show this, fix t > 0. First, consider the case N
(1)
t = N

(2)
t ; then, it readily follows

from (4.3) that |κ(2)
t − κ

(1)
t | ≤ �

N
(1)
t −1

. Next, assume that

N
(1)
t > N

(2)
t . (4.10)

We then have

κ
(1)
t

(4.4)= t −
N

(1)
t −1∑
n=0

Vn − max
(
0, t − S

(1)

2N
(1)
t +1

) (4.10)≤ t −
N

(2)
t∑

n=0

Vn

(4.4)≤ κ
(2)
t .

Hence,∣∣κ(2)
t − κ

(1)
t

∣∣ = κ
(2)
t − κ

(1)
t

(4.3)=
N

(2)
t −1∑
n=0

U(2)
n + min

(
t, S

(2)

2N
(2)
t +1

) − S
(2)

2N
(2)
t

−
N

(1)
t −1∑
n=0

U(1)
n − (

min
(
t, S

(1)

2N
(1)
t +1

) − S
(1)

2N
(1)
t

)

(4.10)≤
N

(2)
t −1∑
n=0

U(2)
n + min

(
t, S

(2)

2N
(2)
t +1

) − S
(2)

2N
(2)
t

−
N

(2)
t −1∑
n=0

U(1)
n

≤ �
N

(2)
t −1

(4.10)≤ max
0≤m≤N

(1)
t

�m.
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Now, a symmetric argument shows that, when N
(1)
t < N

(2)
t , we have

∣∣κ(2)
t − κ

(1)
t

∣∣ ≤ �
N

(1)
t −1

(4.10)≤ max
0≤m≤N

(1)
t

�m.

This completes the proof of (4.9).
We are now ready to conclude. We have

∣∣∣∣E[κ(2)
t ]

E[κ(1)
t ] − 1

∣∣∣∣ = E
[
κ

(1)
t

]−1 · ∣∣E[
κ

(2)
t

] −E
[
κ

(1)
t

]∣∣
(4.11)

≤ E
[
κ

(1)
t

]−1 ·E
[

max
0≤m≤N

(1)
t

�m

]
.

Now note that N
(1)
t only depends on (Vn)n≥0 and (�n)n≥0 only depends on

(U
(2)
n )n≥0. Hence, N

(1)
t is independent of (�n)n≥0. Thus,

E

[
max

0≤m≤N
(1)
t

�m

]
=

∞∑
k=0

E

[
max

0≤m≤k
�m

∣∣N(1)
t = k

]
· P[

N
(1)
t = k

]

=
∞∑

k=0

E

[
max

0≤m≤k
�m

]
· P[

N
(1)
t = k

]

(4.7)≤ C

∞∑
k=0

k3/4 · P[
N

(1)
t = k

] = CE
[(

N
(1)
t

)3/4]
.

Since N
(1)
t → ∞ almost surely as t → ∞, we have E[(N(1)

t )3/4]/E[N(1)
t ] → 0 as

t → ∞. This shows that the right-hand side of (4.11) vanishes as t → ∞, com-
pleting the proof. �

Proof of Lemma 4.2. If α(1) = α(2), the result follows from Lemma 4.1 and a
change of scale. So we assume (without loss of generality) that α(1) > α(2). It
follows from the assumption that U(i) ≡ α(i) and (4.3) that∣∣κ(i)

t − α(i) · N(i)
t

∣∣ ≤ α(i), i ∈ {1,2}, t ≥ 0,

so, writing

E[κ(1)
t ]

E[κ(2)
t ] = α(1)

E[N(1)
t ] +E[κ(1)

t − α(1)N
(1)
t ]

α(2)E[N(2)
t ] +E[κ(2)

t − α(2)N
(2)
t ]

and using (4.5), we see that (4.2) will follow once we prove that

lim
t→∞

E[N(1)
t ]

E[N(2)
t ] = 1. (4.12)
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With this in mind, we now proceed to bound |N(2)
t − N

(1)
t |. Observe that

N
(i)
t < k if and only if t < S

(i)
2k = α(i)k +

k−1∑
n=0

Vn. (4.13)

Since

α(2)N
(1)
t +

N
(1)
t −1∑
n=0

Vn < α(1)N
(1)
t +

N
(1)
t −1∑
n=0

Vn = S
2N

(1)
t

≤ t,

applying (4.13) with i = 2 and k = N
(1)
t implies that N

(2)
t ≥ N

(1)
t . We now claim

that

N
(2)
t − N

(1)
t

(4.14)

< 1 + inf

{
m ≥ 0 : α(2) · m +

N
(1)
t +m∑

n=N
(1)
t +1

Vn >
(
α(1) − α(2))(N(1)

t + 1
)}

.

Indeed, assume m belongs to the set of which the infimum is taken on the right-
hand side. We have

α(2)(N(1)
t + m + 1

) +
N

(1)
t +m∑
n=0

Vn

= α(2)N
(1)
t +

N
(1)
t∑

n=0

Vn + α(2) +
(
α(2)m +

N
(1)
t +m∑

n=N
(1)
t +1

Vn

)

> α(2)N
(1)
t +

N
(1)
t∑

n=0

Vn + α(2) + (
α(1) − α(2))(N(1)

t + 1
)

= α(1)(N(1)
t + 1

) +
N

(1)
t∑

n=0

Vn = S
(1)

2N
(1)
t +2

> t,

so, applying (4.13) with i = 2 and k = N
(1)
t + m + 1 we get N

(2)
t < N

(1)
t + m + 1,

proving (4.14).
Now, if V ′

0,V
′
1, . . . are random variables distributed as V and independent of

(U
(i)
n )n≥0 and (Vn)n≥0, the right-hand side of (4.14) has the same distribution as

1 + inf

{
m ≥ 0 : α(2)m +

m−1∑
n=0

V ′
n >

(
α(1) − α(2))(N(1)

t + 1
)}

.
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Conditioning on N
(1)
t (and denoting by μ

N
(1)
t

the distribution of N
(1)
t ), (4.14) then

yields

E
[∣∣N(2)

t − N
(1)
t

∣∣]

≤
∫ ∞

0
E

[
1 + inf

{
m ≥ 0 : α(2)m +

m−1∑
n=0

V ′
n >

(
α(1) − α(2))(s + 1)

}]

× μ
N

(1)
t

(ds)

=
∫ ∞

0
E

[
1 + N

(2)

(α(1)−α(2))(s+1)

]
μ

N
(1)
t

(ds).

Now fix ε > 0. By (4.6), there exists C > 0 such that E[N(2)
s ] ≤ C + εs for all s ≥

0, so the above gives

E
[∣∣N(2)

t − N
(1)
t

∣∣] ≤ 1 + C + ε ·E[(
α(1) − α(2))(N(1)

t + 1
)]

.

Finally, by (4.5),

0 ≤ lim sup
t→∞

E[|N(2)
t − N

(1)
t |]

E[N(1)
t ] ≤ ε

(
α(1) − α(2));

since ε is arbitrary, this completes the proof of (4.12). �
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