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Abstract. In this paper, we consider the prediction of a future observation
based on either Type-I or Type-II hybrid censored samples when the lifetime
distribution of the experimental units is assumed to be a generalized expo-
nential random variable. Different point and interval predictors are obtained
using classical and Bayesian approaches. Monte Carlo simulations are per-
formed to compare the performances of the different methods, and the analy-
sis of one data set has been presented for illustrative purposes.

1 Introduction

The generalized exponential (GE) distribution is one of the most widely used dis-
tributions in reliability and survival analysis. It has been used quite successfully
to analyze lifetime data in place of Weibull or gamma distribution. Because of its
explicit expression of the cumulative distribution function (CDF), it has been used
quite conveniently for analyzing censored data. The probability density function
(PDF) and hazard function can take variety of shapes. The PDF of the GE distri-
bution can be a decreasing or an unimodal function, and the hazard function can
be either increasing, decreasing or constant, depending on the shape parameter.

In this manuscript, it is assumed that the two-parameter generalized exponential
distribution has the following PDF and CDF

f (x;α,λ) =
{

αλe−λx
(
1 − e−λx

)α−1 if x > 0,
0 otherwise

(1.1)

and

F(x;α,λ) =
{ (

1 − e−λx
)α if x > 0,

0 otherwise,
(1.2)

respectively. Here α > 0 is the shape parameter and λ > 0 is the scale parameter.
From now on, a two-parameter generalized exponential distribution with the PDF
(1.1) and CDF (1.2) will be denoted by GE(α,λ).

Censoring is very common in any reliability or lifetesting experiment. The com-
plete survival times may not be observed by the experimenter most of times. The
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two most common censoring schemes are namely Type-I and Type-II censoring.
They can be briefly described as follows. Consider a sample of n units is placed
on a life testing experiment at the time point zero. In Type-I censoring scheme, a
time T , independent of the failure times, is pre-fixed so that beyond this time no
failures will be observed, that is, the experiment terminates at the time point T . In
Type-II censoring scheme, the number of observed failures is fixed, say r (r ≤ n),
and the experiment stops when the r th failure takes place. Epstein (1954) intro-
duced a new censoring scheme which is a mixture of Type-I and Type-II censoring
schemes, and called it as the hybrid censoring scheme. From now on, we will call
it as the Type-I hybrid censoring scheme (Type-I HCS). Type-I hybrid censoring
scheme can be described as follows. Suppose n items are put on a life testing exper-
iment at the time point zero. Let X1:n < · · · < Xn:n denote the ordered lifetime of
the experimental units. In Type-I HCS, the experiment stops at T ∗

1 = min{Xr:n, T },
where r and T are pre-fixed.

The main advantage of Type-I HCS is that the experiment will not last more than
T units of time, and also more than r units will not fail. The major disadvantage of
a Type-I HCS is that there is a possibility that very few failures may occur before
time T . Hence, the inference of the lifetime distribution of the experimental units
will not be very accurate. For this reason, Childs et al. (2003) proposed a new
censoring scheme, known as the Type-II hybrid censoring scheme (Type-II HCS),
which guarantees a fixed number of failures. In this case, the termination point is
T ∗

2 = max{Xr:n, T }. For a detailed comparison of Type-I and Type-II HCS, the
readers are referred to Childs et al. (2003).

Recently, the hybrid censoring scheme has received considerable interest among
the statisticians. Epstein (1954) first introduced Type-I HCS and analyzed the data
under the assumption of exponential lifetime distribution of the experimental units.
Since the introduction of Type-I HCS by Epstein (1954), extensive work has been
done on hybrid censoring and many different variations of it. See, for example,
Fairbanks, Madison and Dykstra (1982), Draper and Guttman (1987), Chen and
Bhattacharya (1988), Ebrahimi (1986, 1992), Jeong, Park and Yum (1996), Kundu
and Gupta (1988), Childs et al. (2003), Kundu (2007), Kundu and Banerjee (2008)
and the recent review article by Balakrishnan and Kundu (2013) on this topic.

One of the most important problems in life testing is predicting future failures
given a record of observed failures. Information regarding future observations can
tell us at an early stage of testing how costly the testing is and whether actions
should be taken to redesign the test. Extensive work has been done on prediction
problem based on frequentist and Bayesian framework. Kaminsky and Rhodin
(1985) have applied maximum likelihood to the joint prediction of a future ran-
dom variable and unknown parameter. Smith (1997, 1999) discussed the proper-
ties of the different predictors based on Bayes and frequentist procedures for a
class of parametric family of distribution functions, under smooth loss functions.
Dellaportas and Wright (1991) used a numerical method to Bayesian prediction
for the two-parameter Generalized exponential distribution under the squared er-
ror loss function. Raqab, Asgharzadeh and Valiollahi (2010), Balakrishnan, Beut-
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ner and Cramer (2010) and Basak, Basak and Balakrishnan (2006) have discussed
different predictors of times to failure of units censored in progressively Type-II
censored samples. Kundu and Raqab (2012) considered the prediction of future
observation from a Type-II censored data for the two-parameter Weibull distri-
bution under fairly flexible priors on the shape and scale parameters. Recently,
Asgharzadeh, Valiollahi and Kundu (2015) discussed the prediction of future ob-
servation based on a Type-I hybrid censored data from the two-parameter Weibull
distribution.

The main aim of this paper is to consider the prediction of future observation
based on Type-I or Type-II hybrid censored samples from a two-parameter Gener-
alized exponential distribution. We obtain the maximum likelihood predictor, best
unbiased predictor, conditional median predictor and Bayesian predictor. We also
obtain different prediction intervals. It is difficult to compare the performances of
the different methods theoretically. We perform some Monte Carlo simulations to
compare the performances of the different methods. Finally one data analysis has
been performed for illustrative purposes.

Rest of the paper is organized as follows. In Section 2, we provide the prelim-
inaries and notations. Different classical predictors are presented in Section 3. In
Section 4, we discuss Bayesian prediction of future observations. In Section 5, one
data analysis has been presented. Monte Carlo simulation results are presented in
Section 6. Finally, we conclude the paper in Section 7.

2 Notation and preliminaries

Consider X = (X1:n,X2:n, . . . ,XD:n) as a sample from model (1.1) which is ob-
tained based on a Type-I HCS or Type-II HCS. Here D is the number of failures
during the experiment. In Type-I HCS, D = r if Xr:n ≤ T , and D = J < r if
Xr:n > T . For Type-II HCS, D = r if Xr:n ≥ T , and D = J ≥ r if Xr:n < T . In
both the cases, J is determined such that XJ :n < T < XJ+1:n where J = 0, . . . , n.

For notational simplicity, we will write (X1,X2, . . . ,XD) for (X1:n,X2:n, . . . ,
XD:n). Based on the observed data, the likelihood function for α and λ without the
normalizing constant is

L(α,λ) = αDλDe−λ
∑D

i=1 xi
[
1 − (

1 − e−λT0
)α]n−D

{
D∏

i=1

(
1 − e−λxi

)α−1
}
, (2.1)

where T0 denotes the time when the experiment is stopped. In other words, for
Type-I HCS, T0 = Xr:n if Xr:n ≤ T and T0 = T if Xr:n > T . For Type-II HCS,
T0 = Xr:n if Xr:n ≥ T and T0 = T if Xr:n < T .

From (2.1), the maximum likelihood estimators (MLEs) of α and λ can be ob-
tained as solutions of the following equations

D

α
+

D∑
i=1

ln
(
1 − e−λxi

) − (n − D)
(1 − e−λT0)α ln(1 − e−λT0)

1 − (1 − e−λT0)α
= 0, (2.2)
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and

D

λ
−

D∑
i=1

xi + (α − 1)
xie

−λxi

1 − e−λxi
− (n − D)

αT0e
−λT0(1 − e−λT0)α−1

1 − (1 − e−λT0)α
. (2.3)

The main aim of this paper is to discuss different methods of prediction of
Y = Xs+D:n (s = 1,2, . . . , n − D) of all the n − D censored units based on ob-
served data X = (X1, . . . ,XD). Due to the Markovian property of censored-order
statistics, the conditional distribution of Y given X = x is just the distribution of
Xs+D:n given XD = xD . This implies that the density of Y given X = x is the same
as the density of the sth order statistic out of n−D units from the population with
density f (y)/(1 − F(T0)), y ≥ T0 (left truncated density at T0). Therefore, the
conditional density of Y = Xs+D:n given X = x, for y ≥ T0, is given by

f (y|x) = s

(
n − D

s

)
f (y)

[
F(y) − F(T0)

]s−1

(2.4)
× [

1 − F(y)
]n−D−s[1 − F(T0)

]−(n−D)
,

where s = 1,2, . . . , n − D. For model (1.1), (2.4) reduces to

f (y|x, α,λ) = s

(
n − D

s

)
αλe−λy(

1 − e−λy)α−1[(
1 − e−λy)α − (

1 − e−λT0
)α]s−1

(2.5)
× [

1 − (
1 − e−λy)α]n−D−s[1 − (

1 − e−λT0
)α]−(n−D)

,

which is the conditional density of Y = Xs+D:n given X = (X1, . . . ,XD).

3 Classical prediction of future observations

In this section, we obtain several predictors of Y = Xs+D:n on the basis of X =
(X1, . . . ,XD) via classical approaches.

3.1 Likelihood prediction approach

In likelihood prediction approach, the principle of maximum likelihood is applied
to the joint prediction and estimation of a future random variable and unknown
parameters. We assume dependence between present and future, and the approach
is non-Bayesian. The predictive likelihood function (PLF) of Y and (α,λ) is given
by

L(y,α,λ|x) = f (y|x, α,λ)f (x|α,λ). (3.1)

Suppose Ŷ = u(X), α̂ = v1(X) and λ̂ = v2(X) are statistics for which

L
(
u(x), v1(x), v2(x)|x) = sup

(y,α,λ)

L(y,α,λ|x),
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then u(X) is said to be the maximum likelihood predictor (MLP) of Y and v1(x)

and v2(x) the predictive maximum likelihood estimators (PMLEs) of α and λ,
respectively.

For the GE model, using (2.1) and (2.5), the predictive likelihood function (PLF)
of Y , α and λ, is given by

L(y,α,λ) = s

(
n − D

s

)
(αλ)d+1(

1 − e−λy)α−1
{

D∏
i=1

(
1 − e−λxi

)α−1
}

× e−λ[y+∑D
i=1 xi ][(1 − e−λy)α − (

1 − e−λT0
)α]s−1 (3.2)

× [
1 − (

1 − e−λy)α]n−D−s
.

Apart from a constant term, the predictive log-likelihood function is

lnL(y,α,λ) = (D + 1)
[
ln(α) + ln(λ)

]
+ (α − 1)

[
ln

[
1 − e−λy] +

D∑
i=1

ln
[
1 − e−λxi

]]
(3.3)

− λ

[
y +

D∑
i=1

xi

]
+ (s − 1) ln

[(
1 − e−λy)α − (

1 − e−λT0
)α]

+ (n − D − s) ln
[
1 − (

1 − e−λy)α]
.

By using (3.3), the predictive likelihood equations (PLEs) for y, α and λ are given,
respectively, by

∂ lnL(y,α,λ)

∂y

= −λ + (α − 1)
λe−λy

1 − e−λy
+ (s − 1)

αλe−λy(1 − e−λy)α−1

(1 − e−λy)α − (1 − e−λT0)α
(3.4)

− (n − D − s)
αλe−λy(1 − e−λy)α−1

1 − (1 − e−λy)α

= 0,

∂ lnL(y,α,λ)

∂α

= ln
[
1 − e−λy] +

D∑
i=1

ln
[
1 − e−λxi

]

− (n − D − s)
(1 − e−λy)α ln[1 − e−λy]

1 − (1 − e−λy)α
+ D + 1

α
(3.5)
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+ (s − 1)
(1 − e−λy)α ln[1 − e−λy] − (1 − e−λT0)α ln[1 − e−λT0]

(1 − e−λy)α − (1 − e−λT0)α

= 0,

∂ lnL(y,α,λ)

∂λ

= D + 1

λ
−

[
y +

D∑
i=1

xi

]
+ (α − 1)

[
ye−λy

1 − e−λy
+

D∑
i=1

xie
−λxi

1 − e−λxi

]

+ (s − 1)
αye−λy(1 − e−λy)α−1 − αT0e

−λT0(1 − e−λT0)α−1

(1 − e−λy)α − (1 − e−λT0)α
(3.6)

− (n − D − s)
αye−λy(1 − e−λy)α−1

1 − (1 − e−λy)α

= 0.

From (3.4) and (3.6), we obtain the MLP of Y as

ŶMLP = −1

λ̃
ln

[
1 −

(
(s − 1)α̃T0e

−λ̃T0(1 − e−λ̃T0)α̃−1

(D + 1)/λ̃ − ∑D
i=1 xi(1 − α̃e−λ̃xi )/(1 − e−λ̃xi )

(3.7)

+ (
1 − e−λ̃T0

)α̃)1/α̃]
,

where (α̃, λ̃) is PMLE of (α,λ) that can be obtained numerically from (3.5) and
(3.6).

3.2 Conditional prediction approach

In conditional prediction approach, the conditional distribution of Y = Xs+D:n
given X = (X1, . . . ,XD) is applied to derive the predictors of Y . A statistic Ŷ

which is used to predict Y = Xs+D:n is called a best unbiased predictor (BUP)
of Y , if the predictor error Ŷ − Y has a mean zero and its prediction error variance
Var(Ŷ − Y) is less than or equal to that of any other unbiased predictor of Y .

The BUP of Y is

ŶBUP = E(Y |X) =
∫ ∞
T0

yf (y|x, α,λ) dy.

Using (2.5) and the binomial expansion[(
1 − e−λy)α − (

1 − e−λT0
)α]s−1

(3.8)

=
s−1∑
j=0

(
s − 1

j

)
(−1)s−j−1[

1 − (
1 − e−λT0

)α]j [
1 − (

1 − e−λy)α]s−j−1
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we obtain

ŶBUP ≡ I (T0;α,λ)
(3.9)

= s

(
n − D

s

)
s−1∑
j=0

(
s − 1

j

)
(−1)s−j−1[

1 − (
1 − e−λT0

)α]−(n−D−j)
h1(T0),

where

h1(T0) =
∫ ∞
T0

yαλe−λy(
1 − e−λy)α−1[

1 − (
1 − e−λy)α]n−D−j−1

dy

(3.10)

= −α

λ

∫ e−λT0

0
ln(t)(1 − t)α−1[

1 − (1 − t)α
]n−D−j−1

dt.

Because the parameters α and λ are unknown, they have to be estimated. Thus,
one would replace them by their corresponding MLEs and obtain the BUP of Y .

Let us now consider conditional median predictor (CMP) which was first sug-
gested by Raqab and Nagaraja (1995). A predictor Ŷ is called the CMP of Y , if it
is the median of the conditional distribution of Y given X = x, that is

Pθ(Y ≤ Ŷ |X = x) = Pθ(Y ≥ Ŷ |X = x). (3.11)

Using the relation

Pα,λ(Y ≤ Ŷ |X = x)
(3.12)

= Pα,λ

(
1 − 1 − (1 − e−λY )α

1 − (1 − e−λT0)α
≤ 1 − 1 − (1 − e−λŶ )α

1 − (1 − e−λT0)α

∣∣∣∣X = x
)
,

and using the fact that the distribution of 1 − 1−(1−e−λY )α

1−(1−e−λT0 )α
given X = x is a

Beta(s, n − D − s + 1) distribution, we obtain the CMP of Y as

ŶCMP = −1

λ
ln

[
1 − (

1 − [
1 − Med(B)

][
1 − (

1 − e−λT0
)α])1/α]

, (3.13)

where B has Beta(s, n − D − s + 1) distribution and Med(B) stands for median
of B . By substituting α and λ with their corresponding MLEs, we obtain the CMP
of Y .

3.3 Classical prediction intervals

In this section, we construct two prediction intervals (PI’s) for Y = Xs based on
the Type I or Type-II censored sample X = (X1,X2, . . . ,XD).

Let us define the random variable Z as

Z = 1 − 1 − (1 − e−λY )α

1 − (1 − e−λT0)α
.
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As mentioned before, the distribution of Z given X = x is a Beta(s, n−D − s +1)

distribution. So, we can consider Z as a pivotal quantity to obtain the prediction
interval for Y . Now, a (1 − γ )100% PI for Y is (L1(X),U1(X)) where

L1(X) = −1

λ
ln

[
1 − (

1 − [1 − Bγ/2][1 − (
1 − e−λT0

)α])1/α]
, (3.14)

U1(X) = −1

λ
ln

[
1 − (

1 − [1 − B1−γ /2][1 − (
1 − e−λT0

)α])1/α]
, (3.15)

where Bγ stands for 100γ th percentile of Beta(s, n−D−s+1) distribution. When
α and λ are unknown, the parameters in (3.14) and (3.15), have to be estimated.
For example, by replacing α and λ with their corresponding MLEs, the prediction
limits for Y can be obtained.

Now let us consider another prediction interval for Y = Xs . The distribution of
Z given X = x is a Beta(s, n − D − s + 1) distribution with PDF

g(z) = zs−1(1 − z)n−D−s

Beta(s, n − D − s + 1)
, 0 < z < 1,

which is a unimodal function of z, for 1 < s < n−D. Therefore, the (1 − γ )100%
highest conditional density (HCD) prediction limits for Y are given by

L2(X) = −1

λ
ln

[
1 − (

1 − [1 − w1][1 − (
1 − e−λT0

)α])1/α]
, (3.16)

U2(X) = −1

λ
ln

[
1 − (

1 − [1 − w2][1 − (
1 − e−λT0

)α])1/α]
, (3.17)

where w1 and w2 are the simultaneous solutions of the following equations:∫ w2

w1

g(z) dz = 1 − γ (3.18)

and

g(w1) = g(w2). (3.19)

Now, we simplify Equations (3.18) and (3.19) as

Bw2(s, n − D − s + 1) − Bw1(s, n − D − s + 1) = 1 − γ, (3.20)

and (
1 − w2

1 − w1

)n−D−s

=
(

w1

w2

)s−1

, (3.21)

where

Bt(a, b) = 1

B(a, b)

∫ t

0
xa−1(1 − x)b−1 dx,

is the incomplete beta function. It is clear from (3.21), that the method cannot be
used to construct the prediction interval when s = 1.
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4 Bayesian prediction of future observations

In this section, we obtain the Bayesian predictors of Y = Xs+D (s = 1,2, . . . ,

n − D) based on the observed hybrid censored sample x = (x1, . . . , xD). For
finding Bayesian predictors, it is assumed that α and λ each have independent
Gamma(a1, b1) and Gamma(a2, b2) priors, respectively. Based on these priors, we
can obtain the joint posterior density function of α and λ given the data as

π(α,λ|x) ∝ g1(α|λ,x)g2(λ|x). (4.1)

Here g2(λ|x) is a gamma density function with the shape and scale parameters as
D + a2 and

∑D
i=1 xi + b2, respectively. Further,

g1(α|λ,x)
(4.2)

∝ e−b1ααD+a1−1

(
∑D

i=1 xi + b2)D+a2

[
1 − (

1 − e−λT0
)α]n−D

D∏
i=1

(
1 − e−λxi

)α−1
,

which is a proper density function.
The Bayesian predictors are obtained from the predictive density function. The

predictive density of Y = Xs+D given x is

f ∗
s (y|x) =

∫ ∞
0

∫ ∞
0

f (y|x, α,λ)π(α,λ|x) dα dλ, (4.3)

where f (y|x, α,λ) is the conditional density of Y = Xs+D given x. By replacing
(4.1) in (4.3), we obtain the predictive density function f ∗

s (y|x) as

f ∗
s (y|x) =

∫ ∞
0

∫ ∞
0

f (y|x, α,λ)g1(α|λ,x)g2(λ|x) dα dλ. (4.4)

Now, the Bayesian point (BP) predictor of Y under a squared error loss is

ŶBP =
∫ ∞
T0

yf ∗
s (y|x) dy. (4.5)

It is not possible to compute (4.5) explicitly. Therefore, we propose here Gibbs
sampling procedure to obtain the Bayes predictor. In the Gibbs sampling proce-
dure, we can generate samples from the posterior density function π(α,λ|x) and
in turn obtain the Bayes predictor and also the corresponding prediction intervals
based on the generated posterior samples. For later use, we need the following
result.

Theorem 1. The conditional distribution of α given the data, g1(α|λ,x) is log-
concave.

Proof. See the Appendix. �

Now, using Theorem 1 and following the idea of Geman and Geman (1984),
we propose the following algorithm to generate (α,λ) from the posterior density
function.
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1. Generate λ1 from g2(·|x).
2. Generate α1 from g1(·|λ1,x) using the method proposed by Devroye (1984).
3. Repeat steps 1 and 2, M times and obtain (α1, λ1), . . . , (αM,λM).

Now, using the generated samples (α1, λ1), . . . , (αM,λM), the simulation con-
sistent estimator of f ∗

s (y|x) is

f̂ ∗
s (y|x) = 1

M

M∑
i=1

f (y|x, αi, λi). (4.6)

Therefore, by replacing (4.6) in (4.5), the BP of Y can be approximated as

ŶBP =
∫ ∞
T0

y

(
1

M

M∑
i=1

f (y|x, αi, λi)

)
dy (4.7)

= 1

M

M∑
i=1

∫ ∞
T0

yf (y|x, αi, λi) dy (4.8)

= 1

M

M∑
i=1

I (T0;αi, λi), (4.9)

where I (T0, α,λ) is defined in (3.9).
Bayesian prediction intervals are obtained from the Bayes predictive density

f ∗(y|x). For some positive u, the survivor function of Y given x is

P(Y > u|x) =
∫ ∞
u

f ∗(y|x) dy.

which by using (4.6) can be approximated as

P(Y > u|x)

= 1

M

M∑
i=1

∫ ∞
u

f (y|x, αi, λi) dy

= s

(
n − D

s

)
1

M

M∑
i=1

s−1∑
j=0

(
s − 1

j

)
(−1)s−j−1

n − D − j

[
1 − (1 − e−λiu)αi

1 − (1 − e−λiT0)αi

]n−D−j

.

Therefore, the 100(1−γ )% Bayesian prediction interval for Y is (L3(X),U3(X)),
where the prediction limits L3(X) and U3(X) can be obtained by solving the non-
linear equations

P
(
Y > L3(x)|x) = 1 − γ

2
, P

(
Y > U3(x)|x) = γ

2
.
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5 Real data analysis

In this section, we consider one real data set mainly to illustrate how the different
methods perform when the underlying distribution is known to be GE. The fol-
lowing data below (Lawless, 1982, p. 267) are from an accelerator life test of 59
conductors. The data are

2.997 4.137 4.288 4.531 4.700 4.706 5.009 5.381 5.434
5.459 5.589 5.640 5.807 5.923 6.033 6.071 6.087 6.129
6.352 6.369 6.479 6.492 6.515 6.522 6.538 6.545 6.573
6.725 6.869 6.923 6.948 6.956 6.958 7.024 7.224 7.365
7.398 7.459 7.489 7.495 7.496 7.543 7.683 7.937 7.945
7.974 8.120 8.336 8.532 8.591 8.687 8.799 9.218 9.254
9.289 9.663 10.092 10.491 11.038.

A subset of the data set we will be using as samples (training data) and the rest
will be used for verification purposes. Before progressing further, first we want to
see whether GE model provides a good fit to the data set or not. We obtain the
MLEs of the GE parameters as α̂ = 52.411 and λ̂ = 0.642. It is observed that the
Kolmogorov–Smirnov (K–S) distance and the corresponding p-value are, respec-
tively,

K–S = 0.103 and p = 0.532.

Since p-value is quite high, we can say that the GE provides a good fit to the data
set.

Scheme 1. Let us consider the following sampling scheme: r = 20 and T = 6.
Based on Type-I HCS, the sample is:

2.997 4.137 4.288 4.531 4.700 4.706 5.009 5.381 5.434
5.459 5.589 5.640 5.807 5.923.

In this case D = 14 and T0 = 6. Now based on the above sample, we want to pre-
dict X(s), for different values of s, namely for s = 1,3,5,8. The predicted values
and the prediction intervals using different methods are computed and they are re-
ported in Table 1. Note that for computing Bayesian predictions, since we do not
have any prior information, we assumed that the priors on α and λ are improper,
that is, a1 = b1 = a2 = b2 = 0.

Scheme 2. In this case, we consider Type-II HCS with the same r = 20 and T = 6.
The observed sample becomes

2.997 4.137 4.288 4.531 4.700 4.706 5.009 5.381 5.434
5.459 5.589 5.640 5.807 5.923 6.033 6.071 6.087 6.129
6.352 6.369.
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Table 1 The values of point predictions and 95% PIs for Y = Xs

Point prediction Interval prediction

Exact MLP BUP CMP BP Pivotal HCD Bayesian
value method method method

Type-I HCS
s = 1 6.033 5.923 6.030 5.999 6.048 (5.926,6.307) – (5.602,6.352)

s = 3 6.087 6.131 6.241 6.213 6.301 (5.993,6.651) (5.958,6.578) (5.461,6.725)

s = 5 6.352 6.334 6.448 6.423 6.604 (6.106,6.937) (6.067,6.875) (5.988,7.205)

s = 8 6.492 6.633 6.966 6.734 7.203 (6.313,7.331) (6.275,7.280) (6.163,7.464)

Type-II HCS
s = 1 6.479 6.369 6.464 6.436 6.521 (6.372,6.710) – (6.065,6.929)

s = 3 6.515 6.557 6.653 6.626 6.852 (6.430,7.028) (6.403,6.961) (6.386,7.094)

s = 5 6.538 6.745 6.843 6.819 7.162 (6.532,7.299) (6.498,7.239) (6.284,7.744)

s = 8 6.725 7.030 7.156 7.112 7.802 (6.721,7.685) (6.690,7.636) (6.069,8.785)

Here D = 20 and T0 = 6.369. Now based on the above Type-II HCS, the predicted
value of X(s) and the prediction intervals are reported in Table 1.

From Table 1, it is observed that different point predictors are quite close to the
true observations. Also, we observe that different prediction intervals are contain-
ing the true observations.

6 Numerical comparisons

It is difficult to compare the performances of the different predictors and predictive
intervals theoretically, as proposed in the previous sections. In this section, we
present a simulation study to compare the performance of the different methods.
The simulation is performed based on two types of hybrid censoring schemes, and
for different T and different parameter values. We have kept r = 10 and n = 20 to
be fixed throughout. The experiment can be briefly describe as follows. For given
n and the parameter values, we generate a sample of size n from a GE(α,λ). Based
on the sampling scheme we obtain the (training) sample from the whole sample
as {x1, . . . , xD}. Now based on the sample {x1, . . . , xD}, we predict Y = Xs+D:n,
and also obtain different predictive intervals. For computing Bayesian point and
interval predictors, we assume two priors as follows:

Prior 1: aj = 0.0001, bj = 0.0001, j = 1,2,

Prior 2: aj = 1, bj = 3, j = 1,2.

The two priors have the same means. But, the variance of Prior 2 is smaller than
that of Prior 1. So, the Prior 2 is more informative than Prior 1.
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We compare the performances of the MLP, BUP, CMP and Bayes predictors
in terms of biases, mean squares prediction errors (MSPE) and Pitman closeness
(PC) measure, based on 10,000 replications. It may be mentioned the measure
of Pitman closeness has received considerable attention in recent years, see for
example Balakrishnan et al. (2011) and the references cited therein. The bias and
MSPE of the different predictors are reported in Table 2, and the PC measures of
the different predictors are reported in Table 3.

We have calculated the Bias, MSPE and PC as follows. Suppose Ŷi is the pre-
diction of Y = Xs+D:n derived in the ith iteration of simulation, where i = 1, . . . ,

N = 10,000, then the Bias and the MSPE computed as:

Bias = 1

N

N∑
i=1

(Ŷi − Y) (6.1)

and

MSPE = 1

N

N∑
i=1

(Ŷi − Y)2. (6.2)

If we consider, Ŷ
(1)
i and Ŷ

(2)
i as the predictors of Y = Xs+D:n, obtained based on

the first and second method, respectively, then PC for Ŷ
(1)
i against Ŷ

(2)
i , can be

calculated as follows:

PC = P
(∣∣Ŷ (1) − Y

∣∣ <
∣∣Ŷ (2) − Y

∣∣) = 1

N

N∑
i=1

I
(∣∣Ŷ (2)

i − Y
∣∣ − ∣∣Ŷ (1)

i − Y
∣∣), (6.3)

where I (·) is the indicator function, and I (x) = 1 if x > 0 and 0, otherwise. We
say that Ŷ (1) competes with Ŷ (2) if PC > 0.5.

We also compute three prediction intervals obtained using pivotal, HCD and
Bayesian methods as discussed in Sections 3 and 4. We compared the perfor-
mances of the three intervals in terms of their average lengths and coverage per-
centages based on 10,000 replications. The results are reported in Table 4.

Some of the points are quite clear from this simulation experiments.

• From Table 2, it is observed the MSPEs increase as s increases for all the pre-
diction methods.

• For the same α, λ and T , the MSPEs of the different predictors for Type-II HCS
are smaller than the corresponding Type-I HCS.

• In terms of MSPEs, BUP is slightly better than the MLP and CMP.
• In terms of MSPEs, the Bayes predictors under Prior 2 work better than the

Bayes predictor under Prior 1.
• From Table 3, it is observed that based on PC measure BUP is better than the

MLP and CMP. Also based on PC measure, the BP predictor under Prior 2 works
better than the BP predictor under Prior 1.
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Table 2 The biases and MSPEs of point predictors for n = 20 and r = 10

α = 0.75, λ = 1

T = 0.40 T = 0.60

BUP MLP CMP BP BUP MLP CMP BP

Prior 1 Prior 2 Prior 1 Prior 2

Type-I HCS
s = 1 Bias 0.016 0.021 0.018 0.024 0.020 0.019 0.024 0.021 0.034 0.030

MSPE 0.003 0.004 0.004 0.006 0.004 0.002 0.002 0.002 0.006 0.003
s = 2 Bias 0.024 0.026 0.019 0.016 0.017 0.024 0.026 0.022 0.038 0.028

MSPE 0.004 0.005 0.006 0.009 0.006 0.002 0.003 0.003 0.007 0.004
s = 3 Bias 0.026 0.030 0.023 0.026 0.024 0.031 0.029 0.028 0.028 0.026

MSPE 0.006 0.007 0.009 0.010 0.008 0.004 0.006 0.006 0.009 0.006
s = 4 Bias 0.028 0.027 0.031 0.041 0.028 0.042 0.024 0.029 0.029 0.027

MSPE 0.008 0.008 0.010 0.012 0.010 0.005 0.006 0.008 0.011 0.009
s = 5 Bias 0.034 0.029 0.025 0.027 0.019 0.038 0.034 0.026 0.019 0.017

MSPE 0.010 0.012 0.013 0.015 0.013 0.007 0.009 0.010 0.014 0.010

Type-II HCS
s = 1 Bias 0.016 0.026 0.027 0.029 0.024 0.015 0.020 0.021 0.013 0.016

MSPE 0.001 0.002 0.003 0.005 0.002 0.001 0.001 0.001 0.003 0.001
s = 2 Bias 0.026 0.027 0.021 0.016 0.019 0.019 0.015 0.024 0.013 0.019

MSPE 0.002 0.004 0.005 0.008 0.005 0.001 0.002 0.002 0.006 0.004
s = 3 Bias 0.027 0.029 0.026 0.042 0.046 0.016 0.024 0.019 0.024 0.035

MSPE 0.004 0.006 0.007 0.009 0.007 0.002 0.004 0.005 0.007 0.006
s = 4 Bias 0.019 0.015 0.022 0.031 0.037 0.019 0.027 0.030 0.064 0.050

MSPE 0.005 0.007 0.008 0.011 0.010 0.003 0.005 0.006 0.010 0.007
s = 5 Bias 0.029 0.025 0.020 0.030 0.026 0.020 0.024 0.021 0.024 0.014

MSPE 0.008 0.010 0.012 0.014 0.012 0.005 0.007 0.009 0.012 0.009
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Table 2 (Continued)

α = 1.5, λ = 1

T = 0.80 T = 1.20

BUP MLP CMP BP BUP MLP CMP BP

Prior 1 Prior 2 Prior 1 Prior 2

Type-I HCS
s = 1 Bias 0.030 0.036 0.039 0.049 0.037 0.035 0.029 0.041 0.024 0.028

MSPE 0.005 0.007 0.007 0.012 0.009 0.004 0.006 0.007 0.010 0.008
s = 2 Bias 0.033 0.028 0.046 0.037 0.029 0.024 0.028 0.037 0.028 0.027

MSPE 0.008 0.010 0.011 0.016 0.012 0.006 0.008 0.008 0.014 0.011
s = 3 Bias 0.045 0.056 0.028 0.049 0.050 0.064 0.052 0.034 0.042 0.046

MSPE 0.011 0.014 0.016 0.019 0.013 0.009 0.010 0.012 0.021 0.018
s = 4 Bias 0.059 0.067 0.065 0.034 0.022 0.029 0.034 0.035 0.075 0.046

MSPE 0.013 0.016 0.019 0.025 0.021 0.010 0.013 0.016 0.021 0.018
s = 5 Bias 0.062 0.067 0.046 0.024 0.029 0.049 0.057 0.061 0.075 0.060

MSPE 0.016 0.018 0.022 0.028 0.026 0.013 0.019 0.021 0.027 0.023

Type-II HCS
s = 1 Bias 0.058 0.064 0.046 0.072 0.068 0.042 0.038 0.048 0.067 0.062

MSPE 0.005 0.006 0.007 0.010 0.008 0.003 0.004 0.006 0.009 0.008
s = 2 Bias 0.041 0.049 0.046 0.034 0.037 0.045 0.036 0.047 0.045 0.054

MSPE 0.007 0.008 0.008 0.011 0.010 0.005 0.007 0.008 0.010 0.009
s = 3 Bias 0.033 0.037 0.035 0.028 0.026 0.056 0.034 0.045 0.060 0.054

MSPE 0.009 0.010 0.013 0.017 0.015 0.008 0.009 0.011 0.016 0.013
s = 4 Bias 0.051 0.052 0.046 0.057 0.053 0.078 0.082 0.064 0.067 0.072

MSPE 0.011 0.013 0.014 0.020 0.016 0.009 0.012 0.015 0.018 0.014
s = 5 Bias 0.067 0.066 0.055 0.058 0.056 0.034 0.038 0.064 0.052 0.042

MSPE 0.012 0.018 0.020 0.025 0.022 0.022 0.016 0.018 0.024 0.021



56 R. Valiollahi, A. Asgharzadeh and D. Kundu

Table 3 PC comparison of different predictors for n = 20 and r = 10

α = 0.75, λ = 1

T = 0.40 T = 0.60

BUP BUP MLP BP (Prior 2) BUP BUP MLP BP (Prior 2)
vs vs vs vs vs vs vs vs

MLP CMP CMP BP (Prior 1) MLP CMP CMP BP (Prior 1)

Type-I HCS
s = 1 0.545 0.568 0.526 0.649 0.584 0.604 0.529 0.684
s = 2 0.612 0.649 0.586 0.682 0.648 0.682 0.629 0.719
s = 3 0.671 0.697 0.641 0.729 0.706 0.729 0.687 0.780
s = 4 0.712 0.748 0.730 0.772 0.738 0.759 0.720 0.816
s = 5 0.746 0.759 0.741 0.791 0.784 0.798 0.758 0.842

Type-II HCS
s = 1 0.527 0.558 0.521 0.613 0.542 0.579 0.534 0.640
s = 2 0.549 0.584 0.531 0.663 0.576 0.597 0.564 0.687
s = 3 0.604 0.627 0.589 0.705 0.637 0.684 0.610 0.729
s = 4 0.642 0.681 0.624 0.734 0.685 0.705 0.659 0.779
s = 5 0.693 0.713 0.673 0.751 0.725 0.746 0.706 0.792

α = 1.5, λ = 1

T = 0.80 T = 1.20

BUP BUP MLP BP (Prior 2) BUP BUP MLP BP (Prior 2)
vs vs vs vs vs vs vs vs

MLP CMP CMP BP (Prior 1) MLP CMP CMP BP (Prior 1)

Type-I HCS
s = 1 0.546 0.568 0.537 0.629 0.564 0.579 0.543 0.613
s = 2 0.576 0.592 0.550 0.671 0.591 0.628 0.571 0.649
s = 3 0.608 0.631 0.582 0.703 0.638 0.662 0.616 0.682
s = 4 0.628 0.654 0.603 0.741 0.652 0.689 0.662 0.726
s = 5 0.659 0.682 0.631 0.768 0.694 0.726 0.672 0.752

Type-II HCS
s = 1 0.528 0.549 0.520 0.608 0.534 0.550 0.528 0.597
s = 2 0.549 0.573 0534. 0.614 0.552 0.576 0.534 0.621
s = 3 0.568 0.593 0.551 0.629 0.581 0.608 0.571 0.657
s = 4 0.586 0.616 0.572 0.684 0.620 0.657 0.604 0.703
s = 5 0.634 0.652 0.612 0.711 0.659 0.689 0.639 0.726
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Table 4 Average lengths and coverage probabilities of 95% PIs for n = 20 and r = 10

α = 0.75, λ = 1

T = 0.40 T = 0.60

Pivotal HCD Bayesian Bayesian Pivotal HCD Bayesian Bayesian
method method Prior 1 Prior 2 method method Prior 1 Prior 2

Type-I HCS
s = 1 Length 0.125 – 0.112 0.103 0.116 – 0.107 0.091

CP 0.934 – 0.935 0.938 0.933 – 0.935 0.937
s = 2 Length 0.203 0.180 0.195 0.188 0.161 0.134 0.153 0.146

CP 0.936 0.941 0.938 0.940 0.935 0.940 0.936 0.937
s = 3 Length 0.247 0.219 0.235 0.230 0.199 0.164 0.189 0.173

CP 0.938 0.941 0.938 0.941 0.937 0.941 0.936 0.938
s = 4 Length 0.298 0.269 0.286 0.276 0.234 0.206 0.222 0.216

CP 0.942 0.945 0.942 0.944 0.940 0.944 0.940 0.941
s = 5 Length 0.352 0.329 0.348 0.337 0.279 0.242 0.266 0.254

CP 0.943 0.947 0.945 0.945 0.942 0.945 0.943 0.944

Type-II HCS
s = 1 Length 0.133 – 0.124 0.116 0.108 – 0.096 0.088

CP 0.933 – 0.936 0.934 0.929 – 0.934 0.937
s = 2 Length 0.196 0.169 0.181 0.175 0.148 0.119 0.138 0.130

CP 0.935 0.938 0.937 0.934 0.930 0.934 0.933 0.931
s = 3 Length 0.264 0.231 0.254 0.242 0.194 0.160 0.175 0.168

CP 0.938 0.941 0.938 0.940 0.935 0.938 0.936 0.936
s = 4 Length 0.306 0.281 0.297 0.291 0.254 0.224 0.244 0.238

CP 0.939 0.943 0.943 0.943 0.938 0.943 0.940 0.941
s = 5 Length 0.336 0.310 0.328 0.321 0.266 0.238 0.255 0.247

CP 0.941 0.946 0.942 0.945 0.941 0.944 0.941 0.943



58
R

.V
aliollahi,A

.A
sgharzadeh

and
D

.K
undu

Table 4 (Continued)

α = 1.5, λ = 1

T = 0.80 T = 1.20

Pivotal HCD Bayesian Bayesian Pivotal HCD Bayesian Bayesian
method method Prior 1 Prior 2 method method Prior 1 Prior 2

Type-I HCS
s = 1 Length 0.167 – 0.154 0.147 0.142 – 0.132 0.125

CP 0.937 – 0.939 0.940 0.935 – 0.936 0.938
s = 2 Length 0.266 0.241 0.258 0.252 0.206 0.174 0.194 0.187

CP 0.938 0.942 0.939 0.941 0.936 0.940 0.938 0.939
s = 3 Length 0.322 0.301 0.320 0.311 0.261 0.238 0.250 0.244

CP 0.938 0.943 0.940 0.941 0.938 0.942 0.939 0.941
s = 4 Length 0.405 0.371 0.394 0.382 0.317 0.284 0.310 0.301

CP 0.944 0.949 0.947 0.949 0.944 0.947 0.945 0.945
s = 5 Length 0.470 0.451 0.464 0.460 0.344 0.318 0.329 0.324

CP 0.947 0.955 0.951 0.954 0.945 0.952 0.950 0.950

Type-II HCS
s = 1 Length 0.161 – 0.150 0.142 0.138 – 0.126 0.120

CP 0.935 – 0.938 0.937 0.933 – 0.934 0.936
s = 2 Length 0.231 0.212 0.224 0.219 0.226 0.201 0.219 0.211

CP 0.938 0.942 0.939 0.941 0.935 0.938 0.935 0.937
s = 3 Length 0.298 0.268 0.284 0.278 0.287 0.261 0.280 0.274

CP 0.941 0.945 0.943 0.945 0.937 0.941 0.938 0.938
s = 4 Length 0.394 0.367 0.388 0.379 0.311 0.294 0.304 0.300

CP 0.942 0.946 0.945 0.945 0.940 0.945 0.942 0.944
s = 5 Length 0.461 0.449 0.459 0.455 0.339 0.312 0.330 0.328

CP 0.944 0.949 0.946 0.948 0.942 0.947 0.945 0.946
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• From Table 4, it is observed that the coverage probabilities for all prediction
intervals are very close to the nominal level.

• For the same α, λ and T , the average lengths and coverage percentages increase
as s increases for all the methods.

• From Table 4, the HCD method works better than the pivotal and Bayesian
methods in terms of both average lengths and coverage probabilities. Also, the
Bayesian prediction intervals under Prior 2 are shorter than the Bayesian pre-
diction intervals under Prior 1.

Therefore, based on the simulation results here, we propose the following: for
prediction of future observation BUP may be used, and for prediction interval, for
s > 1, we propose to use the HCD method, and for s = 1, Bayesian method may
be used.

7 Conclusions

In this paper, we have considered the prediction of future observations and the as-
sociated prediction interval based on Type-I HCS or Type-II HCS samples, when
the lifetime distributions of the experimental units follow GE distribution. We have
used three different classical predictors namely BUP, MLP and CMP. We have
also considered Bayesian predictor under squared error loss function. We then
compared these different point predictors using biases, MSPE and PC. Compar-
ing all the points, we recommend to use BUP for predicting the future observation.
To calculate the prediction intervals, we have used three methods namely HCD,
Pivotal and Bayesian methods. It is observed HCD method cannot be used when
s = 1. Three proposed methods maintain the coverage percentages. HCD method
performs slightly better than the Pivotal method and Bayesian method for s > 1.

In this paper, we have mainly considered the prediction of the future failures un-
der Type-I or Type-II hybrid censoring. Throughout the study, it has been assumed
that the time point T is pre-fixed. It may be of interest if it is assumed that T is
also a random variable. Both Bayesian and frequentist analysis are possible in this
case. More work is needed along that direction.

Appendix

The conditional density of α given λ and the data is

g1(α|λ,x) ∝ e−b1ααD+a1−1

(
∑D

i=1 xi + b2)D+a2

[
1 − (

1 − e−λT0
)α]n−D

D∏
i=1

(
1 − e−λxi

)α−1
.

The log-likelihood of g1(α|λ,x) is

lng1(α|λ,x) ∝ −b1α + (D + a1 − 1) ln(α) + (α − 1)

D∑
i=1

ln
[
1 − e−λxi

]
+ (n − D) ln

[
1 − (

1 − e−λT0
)α]

.
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Since we have

d2 lng1(α|λ,x)

dα2 = −D + a1 − 1

α2 − (n − D)
ln2[1 − e−λT0](1 − e−λT0)α

(1 − (1 − e−λT0)α)2 ≤ 0,

the result follows.

Acknowledgments

The authors would like to thank the referees and the associate editor for their very
constructive suggestions.

References

Asgharzadeh, A., Valiollahi, R. and Kundu, D. (2015). Prediction for future failures in Weibull dis-
tribution under hybrid censoring. J. Stat. Comput. Simul. 85, 824–838. MR3284645

Balakrishnan, N., Davies, K. F., Keating, J. P. and Mason, R. L. (2011). Pitman closeness, monotonic-
ity and consistency of best linear unbiased and in variant estimators for exponential distribution
under type-II censoring. J. Stat. Comput. Simul. 81, 985–999. MR2820061

Balakrishnan, N., Beutner, E. and Cramer, E. (2010). Exact two-sample non-parametric confidence,
prediction, and tolerance intervals based on ordinary and progressively type-II right censored
data. TEST 19, 68–91. MR2610918

Basak, I., Basak, P. and Balakrishnan, N. (2006). On some predictors of times to failures of censored
items in progressively censored sample. Comput. Statist. Data Anal. 50, 1313–1337. MR2224374

Balakrishnan, N. and Kundu, D. (2013). Hybrid censoring: Models, inferential results and applica-
tions (with discussion). Comput. Statist. Data Anal. 57, 166–209. MR2981081

Chen, S. and Bhattacharya, G. K. (1988). Exact confidence bounds for an exponential parameter
under hybrid censoring. Comm. Statist. Theory Methods 17, 1857–1870. MR0945789

Childs, A., Chandrasekhar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference
based on type-I and type-II hybrid censored samples from the exponential distribution. Ann. Inst.
Statist. Math. 55, 319–330. MR2001867

Dellaportas, P. and Wright, D. E. (1991). Numerical prediction for the two-parameter Weibull distri-
bution. The Statistician 40, 365–372.

Devroye, L. (1984). A simple algorithm for generating random variates with a logconcave density.
Computing 33, 247–257. MR0773927

Draper, N. and Guttman, I. (1987). Bayesian analysis of hybrid life tests with exponential failure
times. Ann. Inst. Statist. Math. 39, 219–225. MR0886518

Ebrahimi, N. (1986). Estimating the parameter of an exponential distribution from hybrid life test.
J. Statist. Plann. Inference 14, 255–261. MR0852530

Ebrahimi, N. (1992). Prediction intervals for future failures in exponential distribution under hybrid
censoring. IEEE Transactions on Reliability 41, 127–132.

Epstein, B. (1954). Life tests in the exponential case. Ann. Math. Stat. 25, 555–564. MR0064372
Fairbanks, K., Madison, R. and Dykstra, R. (1982). A confidence interval for an exponential param-

eter from a hybrid life test. J. Amer. Statist. Assoc. 77, 137–140.
Geman, S. and Geman, A. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restora-

tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–740.
Jeong, H. S., Park, J. I. and Yum, B. J. (1996). Development of (r, T ) hybrid sampling plans for

exponential lifetime distributions. J. Appl. Stat. 23, 601–607.

http://www.ams.org/mathscinet-getitem?mr=3284645
http://www.ams.org/mathscinet-getitem?mr=2820061
http://www.ams.org/mathscinet-getitem?mr=2610918
http://www.ams.org/mathscinet-getitem?mr=2224374
http://www.ams.org/mathscinet-getitem?mr=2981081
http://www.ams.org/mathscinet-getitem?mr=0945789
http://www.ams.org/mathscinet-getitem?mr=2001867
http://www.ams.org/mathscinet-getitem?mr=0773927
http://www.ams.org/mathscinet-getitem?mr=0886518
http://www.ams.org/mathscinet-getitem?mr=0852530
http://www.ams.org/mathscinet-getitem?mr=0064372


Prediction of future failures for generalized exponential distribution 61

Kaminsky, K. S. and Rhodin, L. S. (1985). Maximum likelihood prediction. Ann. Inst. Statist. Math.
37, 507–517. MR0818048

Kundu, D. (2007). On hybrid censored Weibull distribution. J. Statist. Plann. Inference 137, 2127–
2142. MR2325420

Kundu, D. and Banerjee, A. (2008). Inference based on type-II hybrid censored data from a Weibull
distribution. IEEE Transaction on Reliability 57, 369–378.

Kundu, D. and Gupta, R. D. (1988). Hybrid censoring schemes with exponential failure distribution.
Comm. Statist. Theory Methods 27, 3065–3083.

Kundu, D. and Raqab, M. Z. (2012). Bayesian inference and prediction of order statistics for a type-II
censored Weibull distribution. J. Statist. Plann. Inference 142, 41–47. MR2827128

Lawless, J. F. (1982). Statistical Models and Methods for Life Time Data. New York: Wiley.
MR0640866

Raqab, M. Z. and Nagaraja, H. N. (1995). On some predictors of future order statistics. Metron 53,
185–204. MR1380909

Raqab, M. Z., Asgharzadeh, A. and Valiollahi, R. (2010). Prediction for Pareto distribution based on
progressively type-II censored samples. Comput. Statist. Data Anal. 54, 1732–1743. MR2608969

Smith, R. L. (1997). Statistics for exceptional athletics record: Letter to the editor. Appl. Statist. 46,
123–127.

Smith, R. L. (1999). Bayesian and frequentist approaches to parametric predictive inference (with
discussion). In Bayesian Statistics, Vol. 6 (J. M. Bernado, J. O. Berger, A. P. Dawid and A. F. M.
Smith, eds.) 589–612. Oxford: Oxford University Press. MR1724875

R. Valiollahi
Department of Mathematics, Statistics

and Computer Science
Semnan University
Semnan
Iran

A. Asgharzadeh
Department of Statistics
Faculty of Mathematical Sciences
University of Mazandaran
Babolsar
Iran
E-mail: a.asgharzadeh@umz.ac.ir

D. Kundu
Department of Mathematics and Statistics
Indian Institute of Technology
Kanpur
India

http://www.ams.org/mathscinet-getitem?mr=0818048
http://www.ams.org/mathscinet-getitem?mr=2325420
http://www.ams.org/mathscinet-getitem?mr=2827128
http://www.ams.org/mathscinet-getitem?mr=0640866
http://www.ams.org/mathscinet-getitem?mr=1380909
http://www.ams.org/mathscinet-getitem?mr=2608969
http://www.ams.org/mathscinet-getitem?mr=1724875
mailto:a.asgharzadeh@umz.ac.ir

	Introduction
	Notation and preliminaries
	Classical prediction of future observations
	Likelihood prediction approach
	Conditional prediction approach
	Classical prediction intervals

	Bayesian prediction of future observations
	Real data analysis
	Numerical comparisons
	Conclusions
	Appendix
	Acknowledgments
	References
	Author's Addresses

