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Abstract. We study the consistency of a Bayesian variable selection proce-
dure for generalized linear models. Specifically, we consider the consistency
of a Bayes factor based on g-priors proposed by Sabanés Bové and Held
[Bayesian Analysis 6 (2011) 387–410]. The integrals necessary for the com-
putation of this Bayes factor are performed with Laplace approximation and
Gaussian quadrature. We show that, under certain regularity conditions, the
resulting Bayes factor is consistent. Furthermore, a simulation study confirms
our theoretical results. Finally, we illustrate this model selection procedure
with an application to a real ecological dataset.

1 Introduction

Generalized Linear Model (GLM, see McCullagh and Nelder, 1989) is a ubiq-
uitous tool in all areas of science to study the relationship between explanatory
variables and response variables of various types, for example proportions, binary,
ordinal, multinomial, and count variables. An important part of the application of
GLMs is variable selection, an approach used to decide what explanatory variables
should be included in the model. For that aim, Sabanés Bové and Held (2011) have
developed promising methodology that uses Bayes factors based on hyper-g pri-
ors. However, to the best of our knowledge, the large sample properties of these
hyper-g-priors-based Bayes factors have not been studied.

Our contribution in this article is two-fold. First, we develop a more efficient
algorithm than the one provided in Sabanés Bové and Held (2011). Sabanés Bové
and Held (2011) adopted in their procedure the Laplace approximation (Tierney
and Kadane, 1986; Raudenbush, Yang and Yosef, 2000) and the Gauss–Hermite
quadrature (Pinheiro and Bates, 1995), and both two approximations require evalu-
ation of the first two moments. While Sabanés Bové and Held (2011) use R routine
to perform line search and numerical differentiation, we provide the explicit form
of a Newton–Raphson-type algorithm that speeds up the computational time and
locates the moments simultaneously. Second, we assume regularity conditions and
present results on the variable selection consistency of hyper-g-prior-based Bayes
factors.
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Let y = (y1, . . . , yn) denote a data set of n subjects which can be modeled by a
GLM with density function given by

f (y|β0,β) ∝ exp

(
n∑

i=1

yiθi − b(θi)

φi

)
,

where θi = θi(ηi) is the canonical parameter, b(θi) is a function such that the mean
of the response E(yi) = ∂b(θi)/∂θi , the variance var(yi) = φi∂

2b(θi)/∂θ2
i , and all

higher order derivatives exist. Let ηi = β0 +xT
i β = h(μi) denote the linear predic-

tor, where h(·) denotes the link function that relates the mean response, μi = E(yi)

to a linear expression of the covariates xi = (xi1, . . . , xip)T , and p is the number
of available covariates. Let B = {(β0,β) : β0 + xT

i β ∈ �, i = 1,2, . . . , n}, where
� denotes the canonical parameter space. Moreover, we follow Sabanés Bové and
Held (2011) and assume that the dispersion parameter φi = φ/wi is known and
may incorporate a weight wi . To simplify the exposition without loss of gener-
ality, we assume the canonical link function, that is, θi = ηi = β0 + xT

i β , unless
otherwise specified.

In variable selection problems (see George, 2000), we need to select a subset
of explanatory variables that are predictive of response variables from the original
set of p explanatory variables. Let γ denote the model indicator so that model Mγ

has a linear predictor ηγ i = β0 + xT
γ iβγ , where xγ i = (xiγ1, . . . , xiγpγ

)T , with pγ

the number of covariates of model Mγ . Further, let Xγ = (xγ 1, . . . ,xγ n)
T be the

n × pγ design matrix under model Mγ .
Bayesian variable selection often proceeds by comparing the model posterior

probabilities. On a side note, there are other Bayesian model selection procedures
that do not use model posterior probabilities such as, for example, the deviance
information criterion (DIC, Spiegelhalter et al., 2002) and the full Bayesian sig-
nificance test (Pereira et al., 2008). However, we focus on procedures based on the
comparison of posterior probabilities of 2p possible models, and we assume enu-
merating every model within the model space is computationally feasible. When
all the models have the same prior probabilities, the posterior probabilities are pro-
portional to the predictive densities. Then, the Bayes factor, that is the ratio of the
predictive density of each two models, can be used for model comparison.

Since the Bayes factor is prior sensitive (e.g., see Kass and Raftery, 1995), it is
crucial to assign a prior to regression coefficients that leads to desirable variable
selection properties. For the estimation of Gaussian linear models, Zellner (1986)
proposed the g-prior for the regression coefficients, that is

βγ |φ,g,Mγ ∼ N
(
0, gφ

(
XT

γ Xγ

)−1)
.

This prior has been widely adopted in the Bayesian variable selection literature for
a long time, since it results in closed form marginal likelihood density. Different
choices of g have also been intensively studied ever since. Zellner and Siow (1980)
proposed the now well-known Zellner–Siow prior that is obtained by, in addition
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to using the above prior for βγ , assigning an inverse-gamma hyperprior with shape
parameter a = 0.5 and scale parameter b = 0.5n to g. After integrating out g, the
resulting marginal prior for βγ is a multivariate Cauchy distribution. George and
Foster (2000) proposed empirical Bayes methodology for estimation of g. Liang
et al. (2008) compared several common choices of prior for g for Gaussian linear
models, and investigated two frequentist properties, the variable selection consis-
tency and prediction consistency. Their studies showed that the procedures based
on the Zellner–Siow prior and on the hyper-g/n prior given by π(g) = 1

n
(1 + g

n
)−2

result in both variable selection and prediction consistency while still providing
computation efficiency.

Sabanés Bové and Held (2011) developed an extension of the g prior to GLMs,
called the “hyper-g prior”. As shown in Sabanés Bové and Held (2011, Section 2),
the hyper-g prior originates from Chen and Ibrahim (2003, Formula 2.6) prior,
and is strongly associated with the unit information prior approach of Kass and
Wasserman (1995). With the aid of fast and accurate numerical approximations,
the hyper-g priors can be shown to provide promising solutions to the variable
selection problem in GLMs. It is henceforth desirable to derive a justification to
these empirical findings.

The remainder of this paper is organized as follows. Section 2 presents the Sa-
banés Bové and Held’s hyper-g prior for GLMs and then shows that, under cer-
tain regularity conditions, the model selection procedure for GLMs proposed by
Sabanés Bové and Held (2011) is consistent. Section 3 covers not only the original
algorithm of Sabanés Bové and Held (2011), but also a competing algorithm we
propose to increase computational efficiency. Section 4 confirms the theoretical
results of Section 2 with a Monte Carlo study using binomial and Poisson models.
Section 5 illustrates the variable selection procedure with an application to the dis-
tribution of parasites across a wildlife host population. Section 6 concludes with a
brief discussion. For clarity of exposition, all proofs are presented in the Appendix.

2 Main results

Sabanés Bové and Held (2011) assign a flat prior on the intercept β0 that is com-
mon to all models and assume a conditionally Gaussian prior for βγ :

βγ |g,Mγ ∼ Npγ

(
0, gφc

(
XT

γ WXγ

)−1)
, (1)

where φ is the known dispersion parameter, W = diag{(w1, . . . ,wn)
T }, and c de-

notes a scale factor determined by

c = −E
[
∂2 logf (y|η)

∂η2

]∣∣∣∣
η=0

.

For instance, c = 1 under Poisson model with log link, c = 4 under binomial model
with logit link, and c = π/2 under binary model with the probit link.
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Note, the precision matrix of the prior, (XT
γ WXγ )/φc, is the expected Fisher

information matrix evaluated at β = 0. Given an imaginary sample y0 such that
y0 = h(0), Sabanés Bové and Held (2011) showed that the Chen and Ibrahim
(2003) prior has mode at β = 0 and converges to (1) as the sample size increases,
which justifies the choice of the precision matrix.

For the prior of hyperparameter g, Sabanés Bové and Held (2011) consider two
hyperpriors:

πZS(g) = IG

(
1

2
,
n

2

)
and

πHyp(g) = 1

n

(
1 + g

n

)−2

.

We also note that the same hyperpriors for g have been considered by Liang et al.
(2008) for variable selection in Gaussian linear models.

To investigate the asymptotic property of Bayesian variable selection proce-
dures, we consider the definition of consistency used in Fernandez, Ley and Steel
(2001). Let P(Mγ |y) be the posterior probability of model Mγ . Then the variable
selection procedure is said to be consistent if

lim
n→∞P(Mγ |y) = 1, when Mγ is the true model.

Liang et al. (2008) have shown this consistency property can be equivalently de-
fined in terms of the Bayes factor for comparing any model Mγ ′ with the true
model Mγ , that is,

lim
n→∞ BF

[
γ ′, γ

] = lim
n→∞

BF[γ ′,N]
BF[γ,N] = 0,

when Mγ is the true model ∀Mγ ′ 	= Mγ , where BF[γ,N], the Bayes factor for
comparing model Mγ with the null model MN , is defined in Zellner and Siow
(1980) by

BF[γ,N] = f (y|Mγ )/f (y|MN),

with f (y|Mγ ) being the marginal likelihood density, defined as

f (y|Mγ ) =
∫
Rpγ +1

f (y|β0,βγ , γ )

∫
R+

π(βγ |g, γ )π(g) dg dβ0 dβγ . (2)

In general, under GLMs, there is no closed form representation for (2). To obtain
a partial analytical result, valid numerical approximation is required. Application
of a (pγ + 1)-dimensional Laplace approximation (Tierney and Kadane, 1986) on
(2) with respect to (β0,βγ ) yields the integrated likelihood of g, with an accuracy
of order O(1/n). Consequently, the marginal likelihood density becomes

f (y|Mγ ) =
∫

(2π)(pγ +1)/2∣∣R∗
0γ

∣∣−1/2
f

(
y|β∗

0γ , γ
)
π

(
β∗

γ |g, γ
)
π(g)dg + en,
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where en = O(n−1) is the resulting Laplace approximation error correction term.
In addition, β∗

γ is the conditional posterior mode of βγ . Finally, β∗
0γ and R∗

0γ are
respectively, the conditional posterior mode vector and the conditional posterior
precision matrix of (β0,βγ ).

We introduce additional notation. For simplicity of exposition, we incorporate
the intercept β0 into the parameter vector β . Let βγ , βN and βF denote the param-
eter vectors in the true data generating model Mγ , the null model MN , and the full
model MF , respectively. We denote by β̂γ the Maximum Likelihood Estimator
(MLE) of βγ calculated from model Mγ , and similarly, denote by β∗

γ the posterior
mode of βγ . Further, we denote by β∗

γ (g) the conditional posterior mode of βγ

given g. In addition, we denote the true value of β as β t , augmented by zeros to
a (p + 1) × 1 vector. Further, let us denote the Fisher information matrix for the
parameter β by F(β). Let AT/2 be a right square root of a positive definite matrix
A such that A1/2(AT/2) = A. Then we define the δ-neighborhood of β t as the set
N(δ) such that N(δ) = {β : ‖F(β t )

T /2(β − β t )‖ ≤ δ}.
Now we consider setting the regularity conditions under which we can expect

the hyper-g-prior-based Bayes factors to be consistent. Research on regularity con-
ditions and implications in GLMs has progressed mostly from a frequentist point
of view. For example, Fahrmeir and Kaufmann (1985) established regularity con-
ditions for consistency and asymptotic normality for the estimation problem in
GLMs. Some of these regularity conditions are useful to study the consistency of
the variable selection procedure. Qian and Field (2002) provided regularity condi-
tions and corresponding asymptotic results in the binomial model with canonical
link. Qian and Wu (2006) exploited the binomial model with non-canonical link.
Chen and Chen (2012) studied the variable selection consistency under a large p

small n setting. We have adopted 3 regularity conditions that have been used in the
above mentioned references. These conditions and some of their interpretations
are stated as follows.

Condition C1. The eigenvalues of X′WX satisfy 0 < a1n ≤ ζ1(X′WX) ≤
· · · ≤ ζp+1(X′WX) ≤ a2n for some constants a1 and a2, where ζ1(X′WX) ≤
ζ2(X′WX) ≤ · · · ≤ ζp+1(X′WX) are the ordered eigenvalues of X′WX.

Condition C2. The eigenvalues of F(β t ) satisfy 0 < a3n ≤ ζ1(F(β t )) ≤ ζp+1 ×
(F(β t )) ≤ a4n for some constants a3 and a4.

Condition C3. For any δ > 0, ε > 0, there exists n1 such that |ν′F(β)ν −
ν′F(β t )ν| ≤ εν ′F(β t )ν, for all ν ∈ Rp+1,β ∈ N(δ), and n > n1.

Remark 2.1. Condition C1 essentially requires the predictors X to be non triv-
ial and finite, so that the information could be accumulated at the same rate as the
sample size increases for all β ∈ B. For example, simply consider an n-observation
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experiment. For the first k observations, we randomly assign each of their covari-
ates a random vector, and for the remaining n − k observations, we assign each of
their covariates a vector of 1. Then Condition C1 fails since the information does
not accumulate in a proper manner.

Remark 2.2. Condition C2 is commonly used in the literature, for example, by
Qian and Wu (2006) and recently by Chen and Chen (2012), and can be thought of
as a slightly stronger statement of condition (D) in Fahrmeir and Kaufmann (1985)
for estimation consistency. Condition C2 fails whenever 0 < ∂μ/∂η < ∞ is not
satisfied, for example, when there are too many zero observations in a Poisson or
a binomial model, or when there is a perfect data separation in a binary logistic
model (Hosmer and Lemeshow, 2004). Condition C3 is equivalent to condition
(N) in Fahrmeir and Kaufmann (1985), which states the following

max
β∈N(δ)

∥∥F(β t )
−1/2F(β)F(β t )

−T/2 − I
∥∥ → 0, ∀δ > 0.

Remark 2.3. Condition C3 requires the relative difference in information, within
a small neighborhood of β t , to be arbitrarily small in all directions. In other words,
Condition C3 extends Condition C2 to the neighborhood of β t . Condition C3
can be verified through Condition C2 and the condition max1≤i≤n(‖xi‖2/n) → 0
(Mielniczuk and Teisseyre, 2012). Thus, assuming Condition C2, C3 becomes
mild.

Note that all conditions are for a general class of GLMs since no specification
of link function is involved. For x′s drawn from a probability density, conditions
follow naturally from the Law of Large Numbers (Fahrmeir and Kaufmann, 1985;
Chen and Chen, 2012).

Lemma 1. If Conditions C2 and C3 are satisfied, then the following properties
hold,

1. β̂γ ′ → pβ t ,∀γ ′ ⊇ γ ,

2. F(β t )
T /2(β̂γ ′ − β t )

d→ N(0, I),∀γ ′ ⊇ γ .

The above lemma is proved in Fahrmeir and Kaufmann (1985) (see Theorem 1
and Theorem 3 therein).

Remark 2.4. The posterior mode β∗
γ ′ is derived, as suggested by Sabanés Bové

and Held (2011), using Bayesian iterative reweighted least squares (IRLS) (West,
1985; Gamerman, 1997), and hence it is easy to see that the posterior mode g∗
plays a role of shrinkage factor that shrinks the posterior mode β∗ toward the
MLE β̂ almost surely, as long as g∗ has at least order O(nε) for some ε > 0 and n
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is large enough. To make sure g∗ has order O(nε), we first note that the likelihood
function of β∗(g) is strictly increasing function of g such that

arg max
g

f
(
y|β∗(g), γ

)
π

(
β∗(g)|g, γ

)
π(g) > arg max

g
π

(
β∗(g)|g, γ

)
π(g).

As a consequence, we can focus on solving arg maxg π(β∗(g)|g, γ )π(g) only.
When πZS(g) is assigned, it is straightforward to show g∗ has at least order O(n)

by conjugacy; when πHyp(g) is assigned, we show the assumption holds by solv-
ing the following polynomial equation,

∂

∂g
log

{
g−a5 exp

(
−a6

g

)(
1 + g

n

)−2}
= 0, for some constants a5, a6 > 0.

Consequently, β∗
γ ′ → pβ t ,∀γ ′ ⊇ γ .

Finally, the following theorem provides a general result of the hyper-g-prior-
based Bayes factor when the regularity conditions are satisfied.

Theorem 1. Under Conditions C1, C2 and C3, the Bayes factors under the
Zellner–Siow prior and the hyper-g/n prior are consistent for variable selection.

The proof of the theorem is given in the Appendix. In the proof of Theorem 1,
we show that, to obtain consistency, the integral with respect to g needs to be a
decreasing function of the sample size n. This condition is satisfied under both the
Zellner–Siow prior and the hyper-g/n prior.

When the true model is not the null model, the integrals with respect to g under
the Zellner–Siow prior and hyper-g/n prior penalize the model fit in a similar
manner, that is, both hyper-g priors lead to more penalty on more complex models.
However, when the true model is the null model, the integral under hyper-g/n prior
tends to penalize the model fit equally regardless of the model complexity, while
the Zellner–Siow prior still penalizes more heavily more complex models. This
difference is illustrated by the simulation study presented in Section 5 and by the
application presented in Section 6.

3 Computation

For the computation of the marginal likelihood of each model, β and g need to
be integrated out numerically. Sabanés Bové and Held (2011) perform such in-
tegration with a two-step approximation procedure (Rue, Martino and Chopin,
2009): First, they compute the integrated likelihood of g by a Laplace approxi-
mation to integrate out the model parameters β . Second, they integrate out g by
Gauss–Hermite quadrature. In contrast, we compare Gauss–Hermite quadrature
and Laplace approximation to integrate out g.
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As mentioned earlier in Section 2, the integrated likelihood of g, f̃ (y|g, γ ),
results from an application of (pγ + 1)-dimensional Laplace approximation. To
integrate out g, Sabanés Bové and Held (2011) first set z = log(g) and then ap-
ply the Gauss–Hermite quadrature approximation (Naylor and Smith, 1982) with
respect to z to obtain the approximate marginal likelihood for model Mγ

f̃1(y|Mγ ) =
N∑

j=1

mjfz(zj ,y|γ ), (3)

where fz(z,y|γ ) = f̃g(y|z, γ )fg(z)|J|g→z is the unnormalized approximate pos-
terior density, z∗ and σ ∗ are respectively, the mode and standard deviation derived
from fz(z,y|γ ), mj = wj exp(t2

j )
√

2σ ∗ are the weights, and zj = z∗ + √
2σ ∗tj

are the nodes, j = 1, . . . ,N .
An alternative approach favored by many authors (e.g., see Liang et al., 2008)

for approximating the marginal likelihood of model Mγ is the univariate Laplace
approximation

f̃2(y|Mγ ) = √
2πσ̂ ∗

z f
(
y|z∗, γ

)
fz

(
z∗)

, (4)

where z∗ is the mode of log(f̃ (y|z, γ )fz(z)), and (σ̂ ∗
z )2 is the negative inverse

second derivative of log(f̃ (y|z, γ )fz(z)). As the sample size n grows large, this
approximation obtains an accuracy of order O(1/n) (Tierney and Kadane, 1986).

Note, the Laplace approximation can be seen as a special case of Gauss–Hermite
quadrature when the number of nodes equals one. Thus, the Laplace approximation
always provides faster computation, while the Gauss–Hermite quadrature always
provides higher accuracy if the target density follows normal distribution. To see
the difference, we have implemented both approximation methods given in equa-
tions (3) and (4) for integrating out g in the simulation study that we present in
Section 4.

Finally, we address the computation of the posterior mode and the precision
of z, which are required by both the Gauss–Hermite quadrature and the Laplace
approximation. While Sabanés Bové and Held (2011) computed these two quanti-
ties by applying the R function optimize and C function dfridr (Press et al., 2007,
p. 231) on the unnormalized log-posterior of z, we opt for a Newton–Raphson
algorithm.

For simple exposition, we drop the subscription of model index if there is no
risk of confusion. Following Bayesian IRLS (West, 1985; Gamerman, 1997), we
have

β∗ = (F + R)−1Fβ̂,

where R = blockdiag(0, (exp(z)φc)−1X′WX) and F denotes the Fisher informa-
tion matrix. As a consequence, the profile likelihood of z becomes

logfz(z,y|γ ) ∝ −1

2
log(F + R) + �

(
β∗) +

(
1 − p

2

)
z − β∗′

Rβ∗

2
+ log

(
π(z)

)
,
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where �(·) denotes the log likelihood density.
Based on this profile likelihood, the explicit expressions of score function and

Hessian matrix for the implementation of the Newton–Raphson algorithm can be
derived as the following,

∂logfz(z,y|γ )

∂z

= 1

2

[
vec

(
(F + R)−1)]T vec(R)

+ (y − μ)T X(F + R)−1R(F + R)−1Fβ̂

− 1

2
β̂

T
F

{
2(F + R)−1R(F + R)−1R(F + R)−1}

Fβ̂

+ 1

2
β̂

T
F

{
(F + R)−1R(F + R)−1}

Fβ̂

+ Q1,

where

Q1 =
{−1

2

(
p + 1 − n exp(−z)

)
if β ∼ Zellner–Siow prior,

−1
2

(
p − 2 + 4

(
1 + n exp(−z)

)−1)
if β ∼ Hyper g/n prior,

∂2logfz(z,y|γ )

∂z2

= 1

2

{[
vec

(
(F + R)−1R(F + R)−1)]T vec(R) − [

vec
(
(F + R)−1)]T vec(R)

}
− β̂

T
F(F + R)−1R(F + R)−1F(F + R)−1R(F + R)−1Fβ̂

+ (y − μ)T X
{
2(F + R)−1R(F + R)−1R(F + R)−1

− (F + R)−1R(F + R)−1}
Fβ̂

− 1

2
β̂

T
F

{
6(F + R)−1R(F + R)−1R(F + R)−1R(F + R)−1}

Fβ̂

+ 1

2
β̂

T
F

{
6(F + R)−1R(F + R)−1R(F + R)−1}

Fβ̂

− 1

2
β̂

T
F

{
(F + R)−1R(F + R)−1}

Fβ̂

+ Q2,

where

Q2 =
{−1

2n exp(−z) if β ∼ Zellner–Siow prior,

−2n exp(z)
(
n + exp(z)

)−2 if β ∼ hyper g/n prior.
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For comparison, we have simulated 1000 datasets from a Poisson regression
model, each with 400 observations and 8 predictors. We compare the proposed
Newton–Raphson algorithm with a combination of the two R routines optimize
and Hessian with griding interval set at (0,10). The computational time of our im-
plementation is on average 20% less than that of using optimize and Hessian. Note
that while optimize and Hessian are coded in C, our implementation is coded in R.
Thus, further computational time reductions may be obtained with a C implemen-
tation of our procedure. Therefore in Sections 4 and 5 we have implemented only
our proposed Newton–Raphson algorithm for finding the mode and precision to be
used in the Laplace approximation and in the Gauss–Hermite quadrature. Lastly,
in practical implementation, to avoid the divergence due to the initial value of z,
we suggest scaling the step size. We have found that a default scale factor of 0.5
works well in practice.

4 Simulation study

To illustrate the performance of the Bayesian variable selection procedures con-
sidered here, we present a Monte Carlo simulation study on two commonly used
GLM classes: the binomial and the Poisson models.

We first consider a logistic model for binomial response such that yi |xi ,

β ∼ Binomial(mi,pi) with logit(pi) = 2 + xT
i β , where we generate mi from the

discrete uniform density on {1,2, . . . ,40}. Under the logit link, W =
diag{m1, . . . ,mn} and c = 4. The second model we consider is a Poisson model
with the log link. We have yi |xi ,β ∼ Poisson(λi) with log(λi) = 2 + xT

i β . Under
log link, W is the identity matrix and c = 1.

Procedures: For each GLM class, we consider two hyper-g-prior-based proce-
dures: the Zellner–Siow’s prior based procedure, denoted by ZS, and the hyper-
g/n prior based procedure, denoted by Hyp. For each procedure, we have imple-
mented Laplace approximation and Gauss–Hermite quadrature for integrating out
the hyperparameter g, and thus we index these two numerical methods by sub-
scription LA and GH, respectively. For the comparison, we consider the standard
default criterion BIC (Schwarz, 1978).

General setting: We fix p = 8 across GLM classes. For each GLM class, we
consider two values of pγ , pγ = 0 and pγ = 3. For each pγ , we consider three
sample sizes n = 30,100 and 400. For each sample size, we perform 1000 Monte
Carlo experiments.

Assessment of performance: We use the highest model posterior probability as
selection criterion. Since we assume all models share the same model prior prob-
ability, selecting the highest model posterior probability is equivalent to selecting
the highest marginal likelihood. For BIC, the criterion is also to select highest
marginal likelihood among competing models, where the BIC-based approximate
marginal likelihood for Mγ is defined by f (y|Mγ ) = exp(−1

2 BIC(γ )) (see Kass
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and Raftery, 1995). For each selection procedure, we measure its performance by
the proportion of Monte Carlo experiments for which the true model is selected as
the best model.

Generating X: We generate p = 8 covariates from the multivariate N(0n, In)

and then apply Gram–Schmidt orthogonalization on the generated covariates such
that XT X is a diagonal matrix with all the diagonal elements being of order n.

Values of βγ : We compare two possible values of βγ , βγ = (1,1,1,0,0,0,0,0)

and βγ = (0.3,0.3,0.3,0,0,0,0,0).
Simulation results: Table 1 summarizes the results under the binomial logistic

model, and Table 2 summarizes the results under the Poisson model.
We begin with the binomial logistic model. In the case of pγ = 3 and βγ =

(1,1,1,0,0,0,0,0), hyper-g prior procedures outperform the BIC across sample
sizes. The LA and GH approximations perform in a similar manner. In the case of
pγ = 3 and βγ = (0.3,0.3,0.3,0,0,0,0,0), BIC performs better at n = 30, but
hyper-g prior procedures perform better as n increases over 100. Again, the LA
and GH approximations perform in a similar manner. In the case of pγ = 0, the ZS
performs similarly to BIC for medium and large sample sizes, slightly outperforms

Table 1 Binomial logistic model: success rate (SR) of selecting the true model as the best model

pγ = 3 pγ = 3
βγ = (1,1,1,0,0,0,0,0) βγ = (0.3,0.3,0.3,0,0,0,0,0) pγ = 0

Sample size Sample size Sample size

Procedure 30 100 400 30 100 400 30 100 400

ZSLA 0.820 0.937 0.964 0.482 0.868 0.910 0.614 0.766 0.875
ZSGH 0.839 0.929 0.965 0.481 0.860 0.888 0.610 0.739 0.870
HypLA 0.804 0.931 0.957 0.482 0.864 0.910 0.504 0.645 0.793
HypGH 0.821 0.920 0.960 0.480 0.853 0.867 0.490 0.622 0.788
BIC 0.695 0.857 0.925 0.502 0.844 0.877 0.593 0.768 0.887

Table 2 Poisson model: success rate (SR) of selecting the true model as the best model

pγ = 3 pγ = 3
βγ = (1,1,1,0,0,0,0,0) βγ = (0.3,0.3,0.3,0,0,0,0,0) pγ = 0

Sample size Sample size Sample size

Procedure 30 100 400 30 100 400 30 100 400

ZSLA 0.949 0.964 0.992 0.773 0.901 0.962 0.893 0.908 0.922
ZSGH 0.947 0.964 0.991 0.775 0.902 0.969 0.880 0.906 0.920
HypLA 0.946 0.962 0.990 0.728 0.869 0.941 0.809 0.884 0.911
HypGH 0.946 0.962 0.990 0.726 0.866 0.941 0.788 0.873 0.907
BIC 0.748 0.854 0.927 0.684 0.833 0.890 0.587 0.762 0.845
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BIC for small sample sizes, and consistently outperforms the Hyp regardless of
sample sizes. In terms of numerical approximations, LA performs considerably
better than GH.

We proceed to discuss the example of Poisson model. For all cases, hyper-g
prior procedures outperform BIC. In particular, ZS outperforms Hyp. In terms
of numerical approximations, the LA and GH approximations perform in similar
manner.

Overall, we recommend the use of the ZSLA since it yields satisfactory frequen-
tist property across different simulation settings at cost of less computational time
than ZSGH .

5 Application: Raccoon-ticks interaction

In this section, we consider a real ecological dataset to investigate whether para-
site infrapopulation size can be associated with certain host, parasite and environ-
mental explanatory variables. An infrapopulation is defined as the population of
parasites on a single host. The data consist of counts of the number of ticks (Der-
macentor variabilis) parasitizing n = 228 raccoons (Procyon lotor) caught within
the central Missouri, USA, with each host observation providing information on
6 variables: total number of ticks, number of replete ticks (that is, ticks that have
consumed a blood meal, which is a necessary step for reproduction), sex ratio of
the tick infrapopulation, host sex, host age, and time of the year when the rac-
coon was caught. For further information on the ecological system, see Monello
and Gompper (2007), Monello and Gompper (2010) and Ruiz-López et al. (2012).
Here, parasite success will be indicated by whether the parasite has fed and is re-
plete. Let mi be the total number of ticks on raccoon i. Further, let yi denote the
number of replete ticks on raccoon i, i = 1, . . . , n. We fit a logistic model with
p = 8 explanatory variables that are described in Table 3. To assess the robustness
with respect to link function, we have also fitted a probit model. Because the results
under the probit and logistic models are similar, for the sake of brevity, we only

Table 3 Description of the variables in the Missouri raccoon parasite dataset

Variables Description

mi Total number of ticks on host i

yi Number of replete ticks on host i

x1 Proportion of male ticks
x2 Sex of host (1 = female, 0 = male)
x3 Season index (from −1 to 1)
x4, x5, x6, x7, x8 Raccoon age indicators, total of 6 groups (x4: youngest group;

x8: 2nd oldest group; oldest group is used as baseline.)
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Table 4 Highest posterior probability models. The symbol ∗ indicates that the corresponding vari-
able is included in the highest posterior probability model

n = 30 n = 100 n = 228

Variables ZSLA HypLA BIC ZSLA HypLA BIC ZSLA HypLA BIC

x1 ∗
x2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
x3
x4 ∗ ∗ ∗
x5 ∗ ∗
x6 ∗ ∗ ∗ ∗ ∗ ∗
x7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
x8 ∗ ∗

present results using the logistic model. In the logistic model, we are interested in
the replete probability pi .

We consider BIC, hyper-g/n-prior-based and Zellner–Siow-prior-based vari-
able selection procedures computed with Laplace approximation. Further, to in-
vestigate the effect of changes of sample size in different variable selection pro-
cedures, we consider two random subsamples of sizes 30 and 100 of the original
dataset, as well as the original sample of size 228. The subsamples have been
restricted to the class of subsamples for which the matrix X′X has full rank. In
addition, to study the effect of accumulation of information, the subsample of size
30 is a subset of the subsample of size 100.

Table 4 displays the variables included in the highest posterior probability
model by BIC, ZSLA, and HypLA, respectively, under different sample sizes. We
can see that when the complete dataset is used, BIC, ZSLA and HypLA all clearly
select variables x2, x6, and x7. Thus we consider the model that includes x2, x6
and x7 as the benchmark model. These results are similar to previous findings that
indicate host sex and age as strong predictors of the number of ticks and replete
ticks on a host (Monello and Gompper, 2007; Monello and Gompper, 2010), and
also shows that among the different age groups, it is parasitism of the oldest indi-
viduals that are especially informative to the patterns of parasitism across the host
population. When the sample size is n = 30, the three procedures coincide by hav-
ing x2 and x7 in their highest posterior probability model. When the sample size
increases to n = 100, HypLA selects x1, x2, x4, x5, x6, x7, and x8, that is, HypLA in-
cludes many more variables than the benchmark model. This undesirable behavior
of the HypLA procedure seems to be a result of a weaker penalty for more complex
models imposed by the hyper-g/n prior. Meanwhile, for n = 100, the BIC selects
x4, x5, x6, x7, and x8, but leaves out the important variable x2 (sex of the host).
Finally, for n = 100, ZSLA selects x2, x4, x6, and x7, which is really close to the
benchmark model. Therefore, the Zellner–Siow-prior-based Bayes factor provides
results that are much more stable across different sample sizes.
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6 Discussion

In this paper, we have shown that under certain mild conditions, the hyper-g-prior-
based Bayes factors proposed by Sabanés Bové and Held (2011) for model selec-
tion in GLMs are consistent. We confirm this consistency result with a simulation
study with both binomial logistic and Poisson models. Under the binomial logistic
model, both hyper-g-prior-based variable selection procedures perform compara-
bly to the BIC for large sample size. Under the Poisson model, both hyper-g-
prior-based variable selection procedures outperform the BIC across sample sizes.
Overall, Zellner–Siow-prior-based procedure provide satisfactory performance in
most cases. In terms of the numerical approximations, both the LA and GH ap-
proximations perform in a similar manner.

Note, although we have two different numerical methods implemented in the
simulation study, we did not study the accuracy of their approximation to the
marginal likelihood. Either the use of Laplace approximation or that of Gauss–
Hermite quadrature for calculating the marginal likelihood have the practical im-
plication of limiting the computation of the integral to the region of the parameter
space closer to the posterior mode. As a consequence, the well-known sensitivity
of the marginal likelihood to the tail behavior of the prior density is greatly re-
duced by either numerical methods. For example, given a regression model, if we
assign a uniform prior on the unknown parameter, the exact marginal likelihood is
undefined. However, an application of Laplace approximation yields the BIC. As
a consequence, we should focus on the variable selection performance instead of
the approximation accuracy.

There are many possible directions for future research. One possible future re-
search area is the study of consistency of hyper-g-prior-based Bayes factors for
GLMs under the large p small n setting, where the number of regressors p is no
longer fixed. Another possible research direction is the development of a Bayes
factor for the case when the dispersion parameter is unknown. In that case, a prior
density would be assigned for the dispersion parameter. An interesting question
would be under what conditions would the resulting Bayes factor be consistent. A
particularly promising research direction is the study of variable selection proce-
dures in the presence of overdispersion.

A possible way to deal with overdispersion is through the use of random effects
in the context of generalized linear mixed models (GLMM). Accordingly, we have
started the study on the application of g priors under the GLMM framework, in-
cluding the study of consistency, and expect to present the results elsewhere in the
future.

Appendix: Proof of Theorem 1

Let C with different numbering of subscription represent distinct constants. Low-
ercase c still denotes the scale factor defined in the Section 2.
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Recall that the Bayes factor for comparing any other model Mγ ′ with the true
model Mγ is

BF
[
γ ′, γ

] = BF[γ ′,N]
BF[γ,N] .

Using Laplace approximation, we can approximate BF[γ ′,N] and have

BF
[
γ ′,N

] = C1

∫ ∞
0

{
exp

[
�
(
β∗

γ ′
) − �

(
β∗

N

)]|Xγ ′WXγ ′ |1/2
( |FN + RN |

|Fγ ′ + Rγ ′ |
)1/2

× g
−pγ ′/2 exp

(
−β∗′

γ ′Xγ ′WXγ ′β∗
γ ′

2gφc

)
π(g)

}
dg

= C2 exp
[
�
(
β∗

γ ′
) − �

(
β∗

N

)]
×

∫ ∞
0

(
1 + 1

g

)−(pγ ′+1)/2

g
−pγ ′/2 exp

(
−B∗

γ ′

2g

)
π(g)dg,

with B∗
γ ′ denoting the quadratic form (β∗′

γ ′Xγ ′WXγ ′β∗
γ ′)/φc. Note, the second

equality follows from Condition C1 and Remark 2.2. Next, for the sake of simplic-
ity, we define

Fa

(
p,B∗, π

) = C3

∫ ∞
a

(
1 + 1

g

)−(p+1)/2

g−p/2 exp
(
−B∗

2g

)
π(g)dg.

Consequently, the Bayes factor BF[γ ′, γ ] becomes

BF
[
γ ′, γ

] = C exp
[
�
(
β∗

γ ′
) − �

(
β∗

γ

)]{F0(pγ ′,B∗
γ ′, π)

F0(pγ ,B∗
γ ,π)

}
.

We organize this proof in two cases: Mγ 	= MNull and Mγ = MNull. Moreover, for
the case Mγ 	= MNull, we consider two subcases: Mγ ⊂ Mγ ′ and Mγ � Mγ ′ .

Case 1. Mγ 	= MNull.
We first show for both the Zellner–Siow prior and the hyper-g/n prior that

F0(pγ ′,B∗
γ ′, π) has order O(n

−pγ ′/2
). The proof is by the squeeze theorem. First,

note that regularity Condition C1 implies that B∗
γ ′ is of order O(n). Therefore, we

can write B∗
γ ′ = ndn where dn = O(1). We now define

Ia(p,n,hn) = C4

∫ ∞
a

g−p/2−1 exp
(
−hnn

2g

)
dg

= C5n
−p/2

(
1 −

∫ ∞
(hnn)/a

tp/2−1e−t dt

)
, a,p ∈ N.

Note that when hn = O(1) then Ia(p,n,hn) = O(n−p/2).
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Then, if the Zellner–Siow prior is used, we have

F0
(
pγ ′,B∗

γ ′, πZS) ≥ F1
(
pγ ′,B∗

γ ′, πZS)
≥ C6

∫ ∞
1

g
−pγ ′/2 exp

(
−B∗

γ ′

2g

)
πZS(g) dg

= C7n
1/2

∫ ∞
1

g
−(pγ ′+1)/2−1 exp

[
−n(dn + 1)

2g

]
dg

= C7n
1/2I1(pγ ′ + 1, n, dn + 1) = O

(
n

−pγ ′/2)
and

F0
(
pγ ′,B∗

γ ′, πZS) ≤ C8

∫ ∞
0

g
−pγ ′/2 exp

(
−B∗

γ ′

2g

)
πZS(g) dg

= C9n
1/2I0(pγ ′ + 1, n, dn + 1) = O

(
n

−pγ ′/2)
.

Therefore, F0(pγ ′,B∗
γ ′, πZS) = O(n

−pγ ′/2
).

Similarly, if the hyper-g/n prior is used, we have

F0
(
pγ ′,B∗

γ ′, πHyp) ≥ Fn

(
pγ ′,B∗

γ ′, πHyp)
≥ C10

∫ ∞
n

g
−pγ ′/2 exp

(
−B∗

γ ′

2g

)
1

n

(
1 + g

n

)−2

dg

≥ C10

∫ ∞
n

g
−pγ ′/2 exp

(
−B∗

γ ′

2g

)
1

n

(
2g

n

)−2

dg

≥ C11n

∫ ∞
n

g
−(pγ ′+2)/2−1 exp

(
−B∗

γ ′

2g

)
dg

= C11nIn(pγ ′ + 2, n, dn) = O
(
n

−pγ ′/2)
and

F0
(
pγ ′,B∗

γ ′, πHyp) ≤ C12

∫ ∞
0

g
−pγ ′/2 exp

(
−B∗

γ ′

2g

)
1

n

(
1 + g
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)−2

dg

≤ C12

∫ ∞
0

g
−pγ ′/2 exp

(
−B∗

γ ′

2g

)
1

n

(
g

n

)−2

dg

= C12nI0(pγ ′ + 2, n, dn) = O
(
n

−pγ ′/2)
.

Therefore, F0(pγ ′,B∗
γ ′, πHyp) = O(n

−pγ ′/2
). Then for both Zellner–Siow and

hyper-g/n priors, the Bayes factor BF[γ ′, γ ] becomes

BF
[
γ ′, γ

] = C13 exp
[
�
(
β∗

γ ′
) − �

(
β∗

γ

)]
O

(
n

−(pγ ′/2−pγ /2))
.

Consider the following two subcases.
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(a) Mγ ⊂ Mγ ′ .
When Conditions C2 and C3 are satisfied and the true model is nested in the

competing model, [�(β∗
γ ′) − �(β∗

γ )] converges to an asymptotic Chi-square dis-
tribution with number of degrees of freedom equal to (pγ ′ − pγ ) (see Ferguson,
1996). Then for both Zellner–Siow and hyper-g/n priors, we have

BF
[
γ ′, γ

] = C14 exp
(
χ2

pγ ′−pγ

)
O

(
n

−(pγ ′/2−pγ /2))
.

Since
pγ ′
2 − pγ

2 > 0, BF[γ ′, γ ] converges to zero.
(b) Mγ �Mγ ′ .
When Conditions C2 and C3 are satisfied but the true model is not nested in the

competing model, exp[�(β∗
γ ′) − �(β∗

γ )] converges to zero exponentially fast with
respect to n, no matter what value (pγ ′ − pγ ) may take. As a consequence, the
Bayes factor BF[γ ′, γ ] converges to zero exponentially fast.

Case 2. Mγ = MNull.
When the true model is the null model, we have Mγ ⊂ Mγ ′ as well as

BF[γ ′, γ ] = BF[γ ′,N]. Moreover, [�(β∗
γ ′) − �(β∗

N)] converges to an asymptotic
Chi-square distribution with pγ ′ degrees of freedom. Further, the Bayes factor
BF[γ ′,N] is determined by F0(pγ ′,B∗

γ ′, π), i.e.,

BF
[
γ ′, γ

] = BF
[
γ ′,N

] = C15 exp
(
χ2

pγ ′
)
F0

(
pγ ′,B∗

γ ′, π
)
.

If the Zellner–Siow prior is used, it is straightforward to show the order of the
integral F0(pγ ′,B∗

γ ′, πZS) is O(n
−pγ ′/2

). In addition, in this case B∗
γ ′ has order

O(1) instead of order O(n). As a consequence, if the hyper-g/n prior is used, we
have

F0
(
pγ ′,B∗

γ ′, πHyp) ≤ C16

∫ ∞
0

(1 + nα)
−pγ ′/2

(1 + α)−2 dα

≤ C17

∫ 1/n

0
(1 + α)−2 dα + C18

∫ 1

1/n
(nα)

−pγ ′/2
dα

+ C19

∫ ∞
1

n
−pγ ′/2

α
−pγ ′/2−2

dα

= O
(
n−1)

,

where α = 1/g. As a result, for both Zellner–Siow prior and hyper-g/n prior, the
Bayes factor BF[γ ′,N] converges to zero.
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