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Abstract. Recently Dutta and Bhattacharya (Statistical Methodology 16
(2014) 100–116) introduced a novel Markov Chain Monte Carlo methodol-
ogy that can simultaneously update all the components of high-dimensional
parameters using simple deterministic transformations of a one-dimensional
random variable drawn from any arbitrary distribution defined on a rele-
vant support. The methodology, which the authors refer to as transformation-
based Markov Chain Monte Carlo (TMCMC), greatly enhances computa-
tional speed and acceptance rate in high-dimensional problems. Two signifi-
cant transformations associated with TMCMC are additive and multiplicative
transformations. Combinations of additive and multiplicative transformations
are also of much interest. In this work, we investigate geometric ergodicity
associated with additive and multiplicative TMCMC, along with their com-
binations, assuming that the target distribution is multi-dimensional and be-
longs to the super-exponential family; we also illustrate their efficiency in
practice with simulation studies.

1 Introduction

It is well known that in high dimensions traditional Markov Chain Monte Carlo
(MCMC) methods, such as the Metropolis–Hastings algorithm, face several chal-
lenges, with respect to computational complexity, as well as with convergence is-
sues. Indeed, Bayesian computation often requires inversion of high-dimensional
matrices in each MCMC iteration, causing enormous computational burden. More-
over, such high-dimensional problems may converge at an extremely slow rate, be-
cause of the complicated posterior dependence among the parameters. This implies
the requirement of an extremely large number of iterations, but since even individ-
ual iterations may be computationally burdensome, traditional MCMC methods do
not seem to be ideally suited for Bayesian analysis of complex, high-dimensional
problems.

In an effort to combat the problems, Dutta and Bhattacharya (2014) proposed a
novel methodology that can update all the parameters simultaneously in a single
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block using simple deterministic bijective transformations of a one-dimensional
random variable (or any other low-dimensional random variables) drawn from
some arbitrary distribution. The idea effectively reduces the high-dimensional
random parameter to a one-dimensional parameter, thus dramatically improving
computational speed and acceptance rate. Details are provided in Dutta and Bhat-
tacharya (2014).

Among the deterministic, bijective transformations, Dutta and Bhattacharya
(2014) recommend the additive and the multiplicative transformations. Here it
is important to mention that the multiplicative transformation is designed to up-
date parameters on the real line, not just on (0,∞), and thus, cannot be repre-
sented as the log-additive transformation. In Sections 1.1 and 1.2, we provide brief
overviews of additive and multiplicative TMCMC, respectively. In Section 1.3, we
briefly explain additive–multiplicative TMCMC, which is a combination of addi-
tive and multiplicative TMCMC.

This paper deals with geometric ergodicity (or geometric rate of convergence)
of the TMCMC chain (both additive and multiplicative, along with their mixtures
of two kinds) to the multi-dimensional stationary distribution. The geometric er-
godicity property, apart from theoretically ensuring convergence of the underly-
ing Markov chain to the stationary distribution at a geometric rate, also ensures
asymptotic stability of a regular family of stochastic estimates through the appli-
cation of the central limit theorem (see Meyn and Tweedie (1993), Chapter 17,
and Jones and Hobert (2001), Section 5.3). The geometric ergodicity of the Ran-
dom Walk Metropolis–Hastings (RWMH) chain is already well documented (see
Mengersen and Tweedie (1996), Roberts and Tweedie (1996), Jarner and Hansen
(2000)). Some extensions of these results to chains with polynomial rates of con-
vergence and specific forms of target densities (for instance, heavy tailed families)
are also available in the literature (Jarner and Roberts (2002, 2007)). In this paper,
we present conditions that guarantee geometric ergodicity of the TMCMC chain
corresponding to both additive and multiplicative moves, when the target distribu-
tion is multi-dimensional. Crucially, we assume that the target distribution belongs
to the super-exponential family. Note that the super-exponential assumption has
also been crucially used by Jarner and Hansen (2000) for proving geometric er-
godicity of RWMH for multi-dimensional target distributions.

While dealing with multiplicative TMCMC, we encounter a technical problem,
which is bypassed by forming an appropriate mixture of additive and multiplica-
tive moves, to which we refer as “essentially fully” multiplicative TMCMC. We
also consider a usual mixture of additive and multiplicative moves. We establish
geometric ergodicity of both kinds of mixtures and demonstrate with simulation
studies that the usual mixture outperforms RWMH, additive TMCMC, as well as
“essentially fully” multiplicative TMCMC.

In Section 2, we give conditions for geometric ergodicity of additive TMCMC.
The approach to establishing geometric ergodicity of the TMCMC chains associ-
ated with multiplicative TMCMC is more complicated and is covered in detail in



572 K. K. Dey and S. Bhattacharya

Section 3. In Section 4, we illustrate the practical implications of our theoretical
results by conducting simulation studies, where we numerically compare conver-
gence issues of the TMCMC approach with that of RWMH, especially in high di-
mensions. In Section 5, we discuss extension of our approach to situations where
the high-dimensional target densities are not in the super-exponential family but
can be dealt with using special techniques, in particular, a diffeomorphism based
method developed by Johnson and Geyer (2012), and conduct detailed simulation
studies in such set-up, demonstrating that TMCMC very significantly outperforms
RWMH that set-up. Concluding remarks are provided in Section 6.

1.1 Additive TMCMC

Suppose that we are simulating from a d dimensional space (usually R
d ), and sup-

pose we are currently at a point x = (x1, . . . , xd). Let us define d random variables
b1, . . . , bd , such that, for i = 1, . . . , d ,

bi =
{+1 with probability pi ;

−1 with probability 1 − pi .
(1)

The additive TMCMC uses moves of the following type:

(x1, . . . , xd) → (x1 + b1ε, . . . , xd + bdε),

where ε ∼ g(1) = q(1)(·)I{ε>0}. Here q(1)(·) is an arbitrary density with support
R+, the positive part of the real line, and for any set A, IA denotes the indicator
function of A. We define T

(1)
b (x, ε) = (x1 + b1ε, . . . , xd + bdε) to be the additive

transformation of x corresponding to the ‘move-type’ b. In this work, we shall
assume that pi = 1/2 for i = 1, . . . , d . Note that the Jacobian of the additive trans-
formations is one.

Thus, a single ε is simulated from q(·)I{ε>0}, which is then either added to, or
subtracted from each of the d co-ordinates of x with probability 1/2. Assuming
that the target distribution is proportional to π , the new move T

(1)
b (x, ε), corre-

sponding to the move-type b, is accepted with probability

α = min
{

1,
π(T

(1)
b (x, ε))

π(x)

}
. (2)

The path diagram for additive TMCMC that displays the possible regions to
which our chain can move to starting from a fixed point, is presented in Figure 1.

In this paper we show, under appropriate and reasonably general assumptions
on π , that additive TMCMC with pi = 1/2; i = 1, . . . , d , is geometrically ergodic
for any finite dimension d .
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Figure 1 Path diagram for additive TMCMC in one step from a fixed point denoted by the circle in
the middle.

1.1.1 Discussion on non-uniform move-type probabilities for additive TMCMC.
For simplicity of illustration, let us assume that pi = p; i = 1, . . . , d . Also, let Y =∑

i:bi=1 bi . Then Y ∼ Binomial(d,p). The acceptance probability is then given by

α = min
{

1,

(
p

1 − p

)Y(1 − p

p

)(d−Y ) π(T
(1)
b (x, ε))

π(x)

}
(3)

= min
{

1,

(
p

1 − p

)(2Y−d) π(T
(1)
b (x, ε))

π(x)

}
.

Now, as d → ∞, (2Y − d)
a.s.∼ (2dp − d) = d(2p − 1), where, for any two ran-

dom sequences {md;d = 1,2, . . .} and {nd;d = 1,2, . . .}, md
a.s.∼ nd indicates

limd→∞ md

nd
= 1, almost surely. Hence, for p �= 1/2, (

p
1−p

)(2Y−d) a.s.→ ∞.
Now note that, for additive TMCMC with a single ε, as d → ∞, the ratio

π(T
(1)
b (x,ε))

π(x)
is expected to converge to zero at a very slow rate. Indeed, it follows

from the supplement of Dutta and Bhattacharya (2014) that under the strong log-
concavity assumption on π , the acceptance rate with these non-uniform move-type
probabilities satisfies the following inequalities as d → ∞:

{
2�

(√
− 2

dMd

log
1 − ψ2

cd

)
− 1

}
≤ ARp ≤

{
2�

(√
− 2

dMd

log
ψ1

cd

)
− 1

}
, (4)

where 0 < ψ1,ψ2 < 1, Md = O(dt ); t > 2, and cd = (
p

1−p
)d(2p−1). For p = 1/2,

we obtain the following asymptotic inequality proved in the supplement of Dutta
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and Bhattacharya (2014)

{
2�

(√
− 2

dMd

log(1 − ψ2)

)
−1

}
≤ AR1/2 ≤

{
2�

(√
− 2

dMd

logψ1

)
−1

}
, (5)

which is a special case of (4). It is shown in the supplement of Dutta and Bhat-
tacharya (2014) that for p = 1/2, as d → ∞, the acceptance rate of additive TM-
CMC tends to zero at a much slower rate compared to that of the normal random
walk Metropolis–Hastings algorithm. In fact, it is easy to see that ARp → 0 as

d → ∞ for any p ∈ (0,1), and quite importantly, it holds that ARp

AR1/2
→ ∞ as

d → ∞. In other words, for high-dimensional target distributions, the additive
TMCMC based acceptance rate can be further improved with non-uniform move
probabilities.

But an increase in acceptance rate does not necessarily lead to faster conver-
gence of the underlying Markov chain. Hence, although higher acceptance rates
are to be expected of additive TMCMC for non-uniform move-type probabilities
in high dimensions, faster rates of convergence may not still be achieved. We re-
serve the investigation of the effects of non-uniform move-type probabilities on
convergence rate for our future research.

1.2 Multiplicative TMCMC

Again suppose that we are simulating from a d dimensional space (say, Rd ), and
that we are currently at a point x = (x1, . . . , xd). Let us now modify the definition
of the random variables b1, . . . , bd , such that, for i = 1, . . . , d ,

bi =
⎧⎨
⎩

+1 with probability pi ;
0 with probability qi ;
−1 with probability 1 − pi − qi .

(6)

Let ε ∼ g(2) = q(2)(·)I{|ε|≤1}. If bi = +1, then xi → xiε, if bi = −1, then
xi → xi/ε and if bi = 0, then xi → xi , that is, xi remains unchanged. Let the
transformed coordinate be denoted by x∗

i . Also, let J (b, ε) denote the Jacobian of

the transformation (x, ε) 	→ (x∗, ε). We denote x∗ by T
(2)
b (x, ε), the multiplicative

transformation (x, ε) 	→ (x∗, ε) associated with the move-type b.
For example, if d = 2, then for b = (1,1), T

(2)
b (x, ε) = (x1ε, x2ε) and the Ja-

cobian is ε2, for b = (−1,−1), T
(2)
b (x, ε) = (x1/ε, x2/ε) and |J (b, ε)| = ε−2. For

b = (1,−1), b = (−1,1), and b = (0,0), T
(2)
b (x, ε) = (x1ε, x2/ε), (x1/ε, x2ε),

and (x1, x2), respectively, and in all these three instances, |J (b, ε)| = 1. For
b = (1,0) and b = (0,1), T

(2)
b (x, ε) = (x1ε, x2) and T

(2)
b (x, ε) = (x1, x2ε), re-

spectively, and in both these cases |J (b, ε)| = |ε|. For b = (−1,0) or b = (0,−1),
T

(2)
b (x, ε) = (x1/ε, x2) and (x1, x2/ε), respectively, and the Jacobian is |ε|−1 in

both these cases.
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Figure 2 Path diagram for multiplicative TMCMC in one step from a fixed point denoted by the
circle.

In general, the transformation of the ith coordinate is given by xiε
bi and the

Jacobian is given by |ε|∑d
i=1 bi .

The path diagram for multiplicative TMCMC that displays the possible range
of values that our chain can move to starting from a fixed point is presented in
Figure 2.

In this paper, for our purpose, we assume that pi = qi = 1/3; i = 1, . . . , d . Then
assuming that the target distribution is proportional to π , the new move T

(2)
b (x, ε)

is accepted with probability

α = min
{

1,
π(T

(2)
b (x, ε))

π(x)

∣∣J (b, ε)
∣∣}. (7)

1.2.1 Discussion on non-uniform move-type probabilities for multiplicative TM-
CMC. For simplicity of illustration, let us assume that pi = p and qi = q , for i =
1, . . . , d . Also, let Y =∑

i:bi=1 bi , and Z =∑
i:bi=0 bi . Then Y ∼ Binomial(d,p),

and Z ∼ Binomial(d, q). The acceptance probability is then given by

α = min
{

1,

(
p

1 − p − q

)Y(1 − p − q

p

)(d−Y−Z) π(T
(1)
b (x, ε))

π(x)

}
(8)

= min
{

1,

(
p

1 − p − q

)(2Y+Z−d) π(T
(1)
b (x, ε))

π(x)

}
.
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As d → ∞, (2Y + Z − d)
a.s.∼ d(2p + q − 1). If 2p + q > 1, then p > (1 − q)/2,

so that 1 − p − q < (1 − q)/2. Hence, p/(1 − p − q) > 1, implying that
(

p
1−p−q

)(2Y+Z−d) a.s.→ ∞. If, on the other hand 2p + q < 1, then p < (1 − q)/2,
and 1 − p − q > (1 − q)/2, implying p/(1 − p − q) < 1. Again, this im-
plies (

p
1−p−q

)(2Y+Z−d) a.s.→ ∞. In contrast with additive TMCMC, for multiplica-
tive TMCMC the asymptotic form of the acceptance rate is not available yet,
even for strongly log-concave target distributions. However, it is clear that for
2p + q �= 1, the acceptance rate is asymptotically much higher than that associ-
ated with 2p + q = 1.

Although for convenience of presentation we prove geometric ergodicity of
multiplicative TMCMC assuming pi = p = 1/3 and qi = q = 1/3; i = 1, . . . , d ,
the steps of our proofs remain the same for any other 0 < p,q < 1, satisfying
2p + q = 1 (note that for such p,q , p + q = (1 + q)/2 < 1 is automatically satis-
fied). We reserve the cases 2p + q �= 1 for our future investigation.

Apart from additive and multiplicative TMCMC we also consider appropriate
geometric ergodic mixtures of additive and multiplicative TMCMC, which not
only help bypass a somewhat undesirable theoretical assumption regarding the
high-dimensional target density π , but as simulation studies demonstrate, appro-
priate mixtures of additive and multiplicative TMCMC also ensure faster conver-
gence compared to individual additive TMCMC and individual multiplicative TM-
CMC.

1.3 Additive-multiplicative TMCMC

Dutta and Bhattacharya (2014) described another TMCMC algorithm that uses the
additive transformation for some co-ordinates of x and the multiplicative trans-
formation for the remaining coordinates. Dutta and Bhattacharya (2014) refer to
this as additive–multiplicative TMCMC. Let the target density π be supported on
R

d . Then, if the additive transformation is used for the ith coordinate, we update
xi to xi + biε1, where bi is defined by (1), and ε ∼ g(1). On the other hand, if
for any co-ordinate xj , the multiplicative transformation is used, then we simu-
late bj following (6), simulate ε2 ∼ g(2), and update xj to either xj ε2 or xj/ε2
accordingly as bj = +1 or −1. If bj = 0, then we leave xj unchanged. The new
proposal is accepted with probability having the same form as (7). Note that unlike
the cases of additive TMCMC and multiplicative TMCMC, which use a single ε

to update all the d coordinates of x, here we need two ε’s: ε1 and ε2, to update the
d co-ordinates.

The proof of geometric ergodicity of additive–multiplicative TMCMC is almost
the same as that of multiplicative TMCMC, and hence we omit it from this paper.

1.4 Geometric ergodicity

Let P be the transition kernel of a ψ-irreducible, aperiodic, positive Harris recur-
rent Markov chain with the stationary distribution π . Then the chain is geometri-
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cally ergodic if there exist a function V ≥ 1 which is finite at least at one point,
and constants 0 < ρ < 1 and M < ∞ satisfying∥∥P n(x, ·) − π(·)∥∥TV ≤ MV (x)ρn ∀n ≥ 1, (9)

where ‖μ‖TV = supg:|g|≤V μ(g) denotes the total variation norm. A standard way
of checking geometric ergodicity is a result that involves small sets and the ‘geo-
metric drift condition’. A set E is called small if there exists m > 0, δ > 0 and a
probability measure ν such that for x ∈ E,

P m(x, ·) ≥ δν(·). (10)

P is said to have geometric drift to a small set E if there is a function V ≥ 1,
finite for at least one point, and constants λ < 1 and ζ < ∞ so that

PV (x) ≤ λV (x) + ζ IE(x), (11)

where PV (x) = ∫
V (y)P (x, y) dy is the expectation of V after one transition

given that one starts at the point x, and IE(x) = 1 if x ∈ E and 0 otherwise, is
the indicator function. Theorems 14.0.1 and 15.0.1 in Meyn and Tweedie (1993)
establish the fact that if P has a geometric drift to a small set E, then under cer-
tain regularity conditions, P is π -almost everywhere geometrically ergodic and
the converse is also true.

We now provide necessary and sufficient conditions in favour of (11); the result
can be thought of as an adaptation of Lemma 3.5 of Jarner and Hansen (2000).

Lemma 1.1. Assume that the Markov transition kernel P is associated with addi-
tive, multiplicative, or additive–multiplicative TMCMC. If there exists V such that
V ≥ 1 and finite on bounded support, such that the following hold

lim sup
‖x‖→∞

PV (x)

V (x)
< 1 and (12)

PV (x)

V (x)
< ∞ ∀x, (13)

then V satisfies the geometric drift condition (11) and hence the chain must be
geometrically ergodic. Also, if for some V finite, the geometric drift condition is
satisfied, then the above conditions must also hold true.

Proof. Assume that for some V finite and V ≥ 1, the geometric drift condition
(11) is satisfied. Now, dividing both sides by V (x), we get

PV (x)

V (x)
≤ λ + ζ

IE(x)

V (x)
.

Since V is finite, then given that V ≥ 1, we have

PV (x)

V (x)
≤ λ + ζ < ∞.
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Also if ‖x‖ → ∞ then as E is a bounded small set, IE(x) → 0, and hence

lim sup
‖x‖→∞

PV (x)

V (x)
≤ λ < 1.

For the converse, let us fix a value γ < 1. Let R be particularly large so that if
‖x‖ > R, then

PV (x)

V (x)
< γ if ‖x‖ > R ⇒ PV (x) < γV (x) if ‖x‖ > R.

Since

PV (x) ≤ PV (x)

V (x)
V (x),

and since PV (x)
V (x)

is finite by hypothesis (13) and the function V is also finite on
any bounded set, this implies that PV (x) is finite on E = {x : ‖x‖ ≤ R}, which is
closed and bounded.

Take ζ to be the maximum value (which must be finite) that PV (x) can attain
on the set E. In the supplement of Dutta and Bhattacharya (2014) it is shown that
for additive TMCMC, sets of the form E = {x : ‖x‖ ≤ R} are small. Defining

V = {
(v1, . . . , vd) ∈ R

d : vi = 0 for at least one i ∈ {1, . . . , d}}, (14)

in the Appendix we will show that compact subsets of Rd\V , which we denote by
E∗, are small for multiplicative TMCMC; the same result also holds for additive–
multiplicative TMCMC. Hence, for all x, if E is either E or E∗,

PV (x) ≤ γV (x) + ζ IE(x).

This proves the lemma. �

So, in order to check geometric ergodicity, it is enough to prove (12) and (13)
for the given chain.

2 Geometric ergodicity of additive TMCMC

We shall now provide necessary and sufficient conditions for geometric ergodicity
for additive TMCMC for a broad class of distributions. This proof follows on the
lines of Jarner and Hansen (2000) and has been suitably modified for our additive
TMCMC case. First, we define the notion of super-exponential densities.

A density π is said to be super-exponential if it is positive with continuous first
derivative and satisfies

lim‖x‖→∞n(x)′∇ logπ(x) = −∞, (15)
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where n(x) denotes the unit vector x
‖x‖ . This would imply that for any K > 0,

∃ R > 0 such that

π(x + cn(x))

π(x)
≤ e−cK ; ‖x‖ ≥ R,c ≥ 0. (16)

In words, the above definition entails that π is decaying at a rate faster than ex-
ponential along any direction. It is very easy to check that the Gaussian (univariate
as well as multivariate for any variance covariance matrix) or the Gamma distribu-
tions (univariate or independent multivariate) indeed satisfy these conditions.

Let the acceptance region and the (potential) rejection region correspond-
ing to the move-type b be defined by A(1)(b, x) = {ε : π(T

(1)
b (x, ε)) ≥ π(x)}

and R(1)(b, x) = {ε : π(T
(1)
b (x, ε)) < π(x)}, respectively. Also, let A(1)(x) =⋃

b1,...,bd
A(1)(b, x) and R(1)(x) = ⋂

b1,...,bd
R(1)(b, x) denote the overall accep-

tance region and the overall potential rejection region, respectively.
Let Q(1)(x,B) denote the probability corresponding to the additive TMCMC

proposal of reaching the Borel set B from x in one step. Let P (1) denote the
Markov transition kernel associated with additive TMCMC. Then the follow-
ing theorem establishes geometric ergodicity of additive TMCMC in the super-
exponential set-up.

Theorem 2.1. If the target density π is super-exponential and has contours that
are nowhere piecewise parallel to {x : |x1| = |x2| = · · · = |xd |}, then the additive
TMCMC chain satisfies geometric drift if and only if

lim inf‖x‖→∞Q(1)(x,A(1)(x)
)
> 0. (17)

Proof.
Following the notation of Jarner and Hansen (2000), let Cπ(x) be the contour of

the density π corresponding to the value π(x). We define the radial cone Cπ(x)(δ)

around Cπ(x) to be

Cπ(x)(δ) = {
y + sn(y) : y ∈ Cπ(x),−δ < s < δ

}
. (18)

See Figure 1 of Jarner and Hansen (2000) for visualizing these regions in two
dimensions.

By (17), there exists a η > 0 such that

lim sup
‖x‖→∞

Q(1)(x,R(1)(x)
)≤ 1 − 2η1/2. (19)

Take the belt length δ such that the probability that a move from x, the starting
point, falls within this δ belt is less than η. That it is possible can be seen as follows.
Note that there exists a compact set E such that

Q(1)(x,Ec)<
η

2
. (20)
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So, for given δ, if we can ensure that our proposal distribution satisfies

Q(1)(x,Cπ(x)(δ) ∩ E
)
<

η

2
, (21)

then we are done. Note that for any point on the contour, the probability that the
additive TMCMC moves result in a value within Cπ(x)(δ) is bounded above by
2cδ, for some finite c (since this probability is 2

∫ δ
0 g(ε) dε ≤ 2cδ, as g(ε) ≤ c on

(0, δ), for 0 < c < ∞) and thus can be made as small as desired by choosing δ

sufficiently small. The above argument is easy to visualize in two dimensions as
depicted in Figure 1 and Figure 1 of Jarner and Hansen (2000)—for any point in
the first quadrant part of the contour, the probability that the outer and inner TM-
CMC moves given, respectively, by (+ε,+ε) and (−ε,−ε), land within Cπ(x)(δ),
is bounded above by 2cδ. The same argument applies to the other three quadrants.
For the other moves, note that since the contours (intersected with E) are nowhere
piecewise parallel to {x : |x1| = · · · = |xd |}, the moves can fall in only finite num-
ber of regions of Cπ(x)(δ) ∩ E. Infinitely many regions can be ruled out because
of the intersection with E, which is compact. If that was the case, then this infinite
collection of interesting points would have a limit point in E, which is not possible
as the points are isolated.

Now, there exists Rη so that for any point y outside the δ bound around x and
in the rejection region, it holds that

π(y)

π(x)
< η; ‖x‖ > Rη. (22)

This can be seen by taking the shortest line from y to the origin; suppose it in-
tersects (after extending if needed) the contour Cπ(x) at z. There will be two such
values of z, and we choose the one that is nearest to x. Then, by (16) and the fact
that π(x) is the same as π(z) (since x and z are on the same contour), we obtain
(22). To ensure that this z indeed satisfies ‖z‖ > Rη, consider the set E, which is
the set where effectively all the moves fall. Join each point in E to the origin by a
straight line and extend it if needed to intersect the contour; consider those points
of intersections which are closest to x. The points of intersections yield a segment,
D(x), of the contour, which contains x and is bounded and closed. Now since this
set is bounded, we can always choose x with large enough norm so that all the
points in E associated with D(x) have norms greater than Rη. Since z is one of
such points, we are done.

On the other hand, if y is outside the δ bound around x but falls in the acceptance
region, then by the same arguments it holds that

π(x)

π(y)
< η. (23)
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Now, with V (x) = c√
π(x)

for some c > 0 chosen appropriately, it holds that

P (1)V (x)

V (x)
= 1

2d

∑
b1,...,bd

∫
A(1)(x)

[
π(x1, . . . , xd)

π(x1 + b1ε, . . . , xd + bdε)

]1/2

g(1)(ε) dε

+ 1

2d

∑
b1,...,bd

∫
R(1)(x)

[
1 − π(x1 + b1ε, . . . , xd + bdε)

π(x1, . . . , xd)
(24)

+
{
π(x1 + b1ε, . . . , xd + bdε)

π(x1, . . . , xd)

}1/2]
g(1)(ε) dε.

We split the integrals over A(1)(x) and that over R(1)(x) into two parts—within
Cπ(x)(δ) and outside Cπ(x)(δ). Since π(x1,...,xd )

π(x1+b1ε,...,xd+bdε)
< 1 on A(1)(x), it follows

from (20) and (21) that∫
A(1)(x)∩Cπ(x)(δ)

[
π(x1, . . . , xd)

π(x1 + b1ε, . . . , xd + bdε)

]1/2

g(1)(ε) dε <
η

2
. (25)

Now note that∣∣∣∣‖xn + bε‖2

‖xn‖2 − 1
∣∣∣∣≤ 2ε|b′xn|

‖xn‖2 + dε2

‖xn‖2

(26)

≤ 2ε

‖xn‖ + dε2

‖xn‖2

(
since

∣∣b′xn

∣∣≤√
‖b‖2‖xn‖2 = ‖xn‖).

Let Nε denote a null set associated with the probability distribution of ε.
Then for all ω ∈ N c

ε such that ε(ω) ∈ E, for any compact set E, (26) goes to
zero. That is, for ω ∈ N c

ε ∩ ε−1(E), ‖xn+bε‖
‖xn‖ → 1. Thus, for n > N0(η2(ω)) for

some N0(η2(ω)) depending upon η2(ω) such that ‖xn‖ >
Rη

1−η2(ω)
> Rη, since

1 + η2(ω) >
‖xn+bε‖

‖xn‖ > 1 − η2(ω) for ω ∈N c
ε ∩ ε−1(E), we have

‖xn + bε‖ >
(
1 − η2(ω)

)‖xn‖ > Rη. (27)

Note that for any given ζ > 0, we can choose Eζ such that Q(1)(x,Ec
ζ,x,b) < ζ , for

any x and b, where Ec
ζ,x,b = {x + bε : ε ∈ Ec

ζ }. Thus, we can choose ζ > 0 such
that

Q(1)(x,A(1)(x) ∩ Cc
π(x)(δ) ∩ Ec

ζ,x,b

)
<

η1/2

2
Q(1)(x,A(1)(x)

)
. (28)

Now, it follows from (27) and (23) that for given η > 0, we can choose Rη such
that for ‖x‖ > Rη, π(x1,...,xd )

π(x1+b1ε,...,xd+bdε)
<

η
4 . Hence,∫

A(1)(x)∩Cc
π(x)(δ)∩Eζ,x,b

[
π(x1, . . . , xd)

π(x1 + b1ε, . . . , xd + bdε)

]1/2

g(1)(ε) dε

(29)

<
η1/2

2
Q(1)(x,A(1)(x)

)
.
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Also, since π(x1,...,xd )
π(x1+b1ε,...,xd+bdε)

< 1 on A(1)(x), it follows from (28) that

∫
A(1)(x)∩Cc

π(x)(δ)∩Ec
ζ,x,b

[
π(x1, . . . , xd)

π(x1 + b1ε, . . . , xd + bdε)

]1/2

g(1)(ε) dε

(30)

<
η1/2

2
Q(1)(x,A(1)(x)

)
.

Thus, for ‖x‖ > Rη, it follows from (29) and (30) that

∫
A(1)(x)∩Cc

π(x)(δ)

[
π(x1, . . . , xd)

π(x1 + b1ε, . . . , xd + bdε)

]1/2

g(1)(ε) dε

(31)
< η1/2Q(1)(x,A(1)(x)

)
.

Now note that on R(1)(x), 1 − π(x1+b1ε,...,xd+bdε)
π(x1,...,xd )

< 1, so that
∫
R(1)(x)

[
1 − π(x1 + b1ε, . . . , xd + bdε)

π(x1, . . . , xd)

]
g(1)(ε) dε < Q(1)(x,R(1)(x)

)
. (32)

For the integral
∫
R(1)(x)

π(x1+b1ε,...,xd+bdε)
π(x1,...,xd )

g(1)(ε) dε, breaking up R(1)(x) into

R(1)(x) ∩ Cπ(x)(δ) and R(1)(x) ∩ Cc
π(x)(δ) we obtain, in exactly the same way

as (25) and (31), the following:∫
R(1)(x)

[
π(x1 + b1ε, . . . , xd + bdε)

π(x1, . . . , xd)

]1/2

g(1)(ε) dε

(33)
<

η

2
+ η1/2Q(1)(x,R(1)(x)

)
,

for ‖x‖ > Rη. Combining (25), (31), (32) and (33), we obtain

P (1)V (x)

V (x)
< η + η1/2Q(1)(x,A(1)(x)

)+ (
1 + η1/2)Q(1)(x,R(1)(x)

)
(34)

= η + η1/2 + Q(1)(x,R(1)(x)
)
.

Using (19), we obtain

lim sup
‖x‖→∞

PV (x)

V (x)
< η + η1/2 + lim sup

‖x‖→∞
Q(1)(x,R(1)(x)

)

= 1 − η1/2 + η

< 1.

Thus, (12) is satisfied. Since all the ratios in the integrals of (24) are less than 1, it
is clear that P (1)V (x)/V (x) < ∞ for all x, satisfying (13). This proves geometric
ergodicity of additive TMCMC.
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Now we prove that if additive TMCMC is geometrically ergodic, then (17)
is satisfied. In fact, we prove that if condition (17) is not satisfied, that is, if
lim sup‖x‖→∞Q(1)(x,R(1)(x)) = 1, then lim sup‖x‖→∞P (1)(x, {x}) = 1. Indeed,
it follows from Theorem 5.1 of Roberts and Tweedie (1996) that the latter condi-
tion implies that P (1) is not geometrically ergodic.

We can choose a compact set E such that Q(1)(x,Ec) < η and can choose δ

small enough such that lim sup‖x‖→∞Q(1)(x,Cπ(x)(δ)∩E) ≤ η. This and the fact
(22) imply that

lim sup
‖x‖→∞

P (1)(x, {x})

≥ lim sup
‖x‖→∞

1

2d

∑
b1,...,bd

∫
R(1)(x)

[
1 − π(x1 + b1ε, . . . , xd + bdε)

π(x1, . . . , xd)

]
g(1)(ε) dε

≥ lim sup
‖x‖→∞

1

2d

∑
b1,...,bd

∫
R(1)(x)∩E∩[Cπ(x)(δ)]c

[
1 − π(x1 + b1ε, . . . , xd + bdε)

π(x1, . . . , xd)

]

× g(1)(ε) dε

≥ (1 − η) lim sup
‖x‖→∞

Q
(
x,R(1)(x) ∩ E ∩ [

Cπ(x)(δ)
]c)

≥ (1 − η)(1 − 2η).

Since η > 0 is arbitrary, the proof is complete. �

Note that for spherically symmetric super-exponential distributions (for exam-
ple, standard Gaussian), the conditions of Theorem 2.1 naturally hold. For in-
stance, the fact that no part of the contour is parallel to {x : |x1| = |x2| = · · · = |xd |}
is quite obvious. To check that lim inf‖x‖→∞Q(1)(x,A(1)(x)) > 0, first perceive
(see Figure 3) that at any point in the first quadrant, the inward direction stays in
the acceptance region if the magnitude of the inward direction does not exceed the

Figure 3 A contour of a spherically symmetric distribution. Here x is the current state lying on
the contour (first quadrant), and the four directions that can be taken by the next move of additive
TMCMC, are displayed. Here p = q = 1/2 are the move-type probabilities.
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diameter of the contour containing x. However, the inward direction can land in
the rejection region on the other side of the contour if the magnitude of the inward
direction exceeds the diameter of the contour Cπ(x). Since ‖x‖ is the radius of
Cπ(x), in order to ensure that the inward move falls in A(1)(x) with high probabil-
ity when ‖x‖ is large, we must choose the proposal density g(1)(ε) in such a way
that too large step sizes compared to ‖x‖, have small probabilities. Thus, for our

purpose, first let Mη be such that
∫Mη

0 g(1)(ε) dε > 1 − η. Now choose x such that
‖x‖ > 3Mη (radius of Cπ(x) is greater than 3Mη). Then Q(1)(x,A(1)(x)) >

1−η
4 >

0. Now consider any sequence xn with ‖xn‖ → ∞, where xn has norm greater than
3Mη for all but finite n. Then along this sequence, the limit of Q(1)(x,A(1)(x)) is
greater than 1−η

4 . Thus, lim inf‖x‖→∞Q(1)(x,A(1)(x)) > 0 condition is satisfied.
Note that the constraint that no part of the contour can be piecewise parallel

to {x : |x1| = · · · = |xd |} does not really cause too much of a problem because the
only common distribution that satisfies this property is the Laplace distribution and
it is not super-exponential.

3 Geometric ergodicity of multiplicative TMCMC

In the one-dimensional case, geometric ergodicity of multiplicative TMCMC has
been established by Dutta (2012), assuming that the target density is regularly
varying in an appropriate sense. Here we extend the result to arbitrary dimensions,
of course without the aid of the regularly varying assumption, since such an as-
sumption is not well-defined in high dimensions. Note however, that since vectors
v ∈ V (where V is defined in (14)), cannot belong to small sets associated with
multiplicative TMCMC, to prove geometric ergodicity we also need to show that
lim sup‖x−v‖→0P

(2)V (x)/V (x) < 1 for all v ∈ V . This seems to be too demanding
a requirement. In the one-dimensional case, 0 is the only point which cannot be-
long to small sets, and the proof of geometric ergodicity in this case requires show-
ing lim sup|x|→0P

(2)V (x)/V (x) < 1. This has been established by Dutta (2012),
however, the technique of his proof could not assist us in our complicated, high-
dimensional case.

If one has the liberty to assume, in the high-dimensional case, that there is an
arbitrarily small, compact neighborhood N0, of 0 = (0,0, . . . ,0)′, which has zero
probability under the target density π , then the proof of lim sup‖x−v‖→0P

(2)V (x)/

V (x) < 1 for all v ∈ V is not required. Although for practical purposes this is not
a very stringent assumption, from the theoretical standpoint this is somewhat dis-
concerting. In the next subsections, we introduce two different kinds of geometric
ergodic mixtures of additive and multiplicative TMCMC kernels that do not re-
quire the undesirable assumption π(N0) = 0. The first mixture we introduce is
essentially multiplicative TMCMC in a sense to be made precise subsequently,
whereas the second mixture is a straightforward convex combination of additive
and multiplicative TMCMC kernels.
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3.1 A new mixture-based Markov transition kernel with “essentially full”
weight on multiplicative TMCMC

We break up π into a mixture of two densities: π1, supported on N0, and π2,
supported on N

c
0. That is, we write

π(x) = π(N0)
π(x)

π(N0)
I {x ∈ N0} + π

(
N

c
0
) π(x)

π(Nc
0)

I
{
x ∈ N

c
0
}

(35)
= π(N0)π1(x) + π

(
N

c
0
)
π2(x),

where

π1(x) = π(x)

π(N0)
I {x ∈ N0} and π2(x) = π(x)

π(Nc
0)

I
{
x ∈ N

c
0
}
. (36)

Clearly, π2(N0) = 0. In fact, as we elaborate below, the above mixture representa-
tion transfers the requirement π(N0) = 0 to π2(N0) = 0.

Now consider the following Markov chain: for any x ∈ R
d and A ∈ B(Rd), with

B(Rd) being the Borel σ -field of Rd ,

P(x,A) = π(N0)P
(1)(x,A) + π

(
N

c
0
)
P (2)(x,A), (37)

where P (1)(x, ·) and P (2)(x, ·) are Markov transition kernels corresponding to ad-
ditive TMCMC converging to π1 and multiplicative TMCMC converging to π2,
respectively. We choose the proposal density g(2) for multiplicative TMCMC such
that there is a one-dimensional, arbitrarily small neighborhood of 0 which receives
zero probability under g(2). We denote the one-dimensional neighborhood of 0 by
N0. We also assume that there exist arbitrarily small neighborhoods N+1 and N−1
of +1 and −1 respectively, which receive zero probability under g(2).

In order to implement the mixture kernel P , we can separately run two chains—
one is additive TMCMC converging to π1 and another is multiplicative TMCMC
converging to π2, both chains starting at the same initial value x0. Since both the
chains are positive Harris recurrent on R

d\V (P (1) is positive Harris recurrent on
R

d and P (2) is positive Harris recurrent on R
d\V) convergence to both π1 and π2

occurs for the initial value x0 ( �= 0), even though the supports of π1 and π2 are
disjoint. In practice, it will be convenient to choose x0 from the boundary between
N0 and N

c
0. Thus, for any initial value x0, we will have an additive TMCMC chain

{x(k)
1 ;k = 0,1,2, . . .} converging to π1 and another multiplicative TMCMC chain

{x(k)
2 ;k = 0,1,2, . . .} converging to π2, with x

(0)
1 = x

(0)
2 = x0.

Finally, for each k = 1,2, . . . , we select and store x
(k)
1 with probability π(N0)

and x
(k)
2 with probability [1 − π(N0)]. Thus, for k > 1, the chain {P (1)}k depends

only on x
(k−1)
1 , and not on x

(k−1)
2 . Similarly, {P (2)}k depends only on x

(k−1)
2 and

not on x
(k−1)
1 .
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Thus, the mixture P uses additive TMCMC to simulate only from π1, and uses
multiplicative TMCMC to simulate only from π2. Since π(N0) is negligibly small,
the mixture P gives “essentially full” weight to multiplicative TMCMC.

If we can prove that P (2) is geometrically ergodic for π2, then because P (1) is
geometrically ergodic for π1 (in fact, uniformly ergodic for π1 since the support
N0 of π1 is compact), it will follow that P itself is geometrically ergodic. See
Appendix B for a proof of this statement.

Note that π(N0) is unknown and needs to be estimated for implementing P . In
Appendix C, we present an importance sampling based idea regarding this, also
demonstrating why the estimated probability is expected to yield the same TM-
CMC samples as the exact value of π(N0).

The mixture kernel P given by (37) is designed to give almost full weight to
multiplicative TMCMC. It is also possible to consider a more conventional mix-
ture of additive and multiplicative TMCMC, which is also geometrically ergodic
but combines the good features of both the algorithms to yield a more efficient TM-
CMC sampler, and does not require estimation of π(N0). In the next subsection,
we discuss this in detail, also elucidating how (37) differs from the combination of
additive and multiplicative TMCMC in a traditional mixture set-up.

3.2 Combination of additive and multiplicative TMCMC in a traditional
mixture set-up

Instead of (37), we could define a mixture of the form

P ∗(x,A) = pP (1)(x,A) + (1 − p)P (2)(x,A), (38)

where 0 < p < 1 is any choice of mixing probability. The transition kernels
P (1)(x, ·) and P (2)(x, ·), as before, are additive and multiplicative TMCMC, re-
spectively, but here each of them converges to the target density π , unlike the case
of (37) where P (1)(x, ·) converged to π1 and P (2)(x, ·) converged to π2.

For the implementation of P ∗, one can first simulate u ∼ U(0,1); if u < p,
then additive TMCMC will be implemented, else multiplicative TMCMC should
be used. Thus, unlike the case of (37), we have a single chain {x(k);k = 0,1,2, . . .}
converging to π . Note also, that P ∗ implements both additive and multiplicative
TMCMC on the entire support of π . In contrast, P , given by (37), implements
additive TMCMC only for π1, which is supported on N0 and implements multi-
plicative TMCMC only for π2, which is supported on N

c
0.

Recall that, in Section 2, we have already shown, for V (x) = c/
√

π(x), that

lim sup‖x‖→∞ P (1)V (x)
V (x)

< 1 and that the ratio P (1)V (x)
V (x)

is finite for all x. For the

same function V if we can also prove that lim sup‖x‖→∞ P (2)V (x)
V (x)

< 1, and that

the ratio P (2)V (x)
V (x)

is finite for all x, then it follows that the mixture P ∗ is also
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geometrically ergodic. Indeed,

lim sup
‖x‖→∞

P ∗V (x)

V (x)
≤ p lim sup

‖x‖→∞
P (1)V (x)

V (x)
+ (1 − p) lim sup

‖x‖→∞
P (2)V (x)

V (x)

< p + (1 − p) = 1,

and v ∈ V can be a limit point of small sets corresponding to P ∗, since P ∗(x,A) ≥
pP (1)(x,A) for all x and all A ∈ B(Rd), and all compact sets of Rd are small sets
of P (1).

3.3 Distinctions between the roles of P (2) in P and P ∗

3.3.1 Geometric ergodicity of P requires geometric ergodicity of P (2). The
proof of geometric ergodicity of the essentially fully multiplicative mixture P

will follow if we can show that P (2) is geometrically ergodic for π2, where
π2(N0) = 0 by construction. Theorem 3.1 provides necessary and sufficient con-
ditions for geometric ergodicity of P (2) under the super-exponential set-up, as-
suming π2(N0) = 0, and that the proposal density g(2) gives zero probability to
arbitrarily small compact neighborhoods of 0, −1 and +1. Since it is always pos-
sible to construct a proposal density g(2) with the requisite properties, the strategy
of forming the mixture P is not restrictive, given the super-exponential set-up.

3.3.2 Geometric ergodicity of P ∗ does not require geometric ergodicity of P (2)

or the restriction π(N0) = 0. Geometric ergodicity of the traditional mixture P ∗,

on the other hand, follows only if lim sup‖x‖→∞ P (2)V (x)
V (x)

< 1 and P (2)V (x)
V (x)

is fi-
nite for all x; it does not require π(N0) = 0, π being the invariant target distri-
bution for both P (1) and P (2) of P ∗. That the former two conditions hold under
the aforementioned assumptions, without the restriction π(N0) = 0, can be easily
seen in the proof of Theorem 3.1. The implication is that, super-exponentiality of
π and the aforementioned properties of the proposal distribution g(2) guarantee
geometric ergodicity of P ∗, even though P (2) does not individually converge to its
invariant distribution π because the proposal density g(2) assigns zero probability
to some arbitrarily small compact neighborhood of 0 (in the first place, the fact
that P ∗ converges to π is clear because of irreducibility, aperiodicity and positive
Harris recurrence of P ∗). As before, assumption of such proposal density g(2) is
not restrictive, and hence the strategy of forming the mixture P ∗ is not restrictive
either, given the super-exponential set-up.

In the next section, we introduce our theorem characterizing geometric ergod-
icity of P (2).

3.4 Geometric ergodicity of P (2) for π2

For multiplicative TMCMC, for a given move-type b, we define the acceptance re-

gion and the potential rejection region by A(2)(b, x) = {ε : π(T
(2)
b (ε))

π(x)
|J (b, ε)| ≥ 1}
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and R(2)(b, x) = {ε : π(T
(2)
b (ε))

π(x)
|J (b, ε)| < 1}, respectively. The overall acceptance

region and the overall potential rejection region are A(2)(x) =⋃
b1,...,bd

A(2)(b, x)

and R(2)(x) = ⋂
b1,...,bd

R(2)(b, x), respectively. We also define A∗(b, x) = {ε :
π(T

(2)
b (ε))

π(x)
≥ 1} and R∗(b, x) = {ε : π(T

(2)
b (ε))

π(x)
< 1}, respectively.

Let Q(2)(x,B) denote the probability corresponding to the multiplicative TM-
CMC proposal of reaching the Borel set B from x in one step.

Then the following theorem characterizes geometric ergodicity of multiplica-
tive TMCMC under the super-exponential set-up. For our convenience, we slightly
abuse notation by referring to π2 as π .

Theorem 3.1. Suppose that π , the target density, is super-exponential and has
contours that are nowhere piecewise parallel to {x : |x1| = · · · = |xd |}; also assume
that there is an arbitrarily small compact neighborhood N0 such that π(N0) = 0.
If there exist compact neighborhoods N0, N+1 and N−1 (all arbitrarily small) of
0, +1 and −1, respectively such that g(2) gives zero probability to N0, N+1 and
N−1, then the multiplicative TMCMC chain satisfies geometric drift if and only if

lim inf‖x‖→∞Q(2)(x,A(2)(x)
)
> 0. (39)

Proof. As before, let Cπ(x) be the contour of the density π corresponding to the
value π(x), and let the radial cone around Cπ(x) be Cπ(x)(δ) given by (18). By
(39), there exists γ > 0 such that

lim sup
‖x‖→∞

Q(2)(x,R(2)(x)
)≤ 1 − 5γ 1/2. (40)

Once again, we take the belt of length δ such that the probability that a move
from x falls within this δ belt is less than γ . This holds since the neighborhoods
N+1 and N−1 of +1 and −1 receive zero probabilities under the proposal density
g(2). The remaining arguments are similar as in the proof of Theorem 2.1. Hence,
as before, there exists Rγ so that for any point y outside the δ bound around x,
(22) holds.

As before, let V (x) = c√
π(x)

, where c > 0 is chosen appropriately. Then it holds
that

P (2)V (x)

V (x)
= 1

3d

∑
b1,...,bd

∫
A(2)(x)

[
π(x1, . . . , xd)

π(Tb(x, ε))

]1/2

g(2)(ε) dε

+ 1

3d

∑
b1,...,bd

∫
R(2)(x)

[
1 − π(Tb(x, ε))

π(x1, . . . , xd)

∣∣J (b, ε)
∣∣ (41)

+
{

π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣]g(2)(ε) dε
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≤ 1

3d

∑
b1,...,bd

{ ∑
b1,...,bd

∫
A(2)(b,x)

[
π(x1, . . . , xd)

π(Tb(x, ε))

]1/2

g(2)(ε) dε

}

+ 1

3d

∑
b1,...,bd

∫
R(2)(x)

[
1 − π(Tb(x, ε))

π(x1, . . . , xd)

∣∣J (b, ε)
∣∣ (42)

+
{

π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣]g(2)(ε) dε.

We now break up the integrals on A(2)(b, x) as sums of the integrals on A(2)(b, x)∩
A∗(b, x) and A(2)(b, x) ∩ R∗(b, x). Also, we break up the integrals on R(2)(x) as
sums of integrals on R(2)(x) ∩ A∗(b, x) and R(2)(x) ∩ R∗(b, x). Since R(2)(x) =⋂

b1,...,bd
R(2)(b, x), these involve the intersections R(2)(b, x) ∩ A∗(b, x) and

R(2)(b, x) ∩ R∗(b, x), respectively.
Note that, since |J (b, ε)| is of the form |ε|k , for k = −d, . . . ,−1,0,1, . . . , d ,

and |ε| ≤ 1 (almost surely), A(2)(b, x) ∩ R∗(b, x) is either the null set ∅
(when k = −d,−d + 1, . . . ,−1,0), or of the form A(2)(b, x) ∩ R∗(b, x) =
{ε : |ε|k ≤ π(T

(2)
b (x,ε))

π(x)
< 1}, for k = 1,2, . . . , d . Hence, for ‖x‖ > Rγ , by (22),

Q(2)(x,A(2)(b, x) ∩ R∗(b, x) ∩ [Cπ(x)(δ)]c) ≤ Q(2)(|ε|k ≤ π(T
(2)
b (x,ε))

π(x)
< γ ) <

γ/2, and for δ sufficiently small, Q(2)(x,A(2)(b, x)∩R∗(b, x)∩Cπ(x)(δ)) < γ/2.
Moreover, on A(2)(b, x) ∩ R∗(b, x) ∩ Cπ(x)(δ),

π(x1,...,xd )
π(Tb(x,ε))

is bounded by a finite

constant. By hypothesis, N0 has zero probability under g(2). This implies that the
set

S =
{
|ε| ≤ 1 : ∃b and set Sε such that for x ∈ Sε,

π(x1, . . . , xd)

π(Tb(x, ε))
> K,∀K > 0

}

has zero probability under g(2). Hence, π(x1,...,xd )
π(Tb(x,ε))

is almost surely bounded even

on A(2)(b, x) ∩ R∗(b, x) ∩ Cc
π(x)(δ).

Hence, by the above arguments, for ‖x‖ > Rγ , and for sufficiently small
ξ > 0,

∫
A(2)(b,x)∩R∗(b,x)

[
π(x1, . . . , xd)

π(Tb(x, ε))

]1/2

g(2)(ε) dε

=
∫
A(2)(b,x)∩R∗(b,x)∩Cπ(x)(δ)

[
π(x1, . . . , xd)

π(Tb(x, ε))

]1/2

g(2)(ε) dε

+
∫
A(2)(b,x)∩R∗(b,x)∩[Cπ(x)(δ)]c

[
π(x1, . . . , xd)

π(Tb(x, ε))

]1/2

g(2)(ε) dε

< ξ/2.
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By similar (in fact, somewhat simpler) arguments, it follows that for ‖x‖ >

Rγ , ∫
A(2)(b,x)∩A∗(b,x)

[
π(x1, . . . , xd)

π(Tb(x, ε))

]1/2

g(2)(ε) dε

<
ξ

2
+ ξ1/2Q(2)(x,A(2)(b, x) ∩ A∗(b, x) ∩ [

Cπ(x)(δ)
]c) (43)

<
ξ

2
+ ξ1/2Q(2)(x,A(2)(x)

)
.

The arguments required are somewhat simpler because on A(2)(b, x) ∩ A∗(b, x),
the ratio π(x1,...,xd )

π(Tb(x,ε))
is bounded above by 1. Hence, the first part of the expres-

sion for P (2)V (x)/V (x) given by (42) is less than 3d(ξ + ξ1/2Q(2)(x,A(2)(x))).
Formally, for ‖x‖ > Rγ ,

1

3d

∑
b1,...,bd

{ ∑
b1,...,bd

∫
A(2)(b,x)

[
π(x1, . . . , xd)

π(Tb(x, ε))

]1/2

g(2)(ε) dε

}
(44)

< 3d(ξ + ξ1/2Q(2)(x,A(2)(x)
))

.

For sufficiently small ξ > 0 we can choose η > 32dξ so that

3d(ξ + ξ1/2Q(2)(x,A(2)(x)
))

< η + η1/2Q(2)(x,A(2)(x)
)
. (45)

In the second part of the expression for P (2)V (x)/V (x), note that on R(2)(x),

1 − π(Tb(x, ε))

π(x1, . . . , xd)

∣∣J (b, ε)
∣∣< 1,

so that∫
R(2)(x)

[
1 − π(Tb(x, ε))

π(x1, . . . , xd)

∣∣J (b, ε)
∣∣]g(2)(ε) dε < Q(2)(x,R(2)(x)

)
, (46)

and ∫
R(2)(x)

{
π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣g(2)(ε) dε (47)

=
∫
R(2)(x)∩A∗(b,x)

{
π(Tb(x, ε))|J (b, ε)|

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣1/2

g(2)(ε) dε (48)

+
∫
R(2)(x)∩R∗(b,x)

{
π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣g(2)(ε) dε. (49)

Note that on R(2)(x) ∩ A∗(b, x), π(Tb(x,ε))|J (b,ε)|
π(x1,...,xd )

< 1, and by our choice of

the proposal density g(2), N0 has zero probability under g(2), so that the Ja-
cobians |J (b, ε)| are bounded above by a finite constant, say K ; we choose
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K > 1. Hence, the first integral (48) in the break-up of the integral (47)
is bounded above by KQ(2)(x,R(2)(x) ∩ A∗(b, x)). Now, Q(2)(x,R(2)(x) ∩
A∗(b, x)) = Q(2)(x,R(2)(x)∩A∗(b, x)∩Cπ(x)(δ))+Q(2)(x,R(2)(x)∩A∗(b, x)∩
[Cπ(x)(δ)]c), and we can achieve Q(2)(x,R(2)(x) ∩ A∗(b, x) ∩ Cπ(x)(δ)) < γ ∗/4,
for sufficiently small γ ∗.

The sets of the form R(2)(b, x)∩A∗(b, x) are again empty sets or of the form {ε :
|ε|k ≤ π(T

(2)
b (x,ε))

π(x)
< 1}; k = 1,2, . . . , d . Hence, the sets R(2)(x)∩A∗(b, x) are also

either empty sets or intersections with sets of the form {ε : |ε|k ≤ π(T
(2)
b (x,ε))

π(x)
< 1};

k = 1,2, . . . , d . Hence, for ‖x‖ > Rγ , we can achieve Q(2)(x,R(2)(x)∩A∗(b, x)∩
[Cπ(x)(δ)]c) < γ ∗/4. In other words, for ‖x‖ > Rγ ,

∫
R(2)(x)∩A∗(b,x)

{
π(Tb(x, ε))|J (b, ε)|

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣1/2

g(2)(ε) dε

< KQ(2)(x,R(2)(x) ∩ A∗(b, x) ∩ Cπ(x)(δ)
)

(50)
+ Q(2)(x,R(2)(x) ∩ A∗(b, x) ∩ [

Cπ(x)(δ)
]c)

< Kγ ∗/2.

Now consider the second integral (49) in the break-up of the integral (47). We
have ∫

R(2)(x)∩R∗(b,x)

{
π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣g(2)(ε) dε

=
∫
R(2)(x)∩R∗(b,x)∩Cπ(x)

{
π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣g(2)(ε) dε (51)

+
∫
R(2)(x)∩R∗(b,x)∩[Cπ(x)]c

{
π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣

(52)
× g(2)(ε) dε.

Note that on R∗(b, x), π(Tb(x,ε))
π(x1,...,xd )

< 1. Hence, the first integral (51) in the above

break-up is bounded above by KQ(2)(x,R(2)(x) ∩ R∗(b, x) ∩ Cπ(x)(δ)), which,
in turn, is bounded above by Kγ ∗/2. For ‖x‖ > Rγ , the second integral (52) is
bounded above by Kγ ∗1/2Q(2)(x,R(2)(x) ∩ R∗(b, x) ∩ [Cπ(x)(δ)]c), which, in
turn, is bounded above by Kγ ∗1/2Q(2)(x,R(2)(x)). In other words,

∫
R(2)(x)∩R∗(b,x)

{
π(Tb(x, ε))|J (b, ε)|

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣1/2

g(2)(ε) dε

(53)

< K
γ ∗

2
+ Kγ ∗1/2

Q(2)(x,R(2)(x)
)
.
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Combining (50) and (53), we obtain that (47) is bounded above by Kγ ∗ +
Kγ ∗1/2Q(2)(x,R(2)(x)). With sufficiently small γ ∗ we have, for η > K2γ ∗,

Kγ ∗ + Kγ ∗1/2
Q(2)(x,R(2)(x)

)
< η + η1/2Q(2)(x,R(2)(x)

)
.

Combining this with (46) we get the following upper bound for the second term of
(42):

1

3d

∑
b1,...,bd

∫
R(2)(x)

[
1 − π(Tb(x, ε))

π(x1, . . . , xd)

∣∣J (b, ε)
∣∣

+
{

π(Tb(x, ε))

π(x1, . . . , xd)

}1/2∣∣J (b, ε)
∣∣]g(2)(ε) dε (54)

< η + (
1 + η1/2)Q(2)(x,R(2)(x)

)
.

Combining (44) and (54), we obtain, for η < γ (so that max{32dξ,K2γ ∗} <

η < γ ),

lim sup
‖x‖→∞

P (2)V (x)

V (x)
≤ 2η + η1/2 + lim sup

‖x‖→∞
Q(2)(x,R(2)(x)

)

< 2η + η1/2 + 1 − 5η1/2 (
by (40) and the fact that η < γ

)
= 1 − (2η)1/2 + 2η

< 1.

Hence, (12) holds. To see that condition (13) holds, in (41) observe that all the
ratios in the integrands are bounded above by 1, while the terms |J (b, ε)|1/2 are
almost surely bounded above by our choice of the proposal density g(2). Hence,
P (2)V (x)/V (x) is finite for every x.

Now we prove that if multiplicative TMCMC is geometrically ergodic, then
(39) is satisfied. As before, we prove that if lim sup‖x‖→∞Q(2)(x,R(2)(x)) = 1,
then lim sup‖x‖→∞P (2)(x, {x}) = 1. Again, we choose a compact set E such that
Q(2)(x,Ec) ≤ η and choose δ > 0 small enough such that lim sup‖x‖→∞Q(2)(x,

Cπ(x)(δ) ∩ E) ≤ η. Since R(2)(x) ∩ A∗(b, x) ∩ [Cπ(x)(δ)]c is either null set or
intersection with sets of the form {ε : |ε|k ≤ π(x)

π(Tb(x,ε))
< 1}, for k = 1,2, . . . , d , it

follows from (22) that for any fixed b∗, if ‖x‖ > Rη,

Q(2)(x,R(2)(x) ∩ A∗(b∗, x
)∩ [

Cπ(x)(δ)
]c)

≤ Q(2)

(
x,

{
ε : |ε|k ≤ π(x)

π(Tb∗(x, ε))
< η

})
≤ η.

Hence,

lim sup
‖x‖→∞

Q(2)(x,R(2)(x) ∩ A∗(b∗, x
)∩ [

Cπ(x)(δ)
]c)≤ η.
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Since lim sup‖x‖→∞Q(2)(x,R(2)(x)) = 1, the above imply that

lim sup
‖x‖→∞

Q(2)(x,R(2)(x) ∩ R∗(b∗, x
)∩ [

Cπ(x)(δ)
]c)

> 1 − 2η.

Moreover, since |J (b, ε)| are almost surely bounded by the choice of our proposal
density, assume that there exists 0 < K < ∞ such that |J (b, ε)| < K almost surely
with respect to g(2).

These and the fact (22) imply that

lim sup
‖x‖→∞

P (1)(x, {x})

= lim sup
‖x‖→∞

1

3d

∑
b1,...,bd

∫
R(2)(x)

[
1 − π(Tb(x, ε))

π(x)

∣∣J (b, ε)
∣∣]g(2)(ε) dε

≥ lim sup
‖x‖→∞

1

3d

∑
b1,...,bd

∫
R(2)(x)∩R∗(b∗,x)∩[Cπ(x)(δ)]c

[
1 − π(Tb(x, ε))

π(x)

∣∣J (b, ε)
∣∣]

(55)
× g(2)(ε) dε

≥ (1 − ηK) lim sup
‖x‖→∞

Q
(
x,R(2)(x) ∩ R∗(b∗, x

)∩ [
Cπ(x)(δ)

]c)
≥ (1 − ηK)(1 − 2η).

Since η > 0 is arbitrary, the proof is complete. �

That it is easy to ensure geometric ergodicity of multiplicative TMCMC in
super-exponential cases can be seen as follows. Select a move-type b∗ such that
|J (b∗, ε)| = |ε|. Then A(b∗, x) = {ε : π(Tb∗ (x,ε))

π(x)
|ε| ≥ 1}, and A∗(b∗, x) = {ε :

π(Tb∗ (x,ε))

π(x)
≥ 1}. Then, since |ε| ≤ 1 almost surely,

A
(
b∗, x

)∩ A∗(b∗, x
)= {

ε : π(x)

π(Tb∗(x, ε))
< |ε| ≤ 1

}
. (56)

If, for η > 0, ‖x‖ > Rη, then by (22),

π(x)

π(Tb∗(x, ε))
< η. (57)

Equations (56) and (57) imply that for any given ξ > 0 it is possible to choose
η > 0 such that for ‖x‖ > Rη, it holds that

Q(2)(x,A(2)(b∗, x
)∩ A∗(b∗, x

))
> 1 − ξ. (58)

Hence, for ‖x‖ > Rη, we obtain using (58),

Q(2)(x,A(2)(x)
) ≥ Q(2)(x,A(2)(x) ∩ A∗(b∗, x

))
≥ Q(2)(x,A(2)(b∗, x

)∩ A∗(b∗, x
))

> 1 − ξ.
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Hence, (39) holds, ensuring geometric ergodicity.
As we remarked earlier, we omit the proof of geometric ergodicity of additive–

multiplicative TMCMC, since it is almost the same as that of multiplicative TM-
CMC, provided above.

4 Illustration with simulation studies

There are several considerations in defining the accuracy or the efficiency of any
MCMC-based approach. First, one important aspect is that the chain must have
reasonably high acceptance rate. This has been an important consideration in our
proposing TMCMC. It is to be noted that geometric ergodicity only tells us that
convergence of our chain to the target density occurs at a geometric rate. However,
if the value of ρ, the geometric rate in (9) is close to 1, then the algorithm in ques-
tion, in spite of being geometrically ergodic, need not be efficient in practice. To
test how efficient our TMCMC algorithms actually are in absolute terms and also
relative to standard MCMC approaches, we need to define a measure of closeness
of the nth order kernel P n(x, ·) with respect to the target density π(·), assuming
that the latter can be empirically evaluated. The Kolmogorov–Smirnov (K–S) dis-
tance seems to be a suitable candidate in this regard, and the one that we adopt for
our purpose. Corresponding to each MCMC algorithm, we consider N replicates
of the chain starting from the same initial value, so that at each iteration t , we
obtain a set of N many realizations of the chain. We then compute the empirical
distribution of these N values and measure the K–S distance between the empiri-
cal distribution and the target distribution π . For the chain to be efficient, it must
have K–S distance close to 0 after the chain has run for a large number of iterations
(that is, when t is large). Moreover, the burn-in period is expected to be small for
efficient MCMC algorithms.

4.1 First simulation experiment comparing RWMH and additive TMCMC

Table 1 presents the results of a simulation experiment comparing the perfor-
mances of RWMH and additive TMCMC (Add.-TMCMC) chains for different
dimensions, where, for our purpose we consider the target density π to be the
multivariate normal distribution with mean vector 0 and covariance matrix I, the
identity matrix. For RWMH, we consider two distinct scales for the normal ran-
dom walk proposal for each of the co-ordinates—the optimal scale 2.4, and a sub-
optimal scale 6. We consider the same scaling for additive TMCMC as well. In-
deed, as shown in Dey and Bhattacharya (2013), for both additive TMCMC and
RWMH, the optimal scaling parameter is very close to 2.4 but the optimal accep-
tance rate of additive TMCMC is around 0.439, which is significantly higher than
0.234, the optimal acceptance rate of the RWMH approach (Roberts and Tweedie
(1996), Roberts, Gelman and Gilks (1997)). Moreover, the results of simulation
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Table 1 Performance evaluation of RWMH and additive TMCMC (Add.-TMCMC) chains for dif-
ferent dimensions

Criteria

Acceptance rate (%) Avg. K–S dist.

Dim. Scaling RWMH Add.-TMCMC RWMH Add.-TMCMC

2 2.4 34.9 44.6 0.1651 0.1657
6 18.66 29.15 0.1659 0.1655

5 2.4 (opt) 28.6 44.12 0.1659 0.1664
6 2.77 20.20 0.1693 0.1674

10 2.4 (opt) 26.05 44.18 0.1652 0.1677
6 1.19 20.34 0.1784 0.1688

100 2.4 (opt) 23.3 44.1 0.1594 0.1571
6 0.32 20.6 0.1687 0.1645

200 2.4 (opt) 23.4 44.2 0.1596 0.1435
6 0.38 20.7 0.1622 0.1484

experiments reported in Dey and Bhattacharya (2013) demonstrate superior per-
formance of additive TMCMC over RWMH in terms of higher acceptance rates
irrespective of dimensions and optimal or sub-optimal scale choices.

Referring to Table 1, since the K–S statistic is computed after burn in, the differ-
ences between additive TMCMC and RWMH in terms of the K–S distance do not
appear to be pronounced in low dimensions, but for dimensions 100 and 200, the
differences seem to be more pronounced, indicating somewhat better performance
of TMCMC.

Figure 4 displays the K–S distances corresponding to RWMH and additive TM-
CMC when the target is a 30-dimensional normal distribution. It is clearly seen
that additive TMCMC converges much faster than RWMH. In fact, the figures in-
dicate that additive TMCMC takes around just 150 iterations to converge when
the scale is optimal, and around 200 iterations when the scale is sub-optimal. On
the other hand, in the case of optimal scaling, RWMH takes around 300 iterations
to converge and for sub-optimal scaling it takes around 450 iterations. The mix-
ing issue is quite pronounced in higher dimensions. Indeed, as seen in Figure 5,
the K–S distances associated with additive TMCMC are almost uniformly smaller
than those associated with RWMH, particularly when the scaling is sub-optimal. In
fact, in the sub-optimal case it seems that additive TMCMC has converged within
the first 2,000 iterations, whereas RWMH does not seem to show any sign of con-
vergence even after 20,000 iterations (the K–S distances are significantly larger
than those of additive TMCMC).

4.2 Performance comparison with “essentially fully” multiplicative TMCMC

In this case, we choose our neighborhood N0 in (37) to be [−0.1,0.1]d , where d

is the dimension of the space. The method of estimation of the mixing probability
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(a) RWMH vs Add.-TMCMC (scale = 2.4)

(b) RWMH vs Add.-TMCMC (scale = 6)

Figure 4 Comparisons between K–S distances associated with additive TMCMC and RWMH for
dimension = 30.

π(N0) is discussed in detail in Appendix C; however, in our simulation example,
this probability is simply

∏d
i=1[2�(0.1) − 1], � denoting the cumulative distribu-

tion function of N(0,1). This chain is basically as close as we can get to a fully
multiplicative TMCMC chain on R

d ensuring that the geometric drift condition
holds.

For our experiment, the scale of the additive TMCMC part of the mixture re-
mains the same as before, that is, we consider the optimal scale 2.4, and the
sub-optimal scale 6. We assume the proposal density g(2) is defined on a set of
the form [−l2,−l1] ∪ [l1, l2] such that the interval [l1, l2] is a proper subset of
[0,1] minus small neighborhoods of 0 and 1. The distribution of the step ε is
taken to be a mixture normal random variable such that ε ∼ 1

2N(μ,σ 2)I[l1,l2] +
1
2N(−μ,σ 2)I[−l2,−l1] with mean μ ∈ [l1, l2] and variance σ 2. In our simulation
experiment, we assumed l1 = 0.05 and l2 = 0.95 and optimal performance was
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(a) RWMH vs Add.-TMCMC (scale = 2.4)

(b) RWMH vs Add.-TMCMC (scale = 6)

Figure 5 Comparisons between K–S distances associated with additive TMCMC and RWMH for
dimension = 100.

observed when the mean μ is in the range 0.35 to 0.45, which is around halfway
from both l1 and l2.

Table 2 provides a comparison of the performances between RWMH and essen-
tially full multiplicative TMCMC with respect to acceptance rate and average K–S
distance. Note that unlike additive TMCMC, we find here that the acceptance rate
for essentially fully multiplicative TMCMC is poor compared to RWMH. More-
over, the K–S distances also suggest that RWMH is closer to the target distribution
compared to essentially fully multiplicative TMCMC for most of the iterations
considered. However, on inspection it is observed that the K–S distance initially
drops faster for the latter compared to RWMH; see Figure 6. As shown by Dutta
(2012), multiplicative TMCMC in one-dimensional situations are appropriate for
certain heavy-tailed distributions. But in our current simulation study associated
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Table 2 Performance evaluation of RWMH and essentially fully multiplicative TMCMC (Mult.-
TMCMC) chains for different dimensions

Criteria

Acceptance rate (%) Avg. K–S dist.

Dim. Scaling RWMH Mult.-TMCMC RWMH Mult.-TMCMC

10 2.4 (opt) 26.05 16.86 0.1652 0.2097
6 1.19 6.32 0.1784 0.2133

30 2.4 (opt) 23.5 15.74 0.1637 0.1828
6 1.16 6.77 0.1711 0.1924

100 2.4 (opt) 23.4 15.46 0.1596 0.1812
6 0.38 2.67 0.1622 0.1866

with high dimensions and a thin-tailed density, (essentially fully) multiplicative
TMCMC did not seem to perform satisfactorily, although theoretically it is geo-
metrically ergodic.

4.3 Performance comparison with the traditional mixture of additive and
multiplicative TMCMC

Now we consider the traditional mixture chain of the form (38) with both additive
and multiplicative moves. We assume that with probability 1

2 , we move by additive
TMCMC and with probability 1

2 by multiplicative TMCMC. The proposal mech-
anisms for additive and multiplicative TMCMC remain the same as in Section 4.2
associated with essentially fully multiplicative TMCMC.

Table 3 provides a comparison of the performances between RWMH and our
traditional mixture TMCMC kernel with respect to acceptance rate and average
K–S distance. Note that although the acceptance rate for the mixture kernel in our
experiments is around 0.293 for μ = 0.35 and σ = 1 which is quite low compared
to additive TMCMC, it is of course still significantly higher than the optimal ac-
ceptance rate 0.234 for standard RWMH. To avoid any possible confusion it is
important to emphasize that this acceptance rate for mixture kernel is not analyti-
cally derived as the optimal acceptance rate, rather it is the rate corresponding to
the optimal value of μ, numerically obtained by varying over μ keeping σ fixed
at 1 and computing the K–S distance and then choosing that μ for which the em-
pirical average K–S distance was found to be the minimum. However, the average
K–S distance for the mixture kernel is smaller compared to both RWMH and addi-
tive TMCMC, implying faster convergence. This improvement acts as a trade off
for the low acceptance rate of the mixture kernel.

Figure 7 displays plots of K–S distances associated with RWMH and mix-
ture TMCMC in the case of a 30-dimensional normal target distribution. The plot
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(a) RWMH vs Mult.-TMCMC (RWMH scale = 2.4)

(b) RWMH vs Mult.-TMCMC (RWMH scale = 6)

Figure 6 Comparisons between K–S distances associated with essentially Mult.-TMCMC and
RWMH for dimension = 30.

shows much faster convergence of mixture TMCMC compared to RWMH. From
Figures 4 and 6, it is also clear that mixture TMCMC converges faster than even
additive TMCMC and essentially fully multiplicative TMCMC. In fact, mixture
TMCMC seems to converge in just about 100 iterations. This faster convergence
may be attributed to the fact that the multiplicative steps allow the chain to take
longer jumps and hence explore the space faster, while on the other hand the addi-
tive steps keep the acceptance rate high and enables the chain to move briskly. So,
in other words, mixture TMCMC shares the positives of both the additive and the
multiplicative chains and is found to outperform each of them individually.
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Table 3 Performance evaluation of RWMH and traditional Mixture TMCMC (Mix.-TMCMC)
chains for different dimensions. For the multiplicative TMCMC part, we consider μ = 0.35 and σ = 1

Criteria

Acceptance rate (%) Avg. K–S dist.

Dim. Scaling RWMH Mix.-TMCMC RWMH Mix.-TMCMC

10 2.4 (opt) 26.05 29.43 0.1652 0.1455
6 1.19 11.26 0.1784 0.1576

30 2.4 (opt) 23.5 29.32 0.1637 0.1428
6 1.16 16.33 0.1711 0.1529

100 2.4 (opt) 23.4 29.29 0.1596 0.1398
6 0.38 10.67 0.1622 0.1412

(a) RWMH vs Mix.-TMCMC (scale = 2.4)

(b) RWMH vs Mix.-TMCMC (scale = 6)

Figure 7 Comparisons between K–S distances associated with Mix.-TMCMC and RWMH for di-
mension = 30.
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5 Extensions of our geometric ergodicity results to target distributions
that are not super-exponential

So far we have proved geometric ergodicity of additive and multiplicative TM-
CMC when the target density π is super-exponential. It is natural to ask if our
results go through when the super-exponential assumption does not hold.

5.1 Target density as mixture

Note that, if the target density π can be represented as a mixture of the form

π(x) =
∫

f1(x|θ)f2(θ) dθ, (59)

where f1(·|θ) is super-exponential for all θ and f2 admits direct (exact) simulation,
then the Markov transition kernel

P(x,A) =
∫

P(x,A|θ)f2(θ) dθ, (60)

where P(x,A|θ) denotes either additive or multiplicative TMCMC-based Markov
transition kernel conditional on θ , is geometrically ergodic for the target density
π . The proof is essentially the same as the proof presented in Appendix B that the
finite mixture Markov transition kernel (37) is geometrically ergodic for the mix-
ture representation (35); only the summations need to be replaced with integrals.
The kernel (60) will be implemented by first directly simulating θ ∼ f2; then given
θ , the transition mechanism P(x, ·|θ) has to be implemented.

Two popular examples of multivariate densities admitting mixture forms are
multivariate t and multivariate Cauchy, both of which can be represented as uni-
variate Gamma-distributed mixtures of multivariate normal distributions.

5.2 Change-of-variable idea

The general situation has been addressed by Johnson and Geyer (2012) using a
change-of-variable idea. If πβ is the multivariate target density of interest, then
one can first simulate a Markov chain having invariant density

πγ (γ ) = πβ

(
h(γ )

)∣∣det∇h(γ )
∣∣, (61)

where h is a diffeomorphism. If πβ is the density of the random vector β , then
πγ is the density of the random vector γ = h−1(β). Johnson and Geyer (2012)
obtain conditions on h which make πγ super-exponentially light. In more details,
Johnson and Geyer (2012) define the following isotropic function h :Rd 	→R

d :

h(γ ) =
⎧⎨
⎩f

(‖γ ‖) γ

‖γ ‖ , γ �= 0,

0, γ = 0
(62)
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for some function f : (0,∞) 	→ (0,∞). Johnson and Geyer (2012) confine atten-
tion to isotropic diffeomorphisms, that is, to functions h where both h and h−1 are
continuously differentiable, with the further property that det∇h and det∇h−1 are
also continuously differentiable. In particular, they define f : [0,∞) 	→ [0,∞) as
follows:

f (x) =
{

x, x < R,
x + (x − R)p, x ≥ R,

(63)

where R ≥ 0 and p > 2.
Theorem 2 of Johnson and Geyer (2012) shows that if πβ is an exponentially

light density (πβ is exponentially light if lim sup‖x‖→∞n(x)′∇ logπβ(x) < 0)
on R

d , and h is defined by (62) and (63) then the transformed density πγ

given by (61) is super-exponentially light. Thus, this transformation transforms
an exponential density to a super-exponential density. Theorem 3 of Johnson
and Geyer (2012) provided conditions under which sub-exponential densities
can be converted to exponential densities (πβ is sub-exponentially light if
lim sup‖x‖→∞n(x)′∇ logπβ(x) = 0). In particular, if πβ is a sub-exponentially
light density on R

d , there exist α > d , R < ∞ such that(
β

‖β‖
)′

∇ logπβ(β) ≤ − α

‖β‖ , ‖β‖ > R,

then h defined as (62) with f : [0,∞) 	→ [0,∞) given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

ebx − e

3
, x >

1

b
,

x3 b3e

6
+ x

be

2
, x ≤ 1

b
,

(64)

where b > 0, ensures that the transformed density πγ of the form (61), is super-
exponentially light.

In other words, starting from a sub-exponential target density, one can achieve
a super-exponential density by first converting it to exponential using the transfor-
mation h (given by (62)) with f given by (64). Then one can convert the obtained
exponential density to super-exponential using the transformation h and f given
by (63). As an example, Johnson and Geyer (2012) show that the multivariate t

distribution of the form

πβ(t) = �(ν+d
2 )

�(ν
2 )(νπ)d/2 det(�)

[
1 + 1

ν
(t − μ)′�−1(t − μ)

]−((ν+d)/2)

, (65)

is sub-exponential. This can be converted to super-exponential by applying the
aforementioned transformations in succession.

Hence, we can run our geometric ergodic TMCMC algorithms for the super-
exponentially light πγ , and then transform the realizations {γ (k);k = 1,2, . . .} to
{h(γ (k));k = 1,2, . . .}. Then it easily follows (see Appendix A of Johnson and
Geyer (2012)) that the transformed chain is also geometrically ergodic.
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5.2.1 Simulation studies comparing RWMH and additive TMCMC in the context
of diffeomeophism based simulation from Cauchy and t-distributions. We now
compare diffeomorphism-based RWMH and additive TMCMC algorithms with
respect to K–S distance, when the target distributions are d-dimensional Cauchy
and t-distributions, the latter having ν degrees of freedom. We assume that the
location vectors and scale matrices are μ = 0d and � = diag{0.71′

d} + 0.31d1′
d ,

respectively, where 0d is a d-dimensional vector with all elements 0, and 1d is a d-
dimensional vector with each component 1. We choose d = 50 for the illustrations.
For both RWMH and additive TMCMC, we consider the scale of the proposal
distribution to be 2.4.

Figure 8 compares the performances of diffeomorphism based RWMH and
diffeomorphism based Add.-TMCMC with respect to the K–S distance when
the target distributions are 50-variate Cauchy and 50-variate t respectively, with
the aforementioned location vector and scale matrix. In both the cases, Add.-
TMCMC quite significantly outperforms RWMH. Hence, the results are highly
encouraging—additive TMCMC significantly outperforms RWMH when the high-
dimensional target density is not super-exponential, and is highly dependent. Since
a mixture of additive and multiplicative TMCMC is demonstrably more efficient
than additive TMCMC, it is clear that the mixture will beat RWMH by a large
margin. We have also carried out extensive simulation studies comparing RWMH
and Add.-TMCMC when the target distributions are 50-dimensional i.i.d. Cauchy
and 50-dimensional i.i.d. t with 10 degrees of freedom, that is, with μ = 0d and
� = Id, the latter standing for the identity matrix or order d , with d = 50. We do
not present the results here due to lack of space, but Add.-TMCMC outperformed
RWMH at least as significantly as in this reported dependent set-up.

As an aside, we also compare the gains of the diffeomorphism based approach
over the usual, direct application of RWMH and TMCMC to the target densities.
Figure 9 compares the performances of diffeomorphism based RWMH and di-
rect RWMH when the targets are the above-defined 50-dimensional multivariate
Cauchy and t (with 10 degrees of freedom). Likewise, Figure 10 compares the
performances of diffeomorphism based Add.-TMCMC and direct Add.-TMCMC
with the above 50-dimensional target densities. As is evident from the figures,
the diffeomorphism based approaches quite significantly outperform the direct ap-
proaches.

6 Concluding remarks

We presented a comprehensive comparative study of geometric ergodicity and
convergence behavior of various versions of TMCMC: additive, “essentially full”
multiplicative and mixture TMCMC. Additive TMCMC is the easiest to imple-
ment and as observed in the simulation study, has somewhat better convergence
to the target distribution compared to RWMH. The essentially fully multiplicative



604 K. K. Dey and S. Bhattacharya

(a) Multivariate Cauchy Target: Diffeomorphism based RWMH vs diffeomorphism
based Add.-TMCMC (scale = 2.4)

(b) Multivariate-t Target: Diffeomorphism based RWMH vs diffeomorphism based
Add.-TMCMC (scale = 2.4)

Figure 8 50-dimensional Cauchy and multivariate-t (10 degrees of freedom) targets: Comparisons
between K–S distances associated with diffeomorphism based additive TMCMC and diffeomorphism
based RWMH.

TMCMC traverses the sample space more rapidly but we observed that it is rela-
tively slow in convergence to the target density compared to the standard RWMH
approach. The best convergence results are obtained for mixture TMCMC which
combines the additive and the multiplicative moves in equal proportions.
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(a) Multivariate Cauchy Target: RWMH with and without diffeomorphism (scale = 2.4)

(b) Multivariate-t Target: RWMH with and without diffeomorphism (scale = 2.4)

Figure 9 50-dimensional Cauchy and multivariate-t (10 degrees of freedom) targets: Comparisons
between K–S distances associated with RWMH implemented with and without diffeomorphism.

Of considerable interest are situations when the high-dimensional target den-
sities are not super-exponential but can be handled by the diffeomorphism based
approach. The relevant simulation studies detailed in Section 5.2.1 demonstrate
far superior convergence of additive TMCMC compared to RWMH. Since these
simulation studies are conducted assuming high dependence structure of the tar-
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(a) Multivariate Cauchy Target: Add.-TMCMC with and without diffeomorphism (scale = 2.4)

(b) Multivariate-t Target: Add.-TMCMC with and without diffeomorphism (scale = 2.4)

Figure 10 50-dimensional Cauchy and multivariate-t (10 degrees of freedom) targets: Compar-
isons between K–S distances associated with Add.-TMCMC implemented with and without diffeo-
morphism.

get densities, the results are particularly encouraging and lead us to recommend
TMCMC in general situations. Moreover, it is to be noted that in these simulation
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studies we concern ourselves with only additive TMCMC. Since a mixture of ad-
ditive and multiplicative TMCMC is seen to be more efficient in comparison with
additive TMCMC, it is clear that such a mixture will outperform RWMH by even
greater margins.

There are obviously some questions of further interest. We would definitely like
to have quantitative rates of convergence for each of the three approaches to TM-
CMC. In this paper we considered the mixing proportion in mixture TMCMC to be
1/2 and we also observed in our simulation study that extremal mixing proportions
(which correspond to additive and essentially fully multiplicative approaches) lead
to slower convergence compared to uniform mixing. But it would be worth noting
how this rate of convergence changes with the change in mixing proportion.

Optimal scaling of TMCMC methods is another area which is of considerable
interest to us. The optimal scaling for additive TMCMC has been studied for a
broad class of multivariate target densities (Dey and Bhattacharya (2013)), but the
optimal scaling for mixture TMCMC and multiplicative or essentially fully mul-
tiplicative approaches are yet to be determined. The biggest challenge in dealing
with this problem is that the generator functions for the associated time scaled dif-
fusion process for these methods are hard to express in any simple analytic form.

One area we are currently focusing on is defining adaptive versions of the
TMCMC approach (additive and multiplicative) and comparing the performances
(convergence criterion and acceptance rate in particular) among various adaptive
schemes and also with the typical non adaptive algorithms we considered here.

We are also trying to expand the scope of our approach beyond R
d by consid-

ering spheres and other Riemannian or Symplectic manifolds as the support of the
target distributions and it would be interesting to investigate such properties like ir-
reducibility, detailed balance and ergodicity properties of the TMCMC algorithms
over such spaces.

Appendix A: Minorization condition for multiplicative TMCMC

For the one-dimensional case, minorization conditions of multiplicative TMCMC
has been established by Dutta (2012). Here we generalize the results to arbitrary
dimension. For simplicity we assume pi = qi = 1/3 for i = 1, . . . , d . The follow-
ing theorem establishes the minorization condition for multiplicative TMCMC.

Theorem A.1. Let the target density π be bounded and positive on compact sets.
Then there exists a nonzero measure ν, a positive integer m, δ > 0, and a small set
E∗ such that{

P (2)}m(x,A) ≥ δν(A), ∀x ∈ E∗ and for all Borel sets A. (66)

Proof. Observe that, from x = (x1, . . . , xd) it is possible to move to any Borel
set A in at least d steps using those multiplicative TMCMC move types b =
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(b1, . . . , bd) which update only one co-ordinate at a time. Hence, for our purpose
it is sufficient to confine attention to these moves.

Let E∗ denote a compact subset of Rd . Also, let C be a compact set containing
E∗. Let A∗ = A ∩ C. For the simplicity of presentation we present the proof of
minorization for d = 2.

Let A1 = {(ε1, ε2) : (x1ε1, x2ε2) ∈ A
∗}, A2 = {(ε1, ε2) : (x1/ε1, x2/ε2) ∈ A

∗},
A3 = {(ε1, ε2) : (x1ε1, x2/ε2) ∈ A

∗}, and A4 = {(ε1, ε2) : (x1/ε1, x2ε2) ∈ A
∗}.

For x ∈ E∗, we have{
P (2)}2

(x,A)

≥ {
P (2)}2(

x,A∗)
≥ 1

34

∫
A1

min
{

1,
π(x1ε1, x2)|ε1|

π(x1, x2)

}

× min
{

1,
π(x1ε1, x2ε2)|ε2|

π(x1ε1, x2)

}
g(2)(ε1)g

(2)(ε2) dε1 dε2

+ 1

34

∫
A2

min
{

1,
π(x1/ε1, x2)|ε|−1

π(x1, x2)

}
(67)

× min
{

1,
π(x1/ε1, x2/ε2)|ε2|−1

π(x1/ε1, x2)

}
g(2)(ε1)g

(2)(ε2) dε1 dε2

+ 1

34

∫
A3

min
{

1,
π(x1ε1, x2)|ε1|

π(x1, x2)

}

× min
{

1,
π(x1ε1, x2/ε2)|ε2|−1

π(x1ε1, x2)

}
g(2)(ε1)g

(2)(ε2) dε1 dε2

+ 1

34

∫
A4

min
{

1,
π(x1/ε1, x2)|ε1|−1

π(x1, x2)

}

× min
{

1,
π(x1/ε1, x2ε2)|ε2|

π(x1/ε1, x2)

}
g(2)(ε1)g

(2)(ε2) dε1 dε2.

Let r = infy∈C π(y) and R = supy∈C π(y). Also note that each integral on Ai ;
i = 1,2,3,4, can be split into Ai = {Ai ∩ Sη} ∪ {Ai ∩ S

c
η}, where Sη = {(ε1, ε2) :

η < |ε1| ≤ 1, η < |ε2| ≤ 1}, for some η > 0, and S
c
η denotes the complement of Sη.

Let G denote the probability measure corresponding to the distribution ε1, ε2
i.i.d.∼

g(2).
On Ai ∩ S

c
η, for i = 1,3,4, the corresponding integrands have infimum zero;

hence zero is the lower bound of the respective integrals on Ai ∩S
c
η, for i = 1,3,4.

On A2 ∩S
c
η, the integrand of the second integral has infimum equal to 1; hence, the

corresponding integral is bounded below by 1
34 G(A2 ∩ S

c
η). Note that G(A2 ∩ S

c
η)

can be made arbitrarily small by choosing η to be as small as desired.
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On Ai ∩ Sη, each of the integrals are bounded below by η2

34 ( r
R

)2G(Ai ∩ Sη).
Hence, {

P (2)}2
(x,A) ≥ {

P (2)}2(
x,A∗)

≥ η2

34

(
r

R

)2 4∑
i=1

G(Ai ∩ Sη)

≥ η2

34

(
r

R

)2

G

({ 4⋃
i=1

Ai

}
∩ Sη

)

(68)

= η2

34

(
r

R

)2

G
(
A

∗ ∩ Sη

)
.

= η2

34

(
r

R

)2

G(Sη) × G(A∗ ∩ Sη)

G(Sη)

= δν
(
A

∗),
with

δ = η2

34

(
r

R

)2

G(Sη) and ν
(
A

∗)= G(A∗ ∩ Sη)

G(Sη)
.

Hence, minorization holds for multiplicative TMCMC, and E∗ is the small set.
The same ideas of the proof go through for any finite dimension d . �

We next show that vectors in the set

V = {
(v1, . . . , vd) ∈R

d : vi = 0 for at least one i ∈ {1, . . . , d}},
cannot be limit points of small sets. For our purpose, we need a lemma which can
be seen as a generalization of Lemma 1 of Dutta (2012) to arbitrary dimensions
and for vectors in V .

Lemma A.1. Fix v = (v1, . . . , vd) ∈ V . For {i1, . . . , ik} ⊆ {1, . . . , d}, where k ≤ d ,
let vij = 0, for j = 1, . . . , k. Let {xn} be a sequence of positive (negative) num-
bers decreasing (increasing) to zero. Consider the sequence vn = (v1,n, . . . , vd,n)

′,
where vj,n = xn for j = i1, . . . , ik , and vj,n = vj for j ∈ {1, . . . , d}\{i1, . . . , ik}. If
vi = 0 for i = 1, . . . , d , then vn = (xn, . . . , xn)

′ may also be considered. Then,

P (2)(vn,A) → 0, (69)

for all Borel sets A such that A∩ {(v1, . . . , vd) ∈ R
d : vij = 0; j = 1, . . . , k} = ∅.

Proof. Without loss of generality, we present the proof for d = 2. Let us fix v =
(v1, v2), where v1 = 0 and v2 ∈ R. Let vn = (xn, v2). Note that for moving from



610 K. K. Dey and S. Bhattacharya

xn to z ∈ R, where |xn| ≤ |z| for all n, we must simulate ε = xn/z and take the
backward move z = xn/ε. The move z = xnε, with ε = z/xn cannot be valid in
this case, since xn → 0 implies that for large n, ε /∈ [−1,1].

Since the acceptance probability is bounded above by 1, we have, for y < 0,

P (2)(vn, (−∞, y] × (−∞,∞)
) ≤ 1

32

∫ 0

xn/y
g(ε) dε

(70)
→ 0.

If y > 0, then

P (2)(vn, [y,∞) × (−∞,∞)
) ≤ 1

32

∫ xn/y

0
g(ε) dε

(71)
→ 0.

Hence, (69) holds when d = 2. The proof clearly goes through for any dimen-
sion d .

If v = (0,0), we can consider vn = (xn,0)′ or vn = (xn, xn)
′. Then, in addition

to (70) and (71), which clearly hold, the following also hold true: if y < 0

P (2)(vn, (−∞,∞) × (−∞, y])→ 0,

and

P (2)(vn, (−∞,∞) × [y,∞)
)→ 0,

if y > 0. These imply that for dimension d = 2,

P (2)(vn, ·) → I{0}(·). (72)

The above result (72) clearly holds for any dimension d for v = (0,0, . . . ,0)′ and
vn = xn1, where 1 = (1,1, . . . ,1)′ is the d-component vector of ones. �

Now, if v ∈ V is a limit point of E∗, then there exists a sequence vn as in
Lemma A.1, converging to v. This, and Lemma A.1 imply that for any fixed integer
m > 1, and for any Borel set A,

{
P (2)}m(vn,A) =

∫
Rd

{
P (2)}m−1

(z,A)P (2)(vn, dz)

(73)
→ 0,

if A∩ {(v1, . . . , vd) ∈ R
d : vij = 0; j = 1, . . . , k} = ∅.

In particular, if 0 is a limit point of E, then for any fixed integer m > 1, and for
any Borel set A, {

P (2)}m(xn1,A) → I{0}(A). (74)

Both (73) and (74) contradict the minorization inequality (66).
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Now consider the case of additive–multiplicative TMCMC. Let the coordi-
nates with indices {j1, j2, . . . , j�} ⊂ {1,2, . . . , d} be given the multiplicative trans-
formation and let the remaining co-ordinates be given the additive transforma-
tion. Here, let V(j1, . . . , j�) = {(v1, . . . , vd)′ ∈ R

d : vj = 0 for at least one j ∈
{j1, j2, . . . , j�}}. Then vectors v ∈ V(j1, . . . , j�) cannot be limit points of small
sets associated with additive–multiplicative TMCMC. In particular, 0 cannot be a
limit point. The proof is the same as in the case of multiplicative TMCMC, and
hence omitted.

Appendix B: Proof of geometric ergodicity of the Markov transition
kernel P = π(N0)P

(1) + π(Nc
0)P

(2)

Let us first introduce an auxiliary random variable Z, with

Pr(Z = 1) = π(N0) and Pr(Z = 2) = 1 − Pr(Z = 1). (75)

Note that for i = 1,2,

P(x,A|Z = i) = P (i)(x,A) and π(A|Z = i) = πi. (76)

Also note that, since P (i) is geometrically ergodic when the target density is πi ,
we must have ∥∥{P (i)}n(x, ·) − πi(·)

∥∥≤ Mi(x)ρn
i , (77)

for i = 1,2, for some M1(x),M2(x) < ∞ and 0 < ρ1, ρ2 < 1.
Now,∥∥P n(x, ·) − π(·)∥∥TV

= sup
A∈B(Rd

)
∣∣P n(x,A) − π(A)

∣∣
= sup

A∈B(Rd
)
∣∣P n(x,A|Z = 1)Pr(Z = 1) + P n(x,A|Z = 2)Pr(Z = 2)

− (
π(A|Z = 1)Pr(Z = 1) + π(A|Z = 2)Pr(Z = 2)

)∣∣
= sup

A∈B(Rd
)
∣∣{P (1)}n(x,A)Pr(Z = 1) + {

P (2)}n(x,A)Pr(Z = 2)

− (
π1(A)Pr(Z = 1) + π2(A)Pr(Z = 2)

)∣∣ by (76)

≤ Pr(Z = 1)
∥∥{P (1)}n(x, ·) − π1(·)

∥∥+ Pr(Z = 2)
∥∥{P (2)}n(x, ·) − π2(·)

∥∥
≤ Pr(Z = 1)M1(x)ρn

1 + Pr(Z = 2)M2(x)ρn
2 by (77)

≤ M(x)ρn,

where M(x) ≥ max{M1(x),M2(x)}, and ρ ≥ max{ρ1, ρ2}. Hence, P is geometri-
cally ergodic when the target density is π .
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Note that the proof employed in Section 3.2 for showing geometric ergodicity of
the alternative mixture Markov transition kernel P ∗, is also valid for showing ge-
ometric ergodicity of P , but the current proof (with slight modification; replacing
the summations with integrations) is appropriate for proving geometric ergodic-
ity of continuous mixture kernels of the form (60) for continuous mixture target
densities of the form (59) since a single function V need not be appropriate for
(uncountably) infinite number of mixture components.

Appendix C: Discussion on estimation of the mixing probability
π(N0)

In order to implement the Markov transition kernel P , for each k = 1,2, . . . , we
are required to draw u ∼ U(0,1); if u < π(N0), we select x

(k)
1 , else we select

x
(k)
2 . Note that π(N0) is not known, and needs to be estimated numerically. Direct

estimation using TMCMC samples from π will generally not be reliable, since the
region N0, being arbitrarily small, can be easily missed by any MCMC method.
However, this may be reliably estimated using importance sampling as follows.

Let π(x) = c�(x), where c = 1/
∫

�(y) dy is the unknown normalizing con-
stant. Also, let h(x) = |N0|−1IN0(x) be the uniform distribution on N0, where
|N0| denotes the Lebesgue measure of the set N0. We may use h as the importance
sampling density in the region N0. For the region N

c
0 we may consider some thick-

tailed importance sampling density g(x), for example, a d-variate t-density, but
adjusting the support to be N

c
0. Then

π(N0) =
∫
N0

�(x) dx∫
�(x) dx

=
∫
N0

�(x)
h(x)

h(x) dx∫
N0

�(x)
h(x)

h(x) dx + ∫
N

c
0

�(x)
g(x)

g(x) dx

≈
1

N1

∑N1
j=1

�(x(j))

h(x(j))

1
N1

∑N1
j=1

�(x(j))

h(x(j))
+ 1

N2

∑N2
k=1

�(y(k))

g(y(k))

= π̂(N0) (say),

where {x(j); j = 1, . . . ,N1} are i.i.d. realizations drawn from the uniform distribu-
tion h and {y(k);k = 1, . . . ,N2} are i.i.d. or TMCMC realizations from g, depend-
ing on the complexity of the form of g. The parameters of g may be chosen by
variational methods; see http://www.gatsby.ucl.ac.uk/vbayes/ for a vast repository
of papers, softwares and links on variational methods.

Observe that even though we are proposing to estimate π(N0) by π̂(N0), im-
plementation of the mixture kernel P with π̂(N0) as the mixing probability is
expected to be exactly the same as the mixture kernel P with the true mixing
probability π(N0). This is because even if π̂ (N0) is only a reasonably accurate
estimate of π(N0), it is expected that for any u ∼ U(0,1), u < π(N0) if and
only if u < π̂(N0). For instance, if π̂(N0) = π(N0) + η, for some η > 0, then

http://www.gatsby.ucl.ac.uk/vbayes/
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Pr(π(N0) < u < π̂(N0)) = η. Even if η is not extremely small, the above proba-
bility is still reasonably small, for reasonably small values of η. In other words, a
very high degree of accuracy of the estimate π̂ (N0) is not that important in this
case.
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