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Abstract. Stein operators are (differential/difference) operators which arise
within the so-called Stein’s method for stochastic approximation. We propose
a new mechanism for constructing such operators for arbitrary (continuous or
discrete) parametric distributions with continuous dependence on the param-
eter. We provide explicit general expressions for location, scale and skewness
families. We also provide a general expression for discrete distributions. We
use properties of our operators to provide upper and lower variance bounds
(only lower bounds in the discrete case) on functionals h(X) of random vari-
ables X following parametric distributions. These bounds are expressed in
terms of the first two moments of the derivatives (or differences) of h. We
provide general variance bounds for location, scale and skewness families
and apply our bounds to specific examples (namely the Gaussian, exponen-
tial, gamma and Poisson distributions). The results obtained via our tech-
niques are systematically competitive with, and sometimes improve on, the
best bounds available in the literature.

1 Introduction

Let g be a given target density (continuous or discrete) and let X ∼ g. Choose a
probability metric d (Kolmogorov, Wasserstein, Total Variation, . . .) and suppose
that we aim to estimate the distance d(W,X) between the law of some random
variable W and that of X. Stein’s method (introduced for Gaussian approximation
in Stein (1970/1971) and for Poisson approximation in Chen (1975)) is a tech-
nique initially designed for this purpose and can be broken down into three steps,
namely

(A) construct a suitable differential or difference operator f �→ Tg(f ) such that

X ∼ g ⇐⇒ E
[
Tg(f )(X)

] = 0 for all f ∈ F(g),

with F(g) a specific (g-dependent) class of test functions;
(B) determine a subclass Fd(g) ⊂ F(g) such that

d(W,X) = sup
f ∈Fd (g)

∣∣E[
Tg(f )(W)

]∣∣,
and determine bounds on the functions f ∈ Fd(g);
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(C) use the knowledge about W (e.g., its distribution or that it is a sum
of weakly dependent random variables, . . .) in order to provide estimates on
supf ∈Fd (g) |E[Tg(f )(W)]|.
The bounds mentioned in (B) are sometimes called Stein factors (see, e.g., Röllin
(2012), Brown and Xia (1995)) and are usually obtained by solving a “Stein equa-
tion” of the form Tgf = h for some h well-chosen. Although still mainly applied to
Gaussian approximation (Barbour and Chen (2005), Nourdin and Peccati (2012),
Chen, Goldstein and Shao (2011)) and Poisson approximation (Barbour, Holst and
Janson (1992)), the method has also been proven in recent years to be very pow-
erful for other types of approximation problems (Nourdin and Peccati (2009), Luk
(1994), Picket (2004), Döbler (2012), Goldstein and Reinert (2013), Peköz, Röllin
and Ross (2013), Peköz and Röllin (2011), Chatterjee, Fulman and Röllin (2011)).

The success of the method outlined above is often described as “magical”, see,
for example, Barbour and Chen (2014). In fact, the key lies in the exquisitely
agreeable properties of the pair (Tg(·),Fd(g)). There are several well-documented
ways of constructing a Stein operator Tg(·) along with the corresponding Stein
class Fd(g); three classical constructions are (i) the generator approach intro-
duced in Götze (1991), Barbour (1990), (ii) the density approach introduced in
Stein (1986), Stein et al. (2004) and developed in Ley, Reinert and Swan (2014),
and (iii) the orthogonal polynomial approach introduced in Diaconis and Zabell
(1991) and further developed in Goldstein and Reinert (2005). Applying these
techniques (or variations thereof), useful Stein operators have now been dis-
covered for a wide variety of targets, see, for example, Götze and Tikhomirov
(2003), Reinert (2004), Goldstein and Reinert (2005), Döbler (2012), Goldstein
and Reinert (2013), Ley and Swan (2013a, 2013b) or the dedicated web page
https://sites.google.com/site/yvikswan/about-stein-s-method for an up-to-date list
of references. A handbook detailing such results is also currently in preparation,
see the forthcoming Döbler et al. (2015).

Example 1.1. For instance, if g = φ is the standard Gaussian density, then
a routine application of the density approach gives the first-order operator
T0,φ(f )(x) = f ′(x)−xf (x), while the generator approach yields the second-order
operator T̃0,φ(f )(x) = f ′′(x) − xf ′(x) and the orthogonal polynomial approach
yields, among others, the collection of operators Tn,φ(f )(x) = Hn(x)f ′(x) −
Hn+1(x)f (x), n ≥ 1, with Hn the nth Hermite polynomial. If g is the rate-1 expo-
nential distribution then suitable modifications of the density approach result in the
operators T1,g(f )(x) = −f ′(x)+f (x) and T1,g(f )(x) = −xf ′(x)+ (x −1)f (x);
both have been used for exponential approximation problems (Chatterjee, Fulman
and Röllin (2011), Peköz and Röllin (2011)).

Stein operators allow, in essence, to write general integration by parts formulas
of the form

E
[
f (X)h′(X)

] = E
[
Tg(f )(X)h(X)

]
. (1.1)

https://sites.google.com/site/yvikswan/about-stein-s-method
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There are many ways to put such identities to use. For instance, setting f = 1
in (1.1) (if this is permitted) and applying the Cauchy–Schwarz inequality to the
right-hand side we deduce that

(E[h′(X)])2

E[(Tg(1)(X))2] ≤ E
[(

h(X)
)2]

(1.2)

for all appropriate test functions h. This is a generalization of the celebrated
Cramér–Rao inequality, with E[(Tg(1)(X))2] being some form of Fisher infor-
mation for X. In particular if g = φ is the density of a standard Gaussian random
variable then Tφ(1)(x) = −x and (1.2) particularizes to (E[h′(X)])2 ≤ Var[h(X)]
(provided E[h(X)] = 0). Chernoff (1980, 1981) used a method involving Hermite
polynomials to prove that if X is Gaussian then a converse inequality also holds,
yielding

(
E

[
h′(X)

])2 ≤ Var
[
h(X)

] ≤ E
[(

h′(X)
)2]

(1.3)

with equality on both sides if and only if h is linear. Chen presented in Chen
(1982) an ingenious way of using a Gaussian version of (1.1) (namely Stein’s co-
variance identity) to prove the bound (1.3) also in the multivariate setting. Chen’s
approach was rapidly seen to be robust to a change in the target distribution and
Klaassen (1985) proposed a unified version of (1.3) valid under very few assump-
tions on X. These pioneering works spawned a stream of papers wherein similar
inequalities were obtained and exploited under various assumptions on X, see, for
example, Cacoullos (1982), Chernoff (1981), Chen (1982), Borovkov and Utev
(1984), Cacoullos, Papathanasiou and Utev (1994), Cacoullos and Papathanasiou
(1995), Houdré and Kagan (1995), Papadatos and Papathanasiou (2001), Afendras,
Papadatos and Papathanasiou (2011). To put these results in a broader perspective,
variance bounds are related to classical topics from functional analysis, such as
concentration of measures (see, e.g., Ledoux (2001)) and Poincaré, logarithmic
Sobolev and Sobolev inequalities (see Bakry, Gentil and Ledoux (2014), part II).
We also refer the reader to the recent work of Ledoux, Nourdin and Peccati (2015)
for a new and striking connexion between logarithmic Sobolev inequalities and
Stein’s method.

In this paper, we present a new way of constructing Stein operators and show
how to use the resulting identities to obtain lower and upper variance bounds. We
are therefore meddling with two classical topics in a seemingly classical way. Our
approach is nevertheless important in at least two aspects. First, the mechanism we
use is sufficiently abstract to generate a wealth of operators and variance bounds
(some known and others new) for all matters of distributions in a uniform way.
Second, our construction relies on a new parametric interpretation (in the statistical
sense) of the Stein operators and of the resulting variance bounds. For instance,
we show that Chernoff’s bounds (1.1) ought to be read as location-based bounds,
that is, bounds obtained by optimising with respect to μ in the location Gaussian
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model φ(· − μ) for μ ∈ R; we also show how to construct scale-based bounds
by optimising with respect to σ in the scaled Gaussian model σφ(σ(· − μ)) for
σ ∈ R

+, hereby recovering the bound

1

2

(
E

[
Xh′(X)

])2 ≤ Var
[
h(X)

]

already discussed in Cacoullos (1982), Ledoux (2001); finally we obtain skewness-
based bounds by optimising with respect to δ in the skewed Gaussian model
(Hδ)

′(x)φ(Hδ(x)), for Hδ some skewing function, obtaining in particular the
bound

(E[√1 + X2h′(X)])2

κ
≤ Var

[
h(X)

]

(for κ ≈ 2.34432) which, to the best of our knowledge, is new. We can also con-
sider alternative targets such as X ∼ tm, the Student distribution with m degrees of
freedom, for which a routine application of our Proposition 3.1 yields the bound

Var
(
h(X)

) ≥ m + 3

m + 1
E

[
h′(X)

]2 (1.4)

while a routine application of our Proposition 3.2 yields

Var
(
h(X)

) ≥ m + 3

2m
E

[
Xh′(X)

]2 (1.5)

in both cases for h ∈ C1
0(R). Many more similar results will be discussed in the

text.
Bounds such as (1.4) and (1.5) are certainly available from other approaches

such as that outlined in Klaassen (1985); however such results are in general dif-
ficult to apply to any specific choice of distribution (or at least require quite de-
manding computations) while ours are immediate. Moreover, we have good reason
to believe that, when applicable, the bounds obtained by our approach are system-
atically good. For instance, the bounds obtained in the Gaussian case are optimal;
for the Student case one can for instance compare with the corresponding bounds
given in Landsman, Vanduffel and Yao (2015) (ours are better); in the exponential
case we again immediately obtain good bounds by a direct application of our para-
metric approach, see Example 3.3; similar conclusions hold in the Poisson case,
see Example 3.5.

Now it is a near trivial observation that a plethora of Stein operators is available
for any given distribution: for instance replacing f (x) by xf (x) in the classical
operator f ′(x) − xf (x) leads to the operator xf ′(x) + (1 − x2)f (x) and, con-
sidering such standardisations in all generality, obviously leads to infinitely many
more operators in a straightforward fashion. See, for example, Ley, Reinert and
Swan (2014) for a thorough discussion of this approach. Most of the operators ob-
tained in such manner are of no practical use and it still remains a mystery as to



Parametric Stein operators and variance bounds 175

which particular operator will be of interest for applications. As a rule of thumb,
it seems that only operators which bear an intuitive interpretation (as, e.g., the op-
erators arising from the generator approach) stand a chance of being good choices
for the method to work. As outlined above it seems that the operators obtained
by our approach (and therefore the corresponding variance bounds) are systemati-
cally good. This is perhaps due to the fact that, even though the operators we obtain
could have been derived from the density approach by a suitable pre-multiplication
of f (x) with some function c(x) (e.g., we have used c(x) = x above), they now
are branded with a hitherto unsuspected parametric (and therefore statistical) inter-
pretation. It is, at this stage, still unclear what practical implications this taxonomy
might have, outside of the results presented here. We do nevertheless hope that
the current paper will serve as stepping stone for research on the applications of
Stein’s method in (semi-parametric) statistics, perhaps along the path described in
the classical papers Hudson (1978) or Liu (1994).

1.1 Outline of the paper

We develop (Section 2) a new mechanism—which we call the parametric ap-
proach—for building Stein operators in terms of the parameters of interest (lo-
cation parameter, scale parameter, skewness parameter, . . . ) of the target distribu-
tion g. We show (Sections 2.1–2.4) that the operators Tθ (f, g) indeed generalize
the classical Stein operators from the literature. We then use these operators to pro-
pose (Section 3) an extension of (1.3) to a wide variety of target distributions g.
Detailed specific examples are provided and discussed throughout, and lengthy
proofs are deferred to the end of the paper (Section 4).

2 Parametric Stein operators

Throughout, we let � ⊆ R be a non-empty measurable subset of R and say that
a measurable function g :R × � → R

+ forms a family of θ -parametric densities
on R (with respect to some general σ -finite dominating measure μ) if

∫
g(x; θ) dμ(x) = 1 for all θ ∈ �. (2.1)

If in (2.1) μ is the counting measure on the integers then we further have 0 ≤
g(x; θ) ≤ 1 for all x and θ . For θ0 ∈ � (θ0 has of course the same parametric
nature as θ ), we denote by G(R, θ0) the collection of θ -parametric densities on R

for which there exist a bounded neighborhood �0 ⊂ � of θ0 and a μ-integrable
function h :R→R

+ such that g(x; θ) ≤ h(x) over R for all θ ∈ �0. Given θ0 ∈ �

and g ∈ G(R, θ0), we write X ∼ g(·; θ0) to denote a random variable distributed
according to the (absolutely continuous or discrete) probability law x �→ g(x; θ0).
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Definition 2.1. Let θ0 be an interior point of � and let g ∈ G(R, θ0). Define
Sθ := {x ∈ R|g(x; θ) > 0} as the support of g(·; θ). We define the class F(g; θ0)

as the collection of functions f :R×� →R such that there exists �0 some neigh-
borhood of θ0 where the following three conditions are satisfied:

(i) there exists a constant cf ∈ R (not depending on θ ) such that
∫

f (x; θ)g(x;
θ) dμ(x) = cf for all θ ∈ �0;

(ii) for all x ∈ Sθ the mapping θ �→ f (x; θ)g(x; θ) is differentiable in the sense
of distributions over �0;

(iii) there exists a μ-integrable function h :R→R
+ (possibly different for each

pair f and g) such that for all θ ∈ �0 we have |∂θ (f (x; θ)g(x; θ))| ≤ h(x) over R.

We define the Stein operator Tθ0 := Tθ0(·, g) :F(g; θ0) →R
∗ as

Tθ0(f, g)(x) = ∂θ (f (x; θ)g(x; θ))|θ=θ0

g(x; θ0)
,

with the convention that 1/g(x; θ0) = 0 outside the support Sθ0 ⊆ R of g(·; θ0).

Let X ∼ g(·; θ). The conditions imposed in Definition 2.1 bear a natural inter-
pretation. Condition (i) imposes that all functions f ∈ F(g; θ0) are pivotal func-
tions for the model g(·; θ), in the sense that E[f (X; θ)] is independent of θ . Con-
ditions (ii) and (iii) ensure that we are permitted to interchange derivatives and
integrals to get

0 = ∂

∂θ
E

[
f (X; θ)

] =
∫
X

∂

∂θ

(
f (x; θ)g(x; θ)

)
dμ(x)

for all θ in a neighbourhood of θ0 (see, e.g., Lehmann and Casella (1998) for more
information on the conditions under which these manipulations are permitted in
parametric families). Dividing and multiplying the integrand on the rhs by g(·; θ)

we then deduce that

X ∼ g(·; θ) �⇒ E
[
Tθ (f, g)(X)

] = 0 for all f ∈ F(g; θ0)

for all θ ∈ �0. Comparing with point (A) from the Introduction leads us to interpret
Tθ acting on F(g; θ) as a Stein operator for g(·; θ).

It remains to prove the reverse implication. This is the main result of this section.
The proof is quite technical and is provided in Section 4.

Theorem 2.1 (Parametric Stein characterization). Fix an interior point θ0 ∈ �.
Let g ∈ G(R, θ0) and Zθ be distributed according to g(·; θ), and let X be a random
variable taking values on R. Then the following two assertions hold.

(1) If X
D= Zθ0 , then E[Tθ0(f, g)(X)] = 0 for all f ∈ F(g; θ0).

(2) If the support Sθ := S of g(·; θ) does not depend on θ , if E[Tθ0(f, g)(X)]
exists and if E[Tθ0(f, g)(X)] = 0 for all f ∈ F(g; θ0), then X|X ∈ S

D= Zθ0 .
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As already mentioned in the Introduction, modern literature on probability the-
ory is peppered with Stein operators for all manners of distributions. These have
so far all been constructed through variations of either Stein’s density approach,
Barbour and Götze’s generator approach or Diaconis and Zabell’s orthogonal poly-
nomial approach. Theorem 2.1 yields a fourth tool for constructing Stein operators;
we call it the parametric approach. In the next sections we particularize this result
to three important types of parameters, namely location, scale and skewness (in
each case for absolutely continuous target distributions). As we shall see, many
operators used in the literature can be labelled either as location- or scale-based.
The skewness-based operators are, to the best of our knowledge, new. We will also
see how to apply Theorem 2.1 in the case of general discrete distributions with
continuous dependence on the parameter.

2.1 Stein operators for location models

Let the dominating measure μ be the Lebesgue measure on R (and write dx for
dμ(x)). Let � = R, fix ν0 ∈ R (typically one takes ν0 = 0) and consider densities
of the form

g(x;ν) = g0(x − ν), ν ∈ R, (2.2)

for g0 some positive function integrating to 1 over its support. We denote by Gloc

the collection of g0’s for which ν-parametric densities of the form (2.2) belong to
G(R, ν0).

In the present context, condition (i) of Definition 2.1 holds naturally for test
functions of the form f (x;ν) = f0(x − ν) for some function f0, since in this case

∫
R

f (x;ν)g(x;ν) dx =
∫
R

f0(x)g0(x) dx

is indeed independent of ν. Note that we also have

∂x

(
f0(x − ν)g0(x − ν)

) = −∂ν

(
f0(x − ν)g0(x − ν)

)
(2.3)

for all (x, ν) ∈ R × R (we write ∂x and ∂ν the weak derivatives with respect to x

and ν, resp.). Conditions on f0 under which f (x;ν) = f0(x − ν) satisfies condi-
tions (i)–(iii) of Definition 2.1 are summarized in the next definition.

Definition 2.2 (Location-based Stein class). Let g0 ∈ Gloc. We define Floc(g0;
ν0) as the collection of all f0 :R → R such that (i)

∫
R

f0(x − ν)g0(x − ν) dx =∫
R

f0(x)g0(x) dx = cf0 some finite constant; (ii) the mapping x �→ f0(x)g0(x) is
differentiable in the sense of distributions; (iii) there exists an integrable function
h such that |∂y(f0(y − ν)g0(y − ν))|y=x | ≤ h(x) over R for all ν ∈ �0, some
bounded neighborhood of ν0.
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Corollary 2.1 (Location-based Stein operator). The conclusions of Theorem 2.1
apply to any location model of the form (2.2) with g0 ∈ Gloc and operator

Tν0;loc(f0, g0) :R→R :x �→ −∂y(f0(y − ν0)g0(y − ν0))|y=x

g0(x − ν0)
, (2.4)

for f0 ∈ Floc(g0;ν0) and with ∂y the derivative in the sense of distributions with
respect to y.

Example 2.1. Take g0(x) = φ(x), the density of a N (0,1) random variable
(which clearly belongs to Gloc). Then, for ν0 = 0 and any weakly differentiable
function f0 ∈ Floc(φ;0), Corollary 2.1 yields the operator

Tloc(f0, φ)(x) = −f ′
0(x) + xf0(x),

which shows that the usual Stein operator associated with the normal distribution
is, statistically speaking, associated with the location parameter. More generally,
for n ∈ N0, define recursively the sequence of polynomials H0(x) = 1, Hn+1(x) =
−H ′

n(x) + xHn(x) (i.e., Hn(x) is the nth Hermite polynomial) and consider func-
tions of the form f :R×R→R : (x, ν) �→ f (x;ν) := Hn(x − ν)f0(x − ν), where
f0 :R → R is chosen such that f ∈ Floc(φ;0). Restricting the operator Tloc(·, φ)

to this collection of f ’s, we find

Tloc(f0, φ)(x) = −Hn(x)f ′
0(x) + Hn+1(x)f0(x), n ≥ 0. (2.5)

This family of operators was discovered by Goldstein and Reinert (2005).

Example 2.2. Take g0(x) = e−x
I[0,∞)(x), the rate-1 exponential density (which,

as for the Gaussian, clearly belongs to Gloc). Again setting ν0 = 0 we get the oper-
ator

Tloc(f0,Exp) = (−f ′
0(x) + f0(x)

)
I[0,∞)(x) − f0(0)δx=0, (2.6)

with δx=0 the Dirac delta at x = 0 (recall that the derivative in (2.4) is the derivative
in the sense of distributions). This was first obtained in Stein et al. (2004) and used
in Chatterjee, Fulman and Röllin (2011) under the restriction f0(0) = 0.

Example 2.3. If g belongs to the (continuous) exponential family (see Lehmann
and Casella (1998) for a precise definition) then it can be easily seen that Corol-
lary 2.1 yields the known operators discussed, for example, in Hudson (1978),
Hwang (1982) or Lehmann and Casella (1998).

2.2 Stein operators for scale models

Let the dominating measure μ be the Lebesgue measure on R (and write dx for
dμ(x)). Let � = R

+
0 , fix σ0 ∈ � (typically one takes σ0 = 1) and consider densi-

ties of the form

g(x;σ) = σg0(σx), σ ∈ R
+
0 , (2.7)
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for g0 some positive function integrating to 1 over its support. We denote by Gsca
the collection of g0’s for which σ -parametric densities of the form (2.7) belong to
G(R, σ0).

Condition (i) of Definition 2.1 here holds naturally for test functions of the form
f (x;σ) = f0(σx) for some function f0 since in this case∫

R

f (x;σ)g(x;σ)dx =
∫
R

f0(x)g0(x) dx

is indeed independent of σ . Note that we also have the relationship

∂x

(
xf0(σx)g0(σx)

) = ∂σ

(
f0(σx)σg0(σx)

)
(2.8)

for all (x, σ ) ∈ R×R
+
0 . Conditions on f0 under which f (x;σ) = f0(σx) satisfies

conditions (i)–(iii) of Definition 2.1 are summarized in the next definition.

Definition 2.3 (Scale-based Stein class). Let g0 ∈ Gsca. We define Fsca(g0;σ0) as
the collection of all f0 :R → R such that (i)

∫
R

f0(σx)σg0(σx) dx =∫
R

f0(x)g0(x) dx = cf0 some finite constant; (ii) the mapping x �→ f0(x)g0(x)

is differentiable in the sense of distributions; (iii) there exists an integrable func-
tion h such that |∂y(yf0(σy)g0(σy))|y=x | ≤ h(x) over R for all σ ∈ �0, some
bounded neighborhood of σ0.

Corollary 2.2 (Scale-based Stein operator). The conclusions of Theorem 2.1 ap-
ply to any scale model of the form (2.7) with g0 ∈ Gsca and operator

Tσ0;sca(f0, g0) :R→R :x �→ ∂y(yf0(σ0y)g0(σ0y))|y=x

σ0g0(σ0x)
,

for f0 ∈ Fsca(g0;σ0) and ∂y the derivative in the sense of distributions with respect
to y.

Example 2.4. Take g0(x) = φ(x) the density of a N (0,1) (which clearly also
belongs to Gsca), that is, this time we consider the normal with the scale parameter
as parameter of interest. For σ0 = 1 and any weakly differentiable function f0 ∈
Fsca(φ;1), Corollary 2.2 yields the operator

Tsca(f0, φ)(x) = xf ′
0(x) − (

x2 − 1
)
f0(x),

which is (up to the minus sign) a particular case of (2.5) for n = 1.

Example 2.5. Next take g0(x) = e−x
I[0,∞)(x) (which also belongs to Gsca). Note

in particular how the support R+ is invariant under scale change. Applying Corol-
lary 2.2 we get the operator

Tsca(f0,Exp)(x) = (
xf ′

0(x) − (x − 1)f0(x)
)
I[0,∞)(x)
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after setting σ0 = 1. This scale-based operator has first been exploited in
Chatterjee, Fulman and Röllin (2011). More generally, choosing g the probability
density function (p.d.f.) of a gamma distribution with shape a > 0 we obtain

Tsca(f0,Gamma)(x) = (
xf ′

0(x) − (x − a)f0(x)
)
I[0,∞)(x),

a variant of the gamma operator used, for example, by Nourdin and Peccati (2009).

2.3 Stein operators for skewness models

Let the dominating measure μ be the Lebesgue measure on R (and write dx for
dμ(x)). Contrarily to location and scale models which are defined in a canoni-
cal way, there exist several distinct skewness models and no canonical form of
asymmetry. A popular family are the sinh–arcsinh–skew (SAS) laws of Jones
and Pewsey (2009). These laws are a particular case of the construction given
in Ley and Paindaveine (2010) who consider monotone increasing diffeomor-
phisms Hδ : R → R indexed by the skewness parameter δ ∈ R in such a way that
H0(x) = x is the only odd transformation. Letting g0 be a symmetric positive func-
tion integrating to 1 over its support, this ensures that the resulting densities

g(x; δ) = (Hδ)
′(x)g0

(
Hδ(x)

)
, (2.9)

with (Hδ)
′(x) = ∂xHδ(x), are indeed skewed if δ differs from 0, value for which

the initial symmetric density g0 is retrieved. The sinh–arcsinh transformation
corresponds to Hδ(x) = sinh(sinh−1(x) + δ). We shall call the skewed distribu-
tions (2.9) LP-densities.

For these skew distributions, let � = R, and fix δ0 ∈ �. LP-skewness models
possess densities of the form (2.9), and for a given transformation Hδ we denote by
Gskew(Hδ) the collection of g0’s for which δ-parametric densities of the form (2.9)
belong to G(R, δ0). In order to produce the desired operators, we however further
need to add the condition that both δ �→ Hδ(·) and δ �→ (Hδ)

′(·) are differentiable
in the sense of distributions.

Condition (i) of Definition 2.1 here holds naturally for test functions of the form
f (x; δ) = f0(Hδ(x)); the more detailed conditions are stated in the next definition.

Definition 2.4 (LP-skewness-based Stein class). Let g0 ∈ Gskew(Hδ). We define
Fskew(g0;Hδ0) as the collection of all f0 :R → R such that (i)

∫
R

f0(Hδ(x)) ×
(Hδ)

′(x)g0(Hδ(x)) dx = ∫
R

f0(x)g0(x) dx = cf0 some finite constant; (ii) the
mapping x �→ f0(x)g0(x) is differentiable in the sense of distributions; (iii) there
exists an integrable function h such that |∂δ(f0(Hδ(x))(Hδ)

′(x)g0(Hδ(x)))| ≤
h(x) over R for all δ ∈ �0, some bounded neighborhood of δ0.

Corollary 2.3 (LP-skewness-based Stein operator). The conclusions of Theo-
rem 2.1 apply to any LP-skewness model of the form (2.9) with g0 ∈ Gskew(Hδ)

and operator

THδ0 ;skew(f0, g0) :R→R :x �→ ∂δ(f0(Hδ(x))(Hδ)
′(x)g0(Hδ(x)))|δ=δ0

(Hδ0)
′(x)g0(Hδ0(x))
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for f0 ∈ Fskew(g0;Hδ0).

Given a continuous density g0 we define (as in Jones and Pewsey (2009)) the
SAS-skew-model

g(x; δ) = (
1 + x2)−1/2

Cδ(x)g0
(
Sδ(x)

)
,

where Sδ(x) = sinh(sinh−1(x) + δ) and Cδ(x) = cosh(sinh−1(x) + δ) (g(x; δ)
clearly belongs to G(R, δ0) for any δ0 ∈ R). Then we have the relationship

∂x

(
Cδ(x)f0

(
Sδ(x)

)
g0

(
Sδ(x)

)) = ∂δ

(
f0

(
Sδ(x)

) Cδ(x)√
1 + x2

g0
(
Sδ(x)

))
(2.10)

for all weakly differentiable functions f0 ∈ Fskew(φ;Sδ0). Specifying Corol-
lary 2.3 to this skewing mechanism, we get the operator

Tskew(f0, g0)(x) = Cδ0(x)f ′
0
(
Sδ0(x)

)+
(

Sδ0(x)

Cδ0(x)
+Cδ0(x)

g′
0(Sδ0(x))

g0(Sδ0(x))

)
f0

(
Sδ0(x)

)
.

Fixing δ0 = 0, the above becomes

Tskew(f0, g0)(x) =
√

1 + x2f ′
0(x) +

(
x√

1 + x2
+

√
1 + x2

g′
0(x)

g0(x)

)
f0(x), (2.11)

an operator which is unlike anything we have encountered in the literature.

Example 2.6. Take g0 = φ, the standard Gaussian p.d.f. and f0(x) =√
1 + x2f1(x) with f1 some suitable function in (2.11). We obtain

Tφ(f1)(x) = (
1 + x2)

f ′
1(x) − (

x3 − x
)
f1(x),

which seems to be a new operator for the Gaussian distribution.

2.4 Discrete parametric distributions

Let the dominating measure μ be the counting measure on Z. Let � ⊂ R, and fix
θ0 ∈ �. Define Gdis as the collection of θ -parametric discrete densities g ∈ G(Z,�)

such that g(·; θ) :Z → [0,1] has support S = [N ] := {0, . . . ,N} for some N ∈
N0 ∪ {∞} not depending on θ and such that the function θ �→ g(x; θ) is weakly
differentiable around θ0 at all x ∈ [N ].

Define the function D+
x f as D+

x f (x; θ) = f (x + 1; θ) − f (x; θ). It is easy to
check that condition (i) of Definition 2.1 here holds for test functions of the form

f (x; θ) = D+
x (f0(x)(g(x; θ)/g(0; θ)))

g(x; θ)
, (2.12)

since in this case
N∑

x=0

f (x; θ)g(x; θ) =
N∑

x=0

D+
x

(
f0(x)

g(x; θ)

g(0; θ)

)
= f (0)
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for all θ ∈ R. Also note that, for f of the form (2.12), we have the relationship

∂θ

(
f (x; θ)g(x; θ)

) = D+
x

(
f0(x)∂θ

(
g(x; θ)/g(0; θ)

))
(2.13)

for all (x, θ) ∈ [N ] ×R.

Definition 2.5 (Discrete parametric Stein class). Let g ∈ Gdis. We define
Fdis(g; θ0) as the collection of all functions f0 :Z → R such that
(i)

∑N
x=0 D+

x (f0(x)∂θ (g(x; θ)/g(0; θ))) < ∞ and (ii) there exists a summable
function h :Z → R

+ such that |
+
x (f0(x)∂u(g(x;u)/g(0;u))|u=θ )| ≤ h(x) over

Z for all θ ∈ �0 some neighborhood of θ0.

Note that here condition (ii) of Definition 2.1 is always satisfied since we use
the forward difference. Moreover, for finite N , the above-mentioned sum is also fi-
nite, and we have

∑N
x=0 D+

x (f0(x)∂θ (g(x; θ)/g(0; θ))) = −f0(0) which does not
depend on θ .

Corollary 2.4 (Discrete Stein operator). The conclusions of Theorem 2.1 apply
to any discrete distribution g ∈ Gdis with operator

Tθ0;dis(f0, g0) :Z→R :x �→ D+
x (f0(x)∂θ (g(x; θ)/g(0; θ))|θ=θ0)

g(x; θ0)

for f ∈Fdis(g; θ0).

Example 2.7. Take g(x;λ) = e−λλx/x!IN(x), the density of a Poisson P(λ) dis-
tribution. Clearly, g belongs to Gdis for all λ ∈ R

+
0 and its support S = N is inde-

pendent of λ. Then, for x ∈ N0 we have ∂λ(g(x;λ)/g(0;λ))|λ=λ0 = λx−1
0 /(x − 1)!

so that

Tdis
(
f0,P(λ0)

)
(x) = eλ0

(
f0(x + 1) − x

λ0
f0(x)

)
IN(x),

which is (up to the scaling factor) the usual operator for the Poisson.

Example 2.8. Take g(x;p) = (1 − p)xpIN(x), the geometric Geom(p) distribu-
tion, we get

Tdis
(
f0,Geom(p)

)
(x) = 1

p

(
(x + 1)f0(x + 1) − x

1 − p
f0(x)

)
IN(x).

Example 2.9. Finally, for the binomial Bin(n,p), we obtain the p-characterizing
operator

Tp;dis
(
f0,Bin(n,p)

)
(x) = (1−p)−n−2

(
(n−x)f0(x +1)− 1 − p

p
xf0(x)

)
I[n](x).

These last two operators are not new, and can be obtained (up to scaling factors)
as in Holmes (2004) and Ley, Reinert and Swan (2014) via the generator approach.
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3 Variance bounds

Consider a θ -parametric density g ∈ G(R, θ0) with associated Stein class F(g; θ0)

and operator Tθ0(·, g) at some point θ0 ∈ �. Suppose, for simplicity, that the sup-
port Sθ of g(·; θ) is a real interval with closure S̄θ = [a, b] for −∞ ≤ a < b ≤ ∞,
where a = aθ and b = bθ . (If μ is the counting measure, then S = {a, a +
1, . . . , b − 1, b}.)

We single out the subclass F1(g; θ0) ⊂F(g; θ0) (often written simply F1 in the
sequel) of test functions such that, for all θ in some bounded neighborhood �0 of
θ0, (i) f (x; θ) ≥ 0 over R, (ii)

∫
R

f (x; θ)g(x; θ) dμ(x) = 1 and (iii) the function

f̃ (x; θ) = 1

g(x; θ)

∫ x

a
∂θ

(
f (y; θ)g(y; θ)

)
dμ(y) (3.1)

satisfies the boundary conditions

f̃ (a; θ)g(a; θ) = f̃ (b; θ)g(b; θ) = 0 (3.2)

(interpreted as a limit if either a or b is infinite) for all θ ∈ �0. For f ∈ F1(g; θ0),
the function g�(x; θ) = f (x; θ)g(x; θ) is again a θ -parametric density and we have
the “exchange of derivatives” relation

∂θ

(
f (x; θ)g(x; θ)

) = ∂x

(
f̃ (x; θ)g(x; θ)

)
for all x ∈ R and all θ ∈ �0. (3.3)

See, for illustrations, equations (2.3), (2.8), (2.10) and (2.13). For ease of reference
we call the pair (f, f̃ ) exchanging around θ . If μ is the counting measure, then the
derivative ∂x in (3.3) is to be replaced with the forward difference operator D+

x .

Example 3.1. We provide details of the construction in the setting of Section 2.2.
In this case the parameter θ is positive and its role is multiplicative in the sense
that

f (x; θ) = f0(xθ).

Then, from (2.8), we see that the pair (f, f̃ ) with

f̃ (x; θ) = x/θf0(xθ)

is exchanging around θ . It is also easily checked that (3.1) is satisfied, because
f̃ (x; θ)g0(xθ) = xf0(xθ)g(xθ) and

∫ x

0
∂θ

(
θf0(yθ)g(yθ)

)
dy = ∂θ

∫ x

0

(
θf0(yθ)g(yθ)

)
dy

= ∂θ

∫ xθ

0
f0(y)g(y) dy = xf0(xθ)g(xθ).
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3.1 The continuous case

Take the dominating measure μ the Lebesgue measure (and write dx for dμ(x)).
All distributions considered in this section are absolutely continuous with respect
to μ, and we use the superscript ′ to indicate a (classical) strong derivative.

Our generalized variance bounds are provided in the following theorem, whose
proof (given in Section 4) strongly relies on the crucial condition (3.2) and on the
Stein characterizations of Theorem 2.1.

Theorem 3.1. Let g ∈ G(R, θ0) and X ∼ g(·; θ0). Choose f ∈ F1(g; θ0) and let
(f, f̃ ) be exchanging around θ . Let X�

f,θ0
∼ g�(·; θ0) = f (·; θ0)g(·; θ0). Define

ϕθ0,g
�(x) := ∂θ (log(g�(x; θ)))|θ=θ0 (= Tθ0(f, g)(x)/f (x; θ0)) and I(θ0, g

�) :=
E[(ϕθ0,g

�(X�
f,θ0

))2]. Then

Var
[
h
(
X�

f,θ0

)] ≥ (E[h′(X)f̃ (X; θ0)])2

I(θ0, g�)
(3.4)

for all h ∈ C1
0(R). If, furthermore, x �→ ϕθ0,g

�(x) is strictly monotone and strongly
differentiable over its support then

Var
[
h
(
X�

f,θ0

)] ≤ E
[

(h′(X))2

−ϕ′
θ0,g

�(X)
f̃ (X; θ0)

]
(3.5)

for all h ∈ C1
0(R). Moreover, equality holds in (3.4) and (3.5) if and only if h(x) ∝

ϕθ0,g
�(x) for all x.

Remark 3.1. The function ϕθ0,g
� is the score function of X�

f,θ0
, while the quantity

I(θ0, g
�) is its Fisher information. In the sequel, we will generally not use the cum-

bersome indexation by (θ0, g
�) in the notation for the score and Fisher information

of X�
f,θ0

. We rather opt for more handy notation such as

Iloc(g), Isca(g) and Iskew(g)

indicating the parametric nature of θ as well as the reference density g.

Remark 3.2. The upper bound in (3.5) is always positive. Indeed, first observe
that if ϕθ0,g

� is a diffeomorphism then it is, in particular, strictly monotone over the
support Sθ0 and the function x �→ ∂θ (f (x; θ)g(x; θ))|θ=θ0 changes sign exactly
once (because

∫ b
a ∂θ (f (x; θ)g(x; θ))|θ=θ0 dx = 0). Hence if ϕθ0,g

� is monotone
increasing (resp., decreasing) then f̃ (x; θ0) ≤ 0 (resp., f̃ (x; θ0) ≥ 0) for all x ∈ Sθ0

so that the upper bound in (3.5) is positive.

A natural choice of test function in Theorem 3.1 is the constant function
f (x; θ) = 1, for which g�(x; θ) = g(x; θ) and thus X�

f,θ0

L= X. This choice is not
always permitted: if, for example, the support of g depends on the parameter and
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if the density does not cancel at the edges of the support then condition (3.2) can-
not be satisfied and our proofs break down. In practice, the problem is avoided by
imposing the technical assumption that the support of g(·; θ) is either open or does
not depend on θ . In this case the choice f (x; θ) = 1 is permitted and, using (2.3),
(2.8) and (2.10) (which are the specific versions of (3.3) with respect to the dif-
ferent roles of the parameters considered in Section 2) we obtain explicit forms
for the exchanging functions f̃ , and thus explicit forms of the variance bounds
from Theorem 3.1. In the next three results, we consider a θ -parametric density
g ∈ G(R, θ0) and let X ∼ g(·; θ0).

Proposition 3.1 (Location-based variance bounds). Let θ = μ ∈ R be a location
parameter and g(x;μ) = g0(x − μ) a location model for g0 ∈ C1

0(S) with open
support S. Then the exchanging function for f (x;μ) = f0(x − μ) ∈ Floc(g0;μ0)

around μ is f̃ (x;μ) = −f0(x − μ). The location-score function (expressed in
terms of y = x − μ) is

ϕg0,loc(y) = −g′
0(y)

g0(y)
IS(y).

If ϕg0,loc is strictly monotone and strongly differentiable on S, then the location-
based variance bounds read

(E[h′(X)])2

Iloc(g0)
≤ Var

[
h(X)

] ≤ E
[

(h′(X))2

ϕ′
g0,loc(X − μ0)

]
(3.6)

for h ∈ C1
0(R), with Iloc(g0) := E[(ϕg0,loc(X − μ0))

2].

Proposition 3.2 (Scale-based variance bounds). Let θ = σ ∈ R
+
0 be a scale pa-

rameter and g(x;σ) = σg0(σx) a scale model for g0 ∈ C1
0(S) with either open

support S or support S invariant under scale change. Then the exchanging func-
tion for f (x;σ) = f0(σx) ∈ Fsca(g0;σ0) around σ is f̃ (x;σ) = x

σ
f0(σx). The

scale-score function (expressed in terms of y = σx) is

ϕg0,scale(y) = 1

σ

(
1 + y

g′
0(y)

g0(y)

)
IS(y).

If ϕg0,scale is strictly monotone and strongly differentiable on S, then the scale-
based variance bounds read

(E[h′(X)X])2

σ 2
0 Isca(g0)

≤ Var
[
h(X)

] ≤ E
[

(h′(X))2X

−σ 2
0 ϕ′

g0,scale(σ0X)

]
(3.7)

for h ∈ C1
0(R), with Isca(g0) := E[(ϕg0,scale(σ0X))2].

Proposition 3.3 (SAS-based variance bounds). Let θ = δ ∈ R be a skewness
parameter and g(x; δ) = Cδ(x)/

√
1 + x2g0(Sδ(x)) the SAS-skewness model for
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g0 ∈ C1
0(S) with open support S. Then the exchanging function for f (x;σ) =

f0(Sδ(x)) ∈ Fskew(g0;Sδ0) around δ is f̃ (x; δ) = √
1 + x2f0(Sδ(x)). The

skewness-score function (expressed in terms of y = Sδ(x)) is

ϕg0,skew(y) =
(

y

Cδ(S
−1
δ (y))

+ Cδ

(
S−1

δ (y)
)g′

0(y)

g0(y)

)
IS(y).

If ϕg0,skew(x) is monotone and strongly differentiable on S, then the SAS-based
variance bounds read

(E[h′(X)
√

1 + X2])2

Iskew(g0)
≤ Var

[
h(X)

] ≤ E
[

(h′(X))2
√

1 + X2

−Cδ0(X)ϕ′
g0,skew(Sδ0(X))

]
(3.8)

for h ∈ C1
0(R), with Iskew(g0) := E[(ϕg0,skew(Sδ0(X)))2].

The lower bounds in (3.6), (3.7) and (3.8) hold without condition on the mono-
tonicity of the score function. In all cases the bounds are tight, in the sense that
equality holds if and only if the test function h is proportional to the score func-
tion.

In what follows, we shall apply Propositions 3.1 to 3.3 to three examples of
probability laws, namely the Gaussian, the exponential and the gamma. We con-
sider all three examples as location–scale models, but we apply the SAS-skewing
mechanism only to the Gaussian distribution (as the others are already skewed
over R).

Example 3.2. Once again take g0(x) = φ(x) = (2π)−1/2e−x2/2 the standard
Gaussian density. Then, of course, g′

0(x)/g0(x) = −x and f = 1 belongs to F1
for any type of parameter. Applying the propositions for μ0 = 0 (location case),
σ0 = σ (scale case) and δ0 = 0 (skewness case) we get

ϕφ,loc(x) = x, ϕφ,sca(x) = 1

σ

(
1 − x2)

and ϕφ,skew(x) = −x3
√

1 + x2
.

Only the location score function is a “sensible” diffeomorphism (indeed, the
derivative of the skewness score vanishes at the origin, leading to an infinite upper
bound). Simple computations yield

Iloc(φ) = 1, Isca(φ) = 2

σ 2 and

Iskew(φ) = 3 −
√

eπ

2
Erfc(1/

√
2) =: κ ≈ 2.34432.

We thus sequentially obtain the location-based variance bounds
(
E

[
h′(X)

])2 ≤ Var
[
h(X)

] ≤ E
[(

h′(X)
)2]

,
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with equality if and only if h is linear (this is the well-known bound (1.3); more-
over, adding a scale parameter σ in this location setting results in dividing both the
upper and lower bound by σ 2) as well as the scale-based bound

1

2

(
E

[
Xh′(X)

])2 ≤ Var
[
h(X)

]

with equality if and only if h(x) ∝ 1−x2 (this bound is given in Cacoullos (1982),
Klaassen (1985) and Ledoux (2001)) and also the skewness-based bound

(E[√1 + X2h′(X)])2

κ
≤ Var

[
h(X)

]

with equality if and only if h(x) ∝ x3/
√

1 + x2. This last bound seems new.

Example 3.3. Take g0(x) = e−x
I[0,∞)(x), the rate-1 exponential density; here

f = 1 is only permitted in the scale case and we have g′
0(x)/g0(x) = −1 (for

x > 0). Applying the propositions for σ0 = λ we get

ϕExp,sca(x) = 1

λ
(1 − x)I[0,∞)(x).

This scale-score function is clearly a diffeomorphism. Also Isca(Exp) = 1
λ2 , which

yields the scale-based variance bounds

(
E

[
Xh′(X)

])2 ≤ Var
[
h(X)

] ≤ 1

λ
E

[
X

(
h′(X)

)2]; (3.9)

the upper bound was previously obtained in Ledoux (2001), (5.18). For the sake
of comparison, Cacoullos (1982), Proposition 4.3, proposes the lower and upper
bounds

(
E

[
Xh′(X)

])2 ≤ Var
[
h(X)

] ≤ 1

λ2 Var
[
h′(X)

] + 1

λ
E

[
X

(
h′(X)

)2]; (3.10)

while Klaassen (1985) proposes

(
E

[
Xh′(X)

])2 ≤ Var
[
h(X)

] ≤ 4

λ2 E
[(

h′(X)
)2]

. (3.11)

The lower bound in both these seminal papers concurs with ours from (3.9). Our
upper bound is evidently a strict improvement on (3.10). It also improves on (3.11)
in several cases. Indeed, a simple integration by parts in our upper bound (provided
that h ∈ C2

0(R)) allows to rewrite it under the form

1

λ2

(
E

[(
h′(X)

)2] + 2E
[
Xh′(X)h′′(X)

])
.

Whenever the second term is zero (e.g., for h(x) = x) or negative (e.g., for h(x) =√
x), our bound is better than (3.11).
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Example 3.4. Finally take g0(x) = 1
�(a)

xa−1e−x
I[0,∞)(x) the p.d.f. of a gamma

distribution with shape a > 0. Here f = 1 is permitted in both location and scale
cases if a > 1 and reserved to the scale case for a ≤ 1. For the sake of clarity we
will only consider the case a > 1. We have g′

0(x)/g0(x) = (a−1−x)
x

. Applying the
propositions under the respective restrictions on a and for μ0 = 0 (location case)
and σ0 = b (scale case), we get

ϕGa,loc(x) = −a + 1 + x

x
I[0,∞)(x) and ϕGa,sca(x) = 1

b
(a − x)I[0,∞)(x).

Both score functions are diffeomorphisms (on R
+
0 ). Also

Iloc(Gamma) =
⎧⎨
⎩

1

a − 2
, if a > 2,

∞, if 1 < a ≤ 2,

and Isca(Gamma) = a

b2 .

This yields the following: location-based bounds

(a − 2)
(
E

[
h′(X)

])2 ≤ Var
[
h(X)

] ≤ 1

a − 1
E

[(
h′(X)

)2
X2]

(3.12)

and scale-based bounds
1

a

(
E

[
Xh′(X)

])2 ≤ Var
[
h(X)

] ≤ 1

b
E

[
X

(
h′(X)

)2]
. (3.13)

On the one hand Cacoullos (1982) only proposes a lower bound (which concurs
with ours). On the other hand, Klaassen (1985) proposes for a > 2

max
(

a − 2

b2

(
E

[
h′(X)

])2
,

1

a

(
E

[
Xh′(X)

])2
)

≤ Var
[
h(X)

]
(3.14)

≤ 1

b
E

[
X

(
h′(X)

)2]
.

The upper bound coincides with that in (3.13), while both candidates for the lower
bounds are given in (3.12) and (3.13), respectively (for a true comparison, we need
to add a scale parameter in the lower location bound (3.12), resulting in a division
by b2).

We conclude this section by determining conditions on g and θ for which the
bound (3.5) takes on the form

Var
(
h(X)

) ≤ dE
[(

h′(X)
)2]

(3.15)

for some positive constant d (a similar question is already addressed, in simi-
lar conditions, in Klaassen (1985)). If the special case f = 1 is admissible then,
trivially, the constant d = dg,θ0 = supx∈S(−f̃ (x; θ0)/ϕ

′
θ0,g

�(x)) plays the required
role, and the question becomes that of determining conditions under which this
constant is finite. Specializing to the case of a location model we obtain the fol-
lowing intuitive sufficient condition.
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Proposition 3.4. Let g be a continuous density with open support and let X ∼ g.
If the function x �→ (logg(x))′ is strict monotone decreasing and if there exists
ε > 0 such that −(logg(x))′′ ≥ ε > 0, then (3.15) holds with dg,μ0 = 1

ε
.

Proof. Take a location model g(x;μ) = g(x − μ) with constant test function
f (x;μ) = 1. Then f̃ (x;μ) = −1 and we compute

f̃ (x;μ0)

−ϕ′
μ0,g

�(x)
= 1

−g′′(x − μ0)/(g(x − μ0)) + (g′(x − μ0)/(g(x − μ0)))2

= 1

−(logg(x − μ0))′′
.

The conclusion follows. �

Note that the assumptions of Proposition 3.4 hold if g(x) = e−ψ(x) for ψ(x) a
strict convex function, that is, if g is strongly unimodal on R. We hereby recover
Lemma 2.1 from Klaassen (1985). In particular, if g(x) = (2πσ 2)−1/2e−x2/(2σ 2)

is the N (0, σ 2) then ε = 1/σ 2 and we reobtain the well-known upper bound
Var(h(X)) ≤ σ 2E[(h′(X))2].

3.2 The discrete case

Take as dominating measure μ the counting measure. For f and g two functions
such that

∑b
x=a D+

x (f (x)g(x)) < ∞ and f (b + 1)g(b + 1) = f (a)g(a) = 0, we
have the discrete integration by parts formula

b∑
x=a

(
D+

x

(
f (x)

))
g(x + 1) = −

b∑
x=a

f (x)
(
D+

x

(
g(x)

))
.

The boundary condition (3.2) therefore allows us to deduce the following partial
discrete counterpart to Theorem 3.1, whose proof is left to the reader.

Theorem 3.2. Let g ∈ G(Z, θ0) and X ∼ g(·; θ0). Choose f ∈ F1(g; θ0) and let
(f, f̃ ) be exchanging around θ . Let X�

f,θ0
∼ g�(·; θ0) = f (·; θ0)g(·; θ0) and define

ϕθ0,g
�(x) := ∂θ (log(g�(x; θ)))|θ=θ0 (= Tθ0(f, g)(x)/f (x; θ0)) the score function

of X�
f,θ0

and I(θ0, g
�) := E[(ϕθ0,g

�(X�
f,θ0

))2] its Fisher information. Then

Var
[
h
(
X�

f,θ0

)] ≥ (E[D−
x (h(X))f̃ (X; θ0)])2

I(θ0, g�)
(3.16)

for all h with equality if and only if h(x) ∝ ϕθ0,g
�(x).

Example 3.5. Take g(x;λ) = e−λλx/x!IN(x) the p.d.f. of the Poisson distribu-
tion. Then we have ∂λg(x;λ) = −D+

x (x
λ
g(x;λ)); in particular 1 ∈ F1 because
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1̃(x;λ)g(x;λ) = x
λ
g(x;λ) indeed cancels at the edges of the support of g. Also

we compute ϕλ,g(x) = (−1 + x
λ
)IN(x) and I(λ, g) = 1/λ. Applying (3.16) we

conclude

Var
[
h(X)

] ≥ 1

λ

(
E

[
XD−

x

(
h(X)

)])2
, (3.17)

with equality if and only if h(x) ∝ −1 + x/λ on N. Further, using Chen’s identity
for the Poisson we have

E
[
XD−

x

(
h(X)

)] = λE
[
D+

x

(
h(X)

)]
so that (3.17) is equivalent to

Var
[
h(X)

] ≥ λ
(
E

[
D+

x

(
h(X)

)])2 (3.18)

given in Cacoullos (1982), Theorem 5.1, and also appearing in Klaassen (1985).

4 Proofs

Proof of Theorem 2.1. (1) Since condition (iii) allows for differentiating w.r.t.
θ under the integral in condition (i) and since differentiating w.r.t. θ is allowed
thanks to condition (ii), the claim follows immediately.

(2) We prove the claim in the continuous case (and write dx for dμ(x)). The
discrete case follows exactly along the same lines. Define, for A ⊆ R, the mapping

fA :R× �0 →R : (x, θ) �→ 1

g(x; θ)

∫ θ

θ0

lA(x;u)g(x;u)du

with lA(x;u) := (IA(x) − P(Zu ∈ A))IS(x), where P(Zu ∈ B) = ∫
R
IB(x)g(x;

u)dx for B ⊆ R. Note that P(Zu ∈ S) = 1 for all u ∈ �0, since the support does
not depend on the parameter of interest. We claim that fA belongs to F(g; θ0). If
this holds true the conclusion follows since then, by hypothesis,

E
[
Tθ0(fA, g)(X)

] = E
[
lA(X; θ0)

] = E
[
IA∩S(X) − P(Zθ0 ∈ A)IS(X)

] = 0

and thus

P(X ∈ A|X ∈ S) = P(Zθ0 ∈ A)

for all measurable A ⊂ R.
To prove the claim, first note that∫

R

fA(x; θ)g(x; θ) dx =
∫ θ

θ0

∫
S
lA(x;u)g(x;u)dx du

by Fubini’s theorem, which can be applied for all θ ∈ �0 since in this case there
exists a constant M such that∫

R

I(θ0,θ)(u)

∫
S

∣∣lA(x;u)
∣∣g(x;u)dx du ≤ |θ − θ0| ≤ M
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for all θ ∈ �0. We also have, by definition of lA, that
∫
S
lA(x;u)g(x;u)dx = P(Zu ∈ A ∩ S) − P(Zu ∈ A)P(Zu ∈ S)

= 0.

Hence, fA satisfies condition (i). Condition (ii) is easily checked. Regarding con-
dition (iii), one sees that ∂t (fA(x; t)g(x; t))|t=θ = lA(x; θ)g(x; θ). By bounded-
ness of the function lA(·; θ) and by definition of the class G(R, θ0) we know that
|lA(x; θ)g(x; θ)| can be bounded by an integrable function h(x) uniformly in θ ∈
�0. Hence, fA satisfies condition (iii). We have thus proved that fA ∈ F(g; θ0),
and the conclusion follows. �

Proof of Theorem 3.1. For the sake of readability, throughout the proof we simply
write X� := X�

f,θ0
and ϕ(x) := ϕθ0,g

�(x).
We first prove the lower bound (3.4). Take f ∈ F1(g; θ0). Using (3.3) and the

different assumptions (which are tailored for the following to hold) we get, on the
one hand

E
[
h(X)Tθ0(f, g)(X)

] =
∫ b

a
h(x)∂θ

(
f (x; θ)g(x; θ)

)∣∣∣
θ0

dx

=
∫ b

a
h(x)∂x

(
f̃ (x; θ0)g(x; θ0)

)
dx

= −
∫ b

a
h′(x)f̃ (x; θ0)g(x; θ0) dx = −E

[
h′(X)f̃ (X; θ0)

]

and, on the other hand (recall that Tθ0(f, g)(x) = ϕ(x)f (x; θ0)),

∣∣E[
h(X)Tθ0(f, g)(X)

]∣∣
= ∣∣E[(

h(X) − E
[
h
(
X�)])Tθ0(f, g)(X)

]∣∣ (4.1)

≤ E
[∣∣h(X) − E

[
h
(
X�)]∣∣∣∣ϕ(X)

∣∣f (X; θ0)
]

≤
√

E
[(

h(X) − E
[
h
(
X�

)])2
f (X; θ0)

]
E

[
f (X; θ0)

(
ϕ(X)

)2]
(4.2)

=
√

Var
[
h
(
X�

)]
I

(
θ0, g�

)
,

where (4.1) follows from the Stein characterization of Theorem 2.1 and (4.2) from
the Cauchy–Schwarz inequality (recall that f is positive).

We now prove the upper bound (3.5) in the case where ϕ is strict monotone
decreasing, the increasing case being proved exactly in the same way. Let ϕ−1(x)

denote the inverse function of ϕ. Then direct manipulations involving the Cauchy–
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Schwarz inequality yield

Var
[
h
(
X�)] = Var

[∫ ϕ(X�)

0

(
h ◦ ϕ−1)′

(u) du

]
≤ E

[(∫ ϕ(X�)

0

(
h ◦ ϕ−1)′

(u) du

)2]

≤ E
[∫ ϕ(X�)

0
12 du

∫ ϕ(X�)

0

((
h ◦ ϕ−1)′

(u)
)2

du

]

= E
[
ϕ

(
X�) ∫ ϕ(X�)

0

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2

du

]
.

Note how the latter expression is always positive: negative values of ϕ(X�) are
multiplied by a negative integral (since a positive function is integrated over
(0, ϕ(X�))). Now let x0 be the unique point in (a, b) such that ϕ(x0) = 0 and
let ϕ(a) = P + and ϕ(b) = −P − for some P ± ∈ R ∪ {±∞}. Then, pursuing the
above,

Var
[
h
(
X�)] ≤

∫ x0

a

∫ ϕ(x)

0
∂θ

(
f (x; θ)g(x; θ)

)∣∣∣
θ=θ0

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2

dudx

+
∫ b

x0

∫ ϕ(x)

0
∂θ

(
f (x; θ)g(x; θ)

)∣∣∣
θ=θ0

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2

dudx.

Using Fubini (which is possible since all quantities involved are positive), we de-
duce

Var
[
h
(
X�)] ≤

∫ P +

0

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2(∫ ϕ−1(u)

a
∂θ

(
f (x; θ)g(x; θ)

)∣∣∣
θ=θ0

dx

)
du

−
∫ 0

−P−

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2(∫ b

ϕ−1(u)
∂θ

(
f (x; θ)g(x; θ)

)∣∣∣
θ=θ0

dx

)
du.

From (3.3), we then get

Var
[
h
(
X�)] ≤

∫ P +

0

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2(∫ ϕ−1(u)

a
∂x

(
f̃ (x; θ0)g(x; θ0)

)
dx

)
du

−
∫ 0

−P−

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2(∫ b

ϕ−1(u)
∂x

(
f̃ (x; θ0)g(x; θ0)

)
dx

)
du

=
∫ P +

0

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2

f̃
(
ϕ−1(u); θ0

)
g
(
ϕ−1(u); θ0

)
du

+
∫ 0

−P−

(
h′(ϕ−1(u))

ϕ′(ϕ−1(u))

)2

f̃
(
ϕ−1(u); θ0

)
g
(
ϕ−1(u); θ0

)
du.

Setting y = ϕ−1(u) in the above and changing variables accordingly we obtain

Var
[
h
(
X�)] ≤

∫ a

b

(h′(y))2

ϕ′(y)
f̃ (y; θ0)g(y; θ0) dy = E

[
(h′(X))2

−ϕ′(X)
f̃ (X; θ0)

]
,
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which is the claim. �
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