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Abstract. In longitudinal clinical trials, subjects may be evaluated many
times over the course of the study. This article is motivated by a medical
study conducted in the U.S. Veterans Administration Cooperative Urological
Research Group to assess the effectiveness of a treatment in preventing recur-
rence on subjects affected by bladder cancer. The data consist of the accumu-
lated tumor counts over a sequence of regular checkups, with many missing
observations. We propose a hierarchical nonparametric Bayesian model for
sequences of monotonically increasing counts. Unlike some of the previous
analyses for these data, we avoid interpolation by explicitly incorporating
the missing observations under the assumption of these being missing com-
pletely at random. Our formulation involves a generalized linear mixed ef-
fects model, using a dependent Dirichlet process prior for the random effects,
with an autoregressive component to include serial correlation along patients.
This provides great flexibility in the desired inference, that is, assessing the
treatment effect. We discuss posterior computations and the corresponding
results obtained for the motivating dataset, including a comparison with para-
metric alternatives.

1 Introduction

Many longitudinal clinical trials arise when a time sequence of measurements is
recorded for each of a number experimental units, allocated to one of several treat-
ments. A key feature of longitudinal data that must be explicitly accounted for
by realistic models, is the dependence of multiple responses obtained from the
same individual. Frequently, the modeling effort is complicated by the presence
of missing observations in the study. We specifically consider the case when the
sequence of responses for each subject is integer-valued and monotonically in-
creasing, that is, with nonnegative increments. The particular dataset that motivates
our discussion comes from a U.S. Veterans Administration Cooperative Urologi-
cal Research Group (VACURG) study about bladder cancer comparing the effec-
tiveness of treatments to prevent the recurrence of Stage I bladder cancer (Byar,
Blackard and Urological Research Group, 1977). Specifically, we focus on assess-
ing the effect of thiotepa compared to a placebo. The data are available in Davis
and Wei (1988), who considered a class of univariate one-sided global asymptoti-
cally distribution-free tests for the equality of the two treatments. Their testing and
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estimation procedures assume that repeated measurements of the same characteris-
tic, scheduled to be taken over a common set of time points for each study subject,
are nondecreasing. Different forms of these data have been considered in the past.
See, for example, Giardina et al. (2011), Di Lucca et al. (2013), and references
therein. These works typically involve a dichotomization process that transforms
each response in a (binary) tumor recurrence indicator, and with interpolation to
deal with the missing responses. Unlike those approaches, we consider here the
original accumulated tumor counts.

Our approach is built on generalized linear mixed models (GLMM) (e.g., Zeger
and Karim, 1991; Breslow and Clayton, 1993) for longitudinal count variables,
with an autoregressive structure to account for the serial correlation. We also ex-
plicitly consider the fact that the motivating dataset consists of cumulative counts
of recurrent tumors, and therefore, the sequence of responses are nondecreasing
over time. In the case of GLMMs, the distribution G of random effects is typ-
ically assumed to have a parametric distribution form, such as normal or some
other heavier-tailed alternative. Such assumption may have critical impact on the
type and quality of the inferences, specially if the random effects distribution is
actually nonnormal and/or multimodal and/or skewed. We use instead a semipara-
metric approach (e.g., Ibrahim and Kleinman, 1998) where random effects are
assumed a sample from a certain distribution G, in turn modeled by means of a
Dirichlet process (DP) prior (Ferguson, 1973; Antoniak, 1974). Thus, individual
heterogeneity is nonparametrically adjusted by random effects with a DP distri-
bution. A remarkable stochastic representation of the DP as an infinite mixture of
point masses was developed by Sethuraman (1994) (but see also Rolin, 1992):

G(B) =
∞∑

h=1

whδθh
(B), B ∈ B, (1)

where w1,w2, . . . are random weights given by w1 = V1 and wh = ∏h−1
j=1(1 −

Vj )Vh for h > 1, where V1,V2, . . .
i.i.d.∼ Beta(1,M), for some M > 0 called to-

tal mass parameter. In addition, θ1, θ2, . . . are a random sample (independent
of the {wh} collection) from the centering distribution G0, which is assumed to
have support on a space that satisfies some minimal regularity conditions, and
B is the Borel σ -field on the space where G0 is supported. We denote this by
G ∼ D(M,G0). In most applications, this space is Euclidean, which satisfies the
technical requirements. An important consequence of (1) is that the DP is almost
surely (a.s.) discrete. The support of the prior distribution is large, thus allow-
ing for a wide range of shapes for G. This important property implies that by so
modeling G, we obtain more flexible and reliable inferences than their parametric
counterparts.

The DP has been very popular in Bayesian nonparametric statistics, playing
a role similar to that of the normal distribution for parametric models. One key
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reason for the popularity enjoyed by the DP is the availability of efficient pos-
terior simulation schemes. At the heart of many of these algorithms is the re-
sult by Blackwell and MacQueen (1973) which states that for a random sam-

ple X1, . . . ,Xn|G i.i.d.∼ G and G ∼ D(M,G0), the joint marginal distribution of
X1, . . . ,Xn can be expressed as a sequence of draws from a Pólya urn with a con-
tinuum of colors, distributed as G0. For the purpose of posterior simulation, the
most relevant consequence is the implied predictive distribution:

p(Xi |X−i ) ∝
n∑

j=1, j �=i

δXj
(Xi) + MG0(Xi), i = 1, . . . , n, (2)

where X−i represents the vector (X1, . . . ,Xn) with the ith coordinate removed,
and the proportionality constant is M + n − 1. A colorful description of this se-
quence of predictive distributions has been termed the Chinese restaurant process
(Aldous, 1985). The distribution in (2) gives also an explicit interpretation of the
discreteness property of DPs pointed out earlier. See further details on poste-
rior simulation for DP-based models in for example, Escobar (1994), Bush and
MacEachern (1996), MacEachern and Müller (1998), and Neal (2000), among
many other references. A different type of algorithm that works directly with (1)
can be found in Ishwaran and James (2001). Review of models based on the DP
and many other alternatives can be found in Müller and Quintana (2004), Hjort
et al. (2010) and in Müller and Mitra (2013).

The rest of the paper is organized as follows. Section 2 describes the data and
motivates the model discussed in Section 3, where we also emphasize its particular
likelihood and prior components. Section 4 presents the main results of the infer-
ences on quantities of interest. In particular, we find a significant treatment effect,
in the sense that treated patients have smaller bladder tumor recurrence. As part
of the analysis, we also assess sensitivity of the results to various prior choices.
A comparison with a parametric alternative is considered as well. Furthermore,
we focus on predictions for future observations of current patients or new patients
either under treatment with thiotepa or under placebo. Section 5 presents a final
summary and conclusions from the analysis. Some computational details are pre-
sented in an Appendix.

2 Data description

Due to the high recurrences rate and the need for lifelong care and monitoring,
bladder cancer is the most expensive cancer to treat on a per-patient basis. If a
bladder cancer only affects the inner lining of the bladder, it is known as a super-
ficial cancer or Stage I bladder cancer. Stage I tumors can usually be completely
removed by transurethral resection, but many patients have multiple recurrence.
The subsequent tumors sometimes show a higher degree of malignancy and may
even progress to invasive carcinoma.
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The data we consider came from a randomized clinical trial conducted by the
VACURG, concerning the effect of drug thiotepa on the recurrence of tumors in
the bladder. Thiotepa is a chemotherapy drug used to reduce the size of a cancerous
tumors and prevent the growth of a new cancer cell. At the beginning of the trial,
all available patients had superficial bladder tumors. To determine if recurrence
of Stage I bladder cancer can be prevented, the tumors were removed through the
urethra and patients were assigned to one of two treatments: placebo and thiotepa.
At subsequent follow up visits, all recurrent tumors were removed and treatment
continued.

The data, sequences of accumulated tumor counts at subsequent follow-up
checks every three months, are presented in Davis and Wei (1988). A total of 82
patients were assigned to thiotepa (46) and placebo (36) treatments. The number
of tumors was measured at the initial time and at each of the follow-up visits every
three months (3 to 36 months). Each sequence is thus monotonically increasing,
despite the fact that there are many missing observations, because not all patients
showed up at every scheduled time.

Our main aim is to determine whether usage of thiotepa decreases the recurrence
of new tumors over time. To do so, and considering the nondecreasing nature of the
observations, we work with the count difference over two consecutive visits. Thus,
let yij denote the increase in the number of tumors between time j −1 and j for pa-
tient i (we define yi0 = 0), with j = 1, . . . , ni , where ni is the corresponding num-
ber of measurements. As in Davis and Wei (1988), we will assume that the missing
value process is independent of the observations. We also let xi = 1 if patient i was
assigned to thiotepa treatment, and xi = 0 otherwise (i.e., placebo group).

3 Model formulation

To deal with the data features and to assess treatment effect, we here adopt a
GLMM formulation. Specifically, we assume a Poisson distribution for each tu-
mor count difference yij with rate λij . To include correlation along the sequences,
we assume an autoregressive structure, where the distribution of yij depends on
the previous yi,j−1. We do so by including a linear term in the link function, that
is, log(λij ) includes a linear transformation of yi,j−1. In addition, individual het-
erogeneity is captured by an additive random effect bi , which is modeled nonpara-
metrically with a Dirichlet process prior.

Our hierarchical model formulation is then given by

yij |λij , yi,1:j−1 ∼ Poisson(λij ),

log(λij ) = α0 + α1xi + (β0 + β1xi)yi,j−1 + bi,
(3)

bi |G ∼ G, G ∼ D(M,G0), G0|τ ∼ N(0, τ ),

α0, α1, β0, β1 ∼ N(0,B), τ−1 ∼ Gamma(τa, τb),



Monotonically increasing count sequences 159

where yi,1 : j−1 = (yi,1, . . . , yi,j−1), and B , τa and τb are known positive con-
stants specified by the user. Here, B is the prior variance of the coefficients, and
the Gamma distribution is parametrized so that the precision τ−1 has prior mean
E(τ−1) = τa/τb. Note that the likelihood is defined as a sequence of increasing
conditionals that convey dependence only on the previous element in the sequence.
Since there are four regression parameters in the likelihood model, we follow the
convention in Giardina et al. (2011) and refer to model (3) as BNP4P.

The likelihood in BNP4P model (3) corresponds to a Poisson regression, where
the linear predictor involves an interaction between the treatment indicator variable
xi and the first lagged increment yi,j−1. This interaction is formalized by the β1
term in the likelihood model, which allows for differences in how the log of the
mean tumor count increments change as time progresses for treated compared to
placebo patients. This is similar in spirit to the models in Giardina et al. (2011)
and Di Lucca et al. (2013), albeit with different outcome variables and likelihood
model. Generally speaking, we can interpret the linear predictor coefficients in
terms of the log-expected counts. Thus, parameters (α0, α1) describe the average
effect of the corresponding treatment received, while (β0, β1) describe the effect of
each patient deviation from the mean of treatment subject to the number of tumors.
The DP assumption on the bi random effects allows for shapes beyond the usual
normal assumption. Because of the Sethuraman (1994) representation discussed
earlier, there may be ties in the bi values, leading to the well-known clustering
property of the DP (and, in fact, of any discrete random probability measure). As a
consequence, patients can be clustered by the value of their random effects, while
still retaining their particular longitudinal evolution. The centering distribution is
a zero-mean normal distribution with variance τ , given itself a standard inverse-
Gamma distribution, which allows for adaptation of the centering distribution, as
required by the data.

As a natural simplified version of model BNP4P, we consider setting β1 to
zero in the likelihood in (3). In other words, under the simplified version, the log-
transformed mean function then becomes

log(λij ) = α0 + α1xi + β0yi,j−1 + bi. (4)

Following again the notation in Giardina et al. (2011), we refer to (4) as the three-
parameter model (BNP3P). Under model BNP3P the interaction between treat-
ment indicator and lagged responses commented above is suppressed, and this
lagged term affects only the baseline mean increment in the number of tumors.

It is also important to point out that we assume the mechanism provoking the
missing values to be independent of the actual data and that these unobserved val-
ues follow the same model. We will assume this is the case for all the models
considered in our analysis. To deal with missing values we therefore use an impu-
tation scheme in the MCMC algorithm discussed later in Section 4. As a result, the
inference will be based on the posterior distribution after marginalization over the
missing values by averaging over the corresponding imputations.
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4 Data analysis

4.1 Computation

Model (3) implies an analytically intractable posterior distribution and therefore,
the need to use MCMC methods to simulate from it. As usual in DP-based mod-
els, we introduce cluster indicators to facilitate the simulation. Recall that the dis-
creteness of the DP implies that there are ties among b1, . . . , bn. Let b∗

1, . . . , b
∗
k

denote the unique values among b1, . . . , bn. A partition of the entire collection of
patients is thus induced by identifying these unique values. Let S1, . . . , Sk denote
the nonempty subsets in the partition, and let ci = j if i ∈ Sj , j = 1, . . . , k, so
that bi = b∗

ci
for i = 1, . . . , n. The entire b1, . . . , bn collection is then equivalent to

b∗
1, . . . , b

∗
k and c1, . . . , cn.

The most time-consuming step of the MCMC algorithm corresponds to the up-
dating of the configurations c1, . . . , cn. In our case, we implemented Algorithm 8
in Neal (2000), which is particularly suitable to the fact that the likelihood and the
centering distribution are nonconjugate. In addition, the corresponding full con-
ditionals for the autoregressive coefficients are not available in closed form, and
therefore, we used adaptive methods as discussed in Roberts and Rosenthal (2009).
See details in the Appendix.

We finally point out that only for the purpose of initializing our Markov chain,
we imputed each missing value in the cumulative counts by a linear interpola-
tion.

4.2 Results

We ran the posterior simulation scheme using 100,000 scans of which 12,000
were burned, with a thinning of 50. We judged practical convergence as deter-
mined by standard tests such as those contained in the CODA package (Plummer
et al., 2006). We chose B = 103 and τa = τb = 10−3, implying vague prior spec-
ifications, thus reflecting a genuine lack of prior information. Summaries of the
marginal posterior distributions for α0, α1, β0, β1 and τ are shown in Table 1. The
corresponding posterior densities are presented in Figure 1.

Interestingly, the posterior distributions of α0, α1 and β1 are mostly concen-
trated on the negative numbers, and on the positive numbers for β0. Looking at
the corresponding posterior supports, it follows that on average, the initial number
of tumors is less than one, and even less for the treated group. In addition, the
increase in number of tumors over consecutive follow-up visits is, on the average,
less than one as well. There is also some evidence that this increase is even less for
the thiotepa group, because P(β1 < 0|data) = 0.58523.

Figure 2 shows predictions for an entire sequence of twelve measurements for
one new patient from each of the placebo and treatment groups. In other words,
we predict outcomes for future patients. The displayed curves correspond to the
respective posterior predictive means. As a comparison, we also include the same
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Table 1 Marginal posterior summaries for all the models considered in this work, including pos-
terior mean, median, standard deviation and 95% highest posterior density (HPD) intervals. The
left panel shows results for the nonparametric models, while the right one is for the corresponding
parametric versions. The upper segment shows results for the BNP4P and BP4P models; the middle
segment is dedicated to BNP3P and BP3P; and the lower segment is for the BPBM model given
in (5), that is, the version of BP4P with group-specific variances

Nonparametric Parametric

Mean Median Std. Dev. HPD Mean Median Std. Dev. HPD

α0 −1.73 −1.71 0.30 (−2.34;1.16) −1.63 −1.63 0.32 (−2.29;−0.097)

α1 −0.98 −0.98 0.09 (−1.17;−0.79) −1.13 −1.14 0.48 (−2.13;−0.133)

β0 0.10 0.10 0.02 (0.05;0.15) −0.038 −0.037 0.326 (−0.102;0.023)

β1 −0.05 −0.05 0.05 (−0.15;0.06) −0.21 −0.21 0.058 (−0.32;−0.099)

τ 3.06 2.36 2.25 (0.46;7.43) 0.31 0.30 0.09 (0.151;0.499)

α0 −1.90 −1.87 0.28 (−2.46;−1.37) −1.65 −1.646 0.356 (−2.31;0.99)

α1 −0.35 −0.36 0.19 (−0.75;0.03) −1.05 −1.041 0.51 (−2.091;−0.08)

β0 0.16 0.16 0.02 (0.11;0.21) 0.018 0.019 0.026 (−0.033;0.07)

τ 2.3 1.75 2.22 (0.33;5.59) 0.306 0.2955 0.088 (0.151;0.184)

α0 −1.611 −1.587 0.357 (−2.33;−0.925)

α1 −1.158 −1.12 0.641 (−2.44;0.08)

β0 −0.038 −0.037 0.032 (−0.103;0.023)

β1 −0.213 −0.213 0.058 (−0.32;−0.09)

τ1 0.314 0.297 0.112 (0.123;0.538)

τ2 0.351 0.3164 0.178 (0.072;0.705)

estimated curves, obtained using a parametric model that follows when letting
M → ∞, that is, assuming b1, . . . , bn to be distributed according to the baseline
distribution G0. By analogy to the proposed model, we refer to this parametric al-
ternative as BP4P, and to the parametric counterpart of (4) as BP3P. All the curves
are monotonic, as to be expected by construction of the model. It also follows,
for both models, that the predicted mean curves for the placebo patient are uni-
formly above the curve for the treated patient, revealing that there is indeed a
treatment effect. Furthermore, the placebo curve grows at a higher rate than the
treated curve, which simply reflects the fact that β1 has slightly more of its poste-
rior mass on the negative numbers (see above). Interestingly, the parametric model
predicts curves that have essentially identical start but that deviate from each other
after the third occasion. In contrast, the proposed model predicts curves that are
separated from the start, thus uncovering an early treatment effect that increases
over time.

Figure 3 shows a smoothed version of the posterior predictive distribution of a
new random effect under each model. By definition, the parametric model is too
constrained by the normality assumption, while the proposed nonparametric model
clearly exhibits a bimodal feature. We further investigate this issue in Section 4.3.
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Figure 1 Marginal posterior distribution for α0, α1, β0, β1, and τ under model BNP4P.

4.3 Sensitivity analysis and other comparisons

In addition to the analysis presented so far, we also explored sensitivity of the
results to various prior specifications. We considered varying M to be one of
{2,3,4,5}, keeping all the other prior definitions as earlier. The results were es-
sentially the same as those reported so far. Next, we tried changing the priors for τ

and the regression coefficients to B = 10 and τa = 10−2 and τb = 10−5. Again, the
results changed very little, and in particular, the predictions were undistinguishable
from those in Figure 2, and so we do not report them.
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Figure 2 Estimated posterior predictive mean at each follow-up occasion for one thiotepa group
new patient and one placebo group new patient under the proposed nonparametric model (BNP4P)
and under a parametric version of the model (BP4P). The curves are connected for the purpose of
presentation only.

Figure 3 Estimated posterior density of b under the parametric alternative BP4P (dotted line),
together with posterior predictive density of a new random effect bn+1 under the proposed nonpara-
metric model BNP4P (solid line).

Turning now our attention to the interaction between treatment and lagged re-
sponses, we compare models BNP4P and BNP3P. The MCMC details for BNP3P
are almost identical to those of BNP4P and therefore we omit them. Table 1 shows
posterior summaries obtained under model BNP3P. The numerical values change
somehow, but the general conclusion remains the same, namely, that there is indeed
an average reduction in the incremental number of tumors over time when using
the thiotepa drug. In fact, this is clearly shown in the predicted curves for a new
treated and a new placebo patient, exhibited in Figure 4. The predictions clearly
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Figure 4 Comparison of predictive distribution under models BNP3P, BNP4P and the 4-parameter
parametric version (BP4P).

depict a difference between patients in placebo and treatment groups. Starting from
about the same values, it is soon evident that thiotepa treatment gets a consider-
able smaller expected variation in the accumulated number of tumors, encoding
what we have learned from data. Interestingly, the same general conclusion can be
achieved using the parametric alternatives BP4P and BP3P. Posterior summaries
for each of these are shown in Table 1, and predictions for the former are included
in Figure 4. Although these curves are not identical to each other within each of the
two groups, they show similar trends. In all cases, the predicted ratio of expected
number of tumors for placebo to treatment grows from about 1.5 at baseline to
about 2.0 after the twelfth visit (36 months). This represents a substantial gain
from the use of thiotepa.

A further comparison of the parametric and nonparametric models discussed
so far can be stated in terms of the log pseudo marginal likelihood (LPML) and
the deviance information criterion (DIC). The LPML was introduced by Geisser
and Eddy (1979) as a measure of predictive accuracy. Gelfand and Dey (1994)
suggested a particularly simple way to carry out the required computations from
MCMC output. Having several competing models, the one achieving the high-
est LPML is to be preferred. On the other hand, the DIC was introduced by
Spiegelhalter et al. (2002) and later discussed by Celeux et al. (2006) for finite
mixture and random effects models. Models with lower DIC values are to be pre-
ferred.

Table 2 shows the LPML and the DIC criteria for each of the nonparametric
models BNP3P and BNP4P and the parametric models BP4P and BP3P. Both cri-
teria find that the nonparametric models are to be preferred to the parametric ones.
They also show that BNP3P has a somewhat better performance than BNP4P.
In other words, the increased complexity of adding the interaction parameter in
BNP4P compared to BNP3P does not imply a substantial improvement in model
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Table 2 Comparison of parametric and
semiparametric models

Model LPML DIC

BN4P −639.52 1198.37
BNP3P −629.69 1191.13
BP4P −725.42 1285.26
BP3P −746.63 1342.64
BPBM −733.02 1315.72

fitting, according to these criteria. This is also reflected in the rather small differ-
ences in the predictions shown in Figure 4. However, a small interaction effect can
still be found in these predictions, as the BNP4P and BNP3P curves do not have
exactly the same growth rates. Indeed, the corresponding placebo and treatment
curves appear to deviate from each other at different places. We interpret this sit-
uation by concluding that an interaction is present but it is not strong enough to
imply an improvement over the penalty related to increased model complexity. We
point out that BNP3P has no built-in interaction term, and so the mean structure
would not reflect this, even if such effect was really present.

Finally, looking back at the bimodal shape of the predictive distribution depicted
in Figure 3, one may naively think that it is due to the presence of different variance
components for treated and placebo patients. To further investigate this issue, we
consider now yet another parametric variation of model BNP4P, where b1, . . . , bn

are independent, and

bi ∼
{

N(0, τ1), if xi = 1,

N(0, τ2), if xi = 0.
(5)

We refer to model (5) as BPBM because of the bimodality that motivated it. The
corresponding LPML and DIC values are indicated in Table 2. Again, the two
semiparametric alternatives prevail. Interestingly, BPBM is outperformed by BP4P
for which there is a single variance component τ rather than two. So, the bimodal-
ity is really not explained by two specific variance components related to the treat-
ments, but actually due the fact that the nonparametric distribution of BNP3P and
BNP4P, by the Sethuraman representation (1), supports an infinite number of com-
ponents, and ties among these components have a distribution described by the
Pólya urn representation with predictive distribution (2).

5 Summary

We proposed a model for multiple longitudinal sequences of nondecreasing counts.
Our approach was based on generalized linear mixed models, with a nonparamet-
ric model for random effects. The model was motivated by data coming from a
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clinical study of the effect of thiotepa on Stage I bladder cancer, with multiple
missing values, assumed to arise from a process independent from the observa-
tions. To account for longitudinal correlation and monotonicity, we proposed an
autoregressive Poisson model on the subsequent tumor increments. The link func-
tion includes a 4-parameter formulation that allows for treatment interactions. Our
results suggest that there is indeed a positive effect of thiotepa in the sense that,
on the average, treated patients had tumor recurrence at a slower rate than those
assigned to the placebo group.

We studied sensitivity of the results to various prior specifications, but the over-
all conclusions remained the same under all the cases we considered. We also
compared our results with a parametric formulation of the model, as well as with
a simplified 3-parameter version, where one of the parameters from the original
model was eliminated. The proposed model clearly outperforms the parametric
alternative, but the 3-parameter alternative has a slightly better fit to the data, as
determined by applying model comparison criteria such as LPML and DIC. Never-
theless, the proposed model has the advantage of including an explicit interaction
between treatment and the autoregressive component, thus allowing for individ-
ual tumor growth rates that differ among groups. This is a conceptually important
difference, specially for predictive inference.

Appendix: Computational details

We now give details on Markov chain Monte Carlo simulation to generate posterior
draws for the proposed model. Details are specific to the BNP4P model, but a slight
modification can be used to implement similar calculations for the BNP3P model.
The steps to be described next were implemented using C.

Updating the configurations and cluster-specific parameters

The most time-consuming step in our Gibbs sampling implementation of posterior
simulation for the proposed BNP4P model is the updating of the clustering struc-
ture. Recall that the cluster membership indicators c1, . . . , cn are such that bi = b∗

ci

for i = 1, . . . , n, where b∗
1, . . . , b

∗
k are the k unique values among b1, . . . , bn, that

is, k is the number of clusters. To update the configurations, we use Algorithm 8 in
Neal (2000) with m = 1. This algorithm is particularly useful when the likelihood
and the baseline distribution are not in conjugate form. This is our case, as the
likelihood contribution of the ith patient is

Li(η, bi |yi ) =
ni∏

j=1

Po(yij |λij ), (A.1)

where Po(y|λ) = λye−λ/y! is the Poisson probability mass function for λ > 0, η =
(α0, α1, β0, β1), λij was defined in (3), and the baseline distribution is Gaussian.
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To implement the algorithm by Neal (2000), we introduce m temporary addi-
tional parameters b∗

k+1, . . . , b
∗
k+m that are associated to “empty clusters” that are to

be discarded when not used. Let k− the number of distinct cj ’s for j �= i, and let n−
	

the number of cj ’s equal to 	 for j �= i. Let h = k− +m and label the cj ’s for j �= i

in {1, . . . , k−}. If observation i was in a singleton, assign ci the label k− + 1 and
draw independent values b∗

k−+2, . . . , b
∗
h from the baseline distribution G0. Then

resample ci from

P(ci = 	|everything else) ∝
⎧⎪⎨
⎪⎩

n−
	 Li

(
η, b∗

	 |yi

)
, for 1 ≤ 	 ≤ k−,

M

m
Li

(
η, b∗

	 |yi

)
, for k− + 1 ≤ 	 ≤ h,

where the likelihood Li is given in (A.1). This step is repeated for i = 1, . . . , n. See
further details in Neal (2000). For our particular implementation, we use m = 1.

With the new configurations available, the number of clusters is known, say k,
and the unique values are updated from

p
(
b∗
	 |else

) ∝ ∏
i : ci=	

ni∏
j=1

Po
(
yij |λ∗

ij (	)
) × exp

(
−b∗

	
2

2τ

)
,

where λ∗
ij (	) = exp(α0 +α1xi + (β0 +β1xi)yi,j−1 + b∗

	). This is accomplished by
resorting to a Metropolis-within Gibbs step with a random walk-type of chain.

Updating the autoregressive and baseline parameters

Each of the four autoregressive and the baseline distribution parameters are up-
dated using the adaptive Metropolis–Hastings algorithm described in Roberts
and Rosenthal (2009). In words, the algorithm considers a random walk-type of
Metropolis–Hastings procedure with a zero-mean candidate generator, and a vari-
ance σ 2 that is changed along the way. The basic rationale is to target a rejection
rate of 44%. To do so, we consider batches of a certain number of chain elements
(50, say), and either increase or decrease σ 2 by δr depending on whether the re-
jection rate in the r th batch was more or less than 44%. Following the suggestion
by Roberts and Rosenthal (2009), we choose δ(r) = min{0.01, r−1/2}.

The above idea is applied separately to each of the four autoregressive parame-
ters α0, α1, β0 and β1. Let

λ∗
ij (	) = exp

(
α0 + α1xi + (β0 + β1xi)yi,j−1 + b∗

	

)
. (A.2)

Then, the corresponding conditional distributions to which this method is applied
to, are given by

Conditional distribution of α0:

p(α0|else) ∝
k∏

	=1

∏
i: ci=	

ni∏
j=1

λ∗
ij (	)

yij exp
(−λ∗

ij (	)
)

exp
(
− α2

0

2B

)
.
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Conditional distribution of α1:

p(α1|else) ∝
k∏

	=1

∏
i: ci=	

ni∏
j=1

λ∗
ij (	)

yij exp
(−λ∗

ij (	)
)

exp
(
− α2

1

2B

)
.

Conditional distribution of β0:

p(β0|else) ∝
k∏

	=1

∏
i: ci=	

ni∏
j=1

λ∗
ij (	)

yij exp
(−λ∗

ij (	)
)

exp
(
− β2

0

2B

)
.

Conditional distribution of β1:

p(β1|else) ∝
k∏

	=1

∏
i: ci=	

ni∏
j=1

λ∗
ij (	)

yij exp
(−λ∗

ij (	)
)

exp
(
− β2

1

2B

)
.

Conditional distribution of τ : For τ we have the following closed form full
conditional:

τ−1|else ∼ Gamma

(
τa + k

2
, τb + 1

2

k∑
	=1

b∗2
	

)
.

Missing values

Finally, every iteration of the MCMC requires imputing the missing observations,
which we do sequentially. Given the currently imputed parameter values, then for
i = 1, . . . , n and j = 1, . . . , ni , if yi,j was missing, we impute a value by drawing
yij ∼ Po(λ∗

ij (	)), where the λ∗
ij (	) quantity was defined in (A.2). Note that (A.2)

can be readily evaluated as yi,j−1 is either an actual observation or a previously
imputed missing observation.
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