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Abstract. Given is the outcome s of S ~ B(n, p) (n known, p fully un-
known) and two numbers 0 < a < b < 1. Required are probabilities o< (s),
ag,p(s), and a (s) of the hypotheses H<: p < a,Hy p:a < p <b, and Hs.:
p > b, such that their sum is equal to 1. The degenerate case a = b(= ¢) is
of special interest. A method, optimal with respect to a class of functions,
is derived under Neyman—Pearsonian restrictions, and applied to a case from
medicine.

1 Introduction

In this paper, we propose a method to assign probabilities to hypotheses concerning
p in the context of binomial hypothesis testing. Given is the result S =s of n
successive i.i.d. Bernoulli(p) trials, with no prior information whatsoever about
the location of p in ® = [0, 1]. We assign a number « . (s) to the hypothesis H.:
p < a, as a principle-dependent estimate of the truth value 1y 4)(p) of H.: p <
a and extend this approach to assigning numbers o (s), aq 5(s), and o= (s) to
hypotheses H.: p <a, Hy p: a < p <b,and H.: p > b. A method of inference,
under the restriction that the sum of these probabilities is equal to one, is given in
Section 5.

Our approach comprises of the following steps. We estimate the indicator func-
tion of the hypothesis of interest under the so-called restriction of weak unbiased-
ness. Finding the optimal estimate is done through minimising a proper integrated
risk function, in this paper the quadratic one. As such, our approach synthesises
the testing and estimation contexts. Our method is compared with other methods
currently en vogue.

Historical context

Jacob Bernoulli (1713) had established that the possibility of a < % < b is, in his
words, “morally certain” if n is sufficiently large and p is such that a < p — 0.01
and b > p + 0.01. He proved that the probability of the event {a <n~'S < b} can
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be made arbitrarily close to 1 by choosing n sufficiently large. To apply his result,
p has to be known. Thomas Bayes (1763) thought about the inverse problem where
p is unknown but the outcome s is known and the probability of a < p < b has to
be specified. He would have regarded the hypothesis H, j, as “morally certain” if its
“probability” is larger than 0.999, say. How to specify such kind of “probability,”
that is the question. Considering the degenerate case a = b(= ¢) of a null hypoth-
esis, Karl Pearson (1900) raised the idea that P = P(x? > (s — nc)?/(nc(1 — c)))
is a fairly reasonable criterion for the probability that Hy: p = c is true.

Bayesians emphasise that the probabilities a<(s), oy p(s) and o~ (s) are “as-
sessments of probability which should correspond to posterior probabilities”. In
the mid-eighties, Berger and coworkers (see, e.g., Berger (2003)) emphasised that
p-values and posterior probabilities tend to be considerably different, an issue
known since quite some time. This motivated the last author to initiate the idea
of estimating truth values with respect to (w.r.t.) squared-error loss (Schaafsma
(1989)). This idea gained popularity after a series of publications by, mainly,
Hwang and Casella (such as Hwang et al. (1992), Hwang and Yang (2001)).

2 Principles behind the estimation of truth values

Given some hypothesis H about p, for example, the hypothesis H, »: a < p < b,
which estimator «: {0, 1, ..., n} — [0, 1] should we use for estimating 1y7(p)? Let
® = [0, 1] denote the set of theoretical possibilities 6 for the true value p and let
®y denote the set of all & for which H is true and let ® denote that where H
is false (i.e., its logical negation A is true). Let Xg ~ B(n, ) denote any random
variable (having the same distribution as S ~ B(n, p) only if p = 0). Classical
statisticians will start out by studying the bias function

B0, o) =Ea(Xp) — 1u4(0)

given an estimator «, using notation 1y = 1g,,. The requirement of unbiasedness,
that is, B(6, @) = 0 for all 8, cannot be satisfied because Ex(Xy) is a continuous
function of 6 whereas 1y is not. As replacement, we advocate to require weak
unbiasedness, that is,

if 0 € Oy,

1
2 2.1)
Ea(Xg) <5  if6¢0On,

which implies weak similarity in the sense that Ea(X;) = Ex(Xp) = % if
H=H, ; is considered. In the degenerate case a = b(= c¢), we use the restric-
tion Ex(X,) = % of weak similarity without worrying about weak unbiasedness.

If c = % then this will automatically be satisfied but otherwise a complication
appears, which may perhaps be removed by requiring %Ea(X o= =0.)
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Subsequently, thinking in terms of estimation errors, the classical statistician
may choose some loss function. We suggest L(8,a) = (a — 11(6))? such that the
risk function corresponds to the mean squared error

R(0,a) = (B(6, a))* + Var(a(Xp)).

This paper is based on squared-error loss because of its simplicity and properness.
Some results, however, can easily be generalised to proper loss functions in general
(see below). It is here that, in our view, classical statisticians should accept argu-
ments from their Bayesian colleagues implying that, for example, absolute-error
loss is “improper” which is a reason to avoid its use in estimating truth values.

Remark on properness

Savage (1951) advocated thinking in terms of a utility function U(6, a) instead
of a loss function L(6, a). He also noted that, given such utility function, a loss
function is obtained by specifying L(6, a) = (sup, U(8, a)) — U(8, a) as the regret
w.r.t. the utility of the most profitable action. To be acceptable in the elicitation
of probabilities, that is, estimation of truth values, the utility function should be
proper in the sense that, in our special context of estimating 1y1(¢), the expected
utility EU(T, @) is maximal as a function of a iff a = P(T € ®g), no matter the
choice of the distribution of random variable 7. The class of (strictly) proper utility
functions is extremely large, much larger than the ones of the form

U0, a) = fu(@)1u(@) + fa(a)1a(®) (2.2)

which will be discussed here. By definition, the properness requirement is satisfied
iff pfua(a) + (1 — p) fa(a) is maximal as a function of a iff @ = p and that this
holds for every p € [0, 1].

If U@, a) is proper then the corresponding regret-loss L(6,a) is proper as
well (in the sense that the expected loss EL(7, @) is minimal if a = P(T € ®)).
The utility function U(0, a) = (2a — a®)1(0) + (1 — a®)14(0) is most attractive
in our opinion because (i) it is proper (because (2a — a?®)p + (1 —a®)(1 — p) =
1 — p(1 — p) — (a — p)? is maximal if a = p) while (ii)) 0 < U@,q) <1 is
such that sup, U(0,a) = 1 (for every fixed value of 0). Note that the regret
1 —U@®,a) = (a —15(0))? is the squared-error loss function. Estimators of truth
values are called g-values if this quadratic loss function is used in their derivation.

Another proper loss function is the logarithmic one L(6, a) = —loga if 6 € Oy,
L(0,a) = —log(l —a) if 6 € ®4. Quadratic loss and logarithmic loss are math-
ematically attractive, for example, because L (6, a) is convex as a function of a
and constant as a function of 6 on Oy and ®4, respectively. Moreover, they are
“fair” in the sense that nothing changes if Oy is replaced by ®4 and a by 1 — a.
Our experiences based on quadratic loss are not much different from those based
on logarithmic loss, when the probabilities and their assignments stay away from
being close to 0 or 1 (Kardaun and Schaafsma (2015)).
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Given any (“regular”) proper loss function, the unrestricted minimisation of
]01 R(6, a) df is achieved if @ = arBayes, Where
1

= 0% (1 —0)'*dg. 2.3
aBayes(x) B+ Ln—x+1) Joawor=1 ( ) (2.3)

The Bayesian will regard fol R(0, @) df as the Bayes risk w.r.t. Bayes’ prior; the
non-Bayesian considers this integral as the area under the risk function.

In the degenerate case a = b = ¢ of testing Hy: p = ¢ the value agayes(x) as-
signed to Hy is equal to O for all x. The consequence Eapayes(X ) = 0 is in obvious
conflict with the weak-unbiasedness requirement. In many situations, nobody will
believe that p is exactly equal to some predetermined value c. In these cases, some
dogmatism is involved in the requirement of weak unbiasedness. In other prac-
tical situations, it is very well possible that p is exactly equal to, for example,
c= % The Bayesian will assign a positive prior probability p to this possibility
and modify apayes accordingly. The choice p = % of the “unbiased Bayesian” is
somewhat dogmatic as well. Some Bayesians suggest to leave the choice of p to
the problem-owner who, hence, can compute “his own” posterior probability. We
prefer to choose p such that the corresponding Bayes estimator is weakly similar
(see Section 6).

3 Testing Hy: p = ¢ by assigning a ¢g-value

Pearson (1900) claimed (for situations much more general than the present one)
that the p-value

N2
5 (s nc)) G.1)

QPearson (§) = P(Xl = m

provides a “fairly reasonable” criterion for the probability that the data can be
considered as having arisen from random sampling. Fisher suggested to use the
“exact” p-value

Fisher(s) = > by, (x), (3.2)
{X5hn.c(x)5bn,c(s)}

where, here and in the sequel,

bp.o(x) = (’; ) (1 =)™, (3.3)

In the Neyman—Pearson interpretation, the p-value is defined as the smallest value
of the nominal level of significance for which Hy is rejected. Modern statisticians,
Bayesians (e.g., Berger (2003)) as well as non-Bayesians (e.g., Lehmann (1959)),
reject the idea to regard p-values as posterior probabilities.
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It is in line with Section 2 to construct an estimator «: {0, 1, ...,n} — [0, 1] of
the true value 1. (p) of the indicator function 1y, : ® — {0, 1} of Hp such that «
is (in some sense) optimal with respect to squared-error loss, that is,

E(a(Xs) —1)°  if6=c,

R =
©,) E(a(Xp))* if0 #c.

34

The requirement of weak unbiasedness is satisfied if and only if Ex(X,.) > %

and Ex(Xy) < % if 6 #£ ¢, where X, ~ B(n, ¢). A necessary condition for weak

unbiasedness is that of weak similarity, that is, Ex(X,.) = % or, equivalently, that
of continuity of the risk function.

The requirement of weak unbiasedness is in exact agreement with Lehmann’s
(1959) decision-theoretic concept of unbiasedness if squared-error loss is replaced
by absolute-error loss. We are somewhat critical w.r.t. the mathematical niceties
involved. Continuity of the mean squared error is quite restrictive. For a well-
established null-hypothesis Hg, for instance, the probability ¢ of selecting a ran-
dom digit from the SETUN computer (which used ternary logic, cf. Rescher
(1969)) being %, one would like to suppress R(c, «) by allowing Ex(X.) to be
somewhat larger than % This is at the cost of an increase of Ry o for 6 # c. This
may be acceptable as many of these are comparatively small. In other situations,
when Hy is more arbitrary, it may be preferable to increase R(c, «) in order to
reduce R(6, o) for 6 # c.

Theorem 1. The problem of minimising
1
| RG.@08 (3:5)
0

under the restrictions

O<a(x)<1(x=0,1,...,n),

| (3.6)
EO{(XC) = E
of weak similarity has as solution
b
¥ (s) = nels) 3.7)

2} :;l(—o(bn,c(x))Z.
Proof. Note that
1 do = 1 En 2(x)b do = —1 E 2 3.8
R(6, a)do / a“(x)b, g(x)do a”(x). .
/ ( ) 0 ( ) ,9( ) 1 . ( ) ( )

Using notations b, = (b, (0),...,b, (n)) and o = (x(0), ..., x(n)), note that
l||? is minimal under the restriction that the inner product (e, b,,) is equal to % if



132 C.J. Albers, O. J. W. F. Kardaun and W. Schaafsma

o =a*:=1b,/||b,|12. Solution «* is non-negative. (Partial proofs of a* < 1 were
obtained and numerical verifications up to n = 10° were made, but a mathematical
proof in general, as far as we know, is not available.) 0

Remark 1. Note that the approximation
o*(x) & (re(l — e)n) *by o (x) (3.9)

is a consequence of Y"_(by.c(x))? = P(X. — X. = 0) & 2n2c(1 — c)n)~1/2,
where X, X\ ~ B(n, ¢) are independent. (Apply the local form of the CLT.) The-
orem 1 can easily be generalised to the situation where the restriction Ex(X.) = %
is replaced by Ea(X.) = ¥ . The normal approximation suggests that truncation is
necessary if ¢ > 2712 =0.71.

Remark 2. In the preceding text, we took ® = [0, 1]. When, on basis of theoret-
ical arguments, it is impossible that, for instance, p < c, one-sided testing of Hp:
p = c against A: p > c is indicated. Now, the natural parameter space is ® = [c, 1]
and we have to minimise

1 n n X
/ D@ bre()do =+ 17 Y aP(0) Y buriels) (3.10)
¢ x=0 x=0 s=0

under the restriction Y% _j o (x)b, (x) = % This provides

als) = min(l, Ab,,,c(s)/ anﬂ,c(x)), (3.11)

x=0

where A is such that the equality constraint is satisfied.

Figure 1 presents graphs of the two-sided g-value of «* and of the one-sided
g-value o (A =1.0345, following from a numerical analysis employing the bisec-
tion method) both for testing Hg: p = ¢ in case ¢ = % and n = 12. These graphs
specify the entire “Bayes-optimal weakly-similar’” method of inference. For exam-
ple, s = 10 the exact value

. 212 112N\ s 12\ /12 24\ 33,792
“ (10)=7<10)/)§)<x> =2 (10)/<12>=676,039 (3.12)

which can be approximated via

x1/231/2 (13)2‘2 =0.0495. (3.13)

n
X

2
Note that we have used the identity Zﬁzo( ) = <2n” ) the validity of which is
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—

o —

T L
0 —s 12

Figure 1 The optimal estimator o* of Theorem 1 in the case n =12, ¢ = % (symmetric) and the

optimal estimator o of Remark 2 in the same case if p < % is considered impossible (decreasing).

directly derived by calculating the coefficient of x? of (x +1/x)%* = ((x +1/x)")?,
see, for example, Greene and Knuth (1982).
The one-sided g-value

a(10) = 1.0345 (1(2)) ey <1 - <(ﬁ) + (B) + (ig» 2—13)

=0.0169

(3.14)

indicates that the value a*(10) = 0.05 is considerably decreased if the possi-

bility that p < % is deemed impossible. These assessments «*(10) = 0.050 and

a(10) = 0.017 have, in our view, a better foundation than the corresponding (ex-

act) p-values
12 12 12 —12
2((10)+(11)+(12))2 =0.039 (3.15)

and than half of it, that is, 0.019, respectively.

Discussion

The differences between optimal g-values and the corresponding p-values are not
very alarming in this example.

4 Testing H.: p < c by assigning a g-value

It is often practically impossible that p is exactly equal to ¢ (see Section 6
for a counter example). In such situations, we may try to estimate 1jo ) (p) or
1j0,¢)(p) w.r.t. squared-error loss. First, we note that the unrestricted minimisation
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of fol R(6, @) df provides, using the combinatorial identity, from Pascal’s triangle,
+1\ _
(")=()+(5)
c
OfBayes(s) = / es(l — Q)n—s d@/ﬂ(s +1l,n—s+1)
0

n+1

=3 buriex)
= 4.1)

=(1=0)) buc(x)+c Y bpelx)

X=s x—1=s

=1- C)bn,c(s) + Z bn,c(x)-

x=s+1

Under the restriction Ex(X,.) = % of weak similarity (or continuity of the risk
function) one obtains

1 n
aws(c,s) = Ebn,c(s) + Z bn,c(x) 4.2)
x=s+1

which differs from apayes () if ¢ # % As ays 1S a decreasing function of s, it is not
only weakly similar but also weakly unbiased. It minimises the Bayes risk under
the restriction of weak unbiasedness (the proof goes along the lines of Section 5)
and should, therefore, be acceptable for the unbiased Bayesian. At present, there
is a considerable number of papers (cf. Hwang et al. (1992), Hwang and Yang
(2001), Wells (2010)) considering o and several of its generalisations.

Figure 2 provides a graph of apayes = aws for the case (n,c) = (12, %). It is
interesting to compare this graph (black line) with that of the one-sided g-value

—4q
|

o -

0 —s 12

Figure 2 The one-sided q-value o < = aBayes = aws estimating 1(,1/2), as given in, for example,
(4.2), (grey) and the one-sided q-value o estimating 112y from Figure 1 (black).
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a (decreasing) of Figure 1. Both are such that Ea(X,2) = Ea-(X1/2) = % Note
that agayes(10) = 0.017, whereas ays(10) =0.011.

5 Settling a crucial issue

Whether one uses p-values or optimal g-values, the estimates o (s), ag(s) and
a=(s) of 1jo,¢)(p), 1{¢}(p) and 1. 1;(p) derived in Sections 3 and 4 are not prob-
abilistically coherent because their sum 1 + ag(s) is larger than 1. This lack of
probabilistic coherency is not something to worry about too much if ag(s) is
very small, as it will be in the case of Section 6. Nor is it of interest if utilisa-
tions are discussed based on choosing a decision d such that some expectation
c<(d)a(s) 4+ co(d)ap(s) + c= (d)a(s) is optimal. Nevertheless, it is inconve-
nient that g-values and p-values display a lack of probabilistic coherency. This
difficulty does not occur if, for example, a Bayesian approach is chosen with prior
pe(c) + (1 — p)u where o~ U(0, 1) is Bayes’ prior. The choice of p (and u) is
a hot issue. In this section, we present an alternative theory for constructing es-
timates o< (), &g 5(s), o~ (s) under the additional restriction of probabilistic co-
herency: o< (s) 4+ aq () + @~ (s) = 1 (see the end of Section 6 for a comparison
with the Bayesian approach).

To arrive at a specific solution, we concentrate attention on an integrated risk,
for example, fol R, a)d6 where o = (¢<, o4 p, @~ ). Bayesians may emphasize
that, given any proper loss function (such that inf, fol R(8, a)df < 00), the in-

tegrated risk fol R(0, @) df is minimal if o contains the probabilities prescribed
by the Beta(s + 1,n — s + 1) distribution. A drawback of this approach is that
aq.p(s) will be tiny (i.e., “incredibly” small) if b — a is very small (or even O, if
a = b(= c)). This shows that the Bayesian has to replace Bayes’ prior by some-
thing else depending on a and b (see the beginning of this section). We concentrate
attention on the proper loss function

Lu(6, 2(x)) = (110, (6) — <)) + w(1.17(6) — = (x))7,

w >0

(5.1)

(which has its origin in Epstein (1969)) and restrict attention to the class of
Lehmann-unbiased rules ¢ = (@<, @~). This condition is satisfied if and only
if - is a weakly-unbiased estimator of 1jp ,)(p) and «- is a weakly-unbiased
estimator of 1(; 17(p). It can be established, for any w > 0 that fol Ry, (0, ) db
is minimal under the restriction of Lehmann-unbiasedness if o (s), oy p(s) =
I —a<(s) —a=(s),and a- (s) are the probabilities prescribed by the % Beta(s,n —
s+ 1) + 3 Beta(s + 1,n — s) distribution.

(Proofs are not presented because it is unsatisfactory that «; ,(s) is tiny if b — a
is very small. The underlying distributional inference Q(s) = 1 Beta(s,n — s +
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1) + %Beta(s 4+ 1,n — ) has its origin in Kroese (1994), Kroese et al. (1995) and
Salomé (1994).) The loss function L,, allows, under certain conditions, that the
task of constructing o~ can be separated from the task of constructing a~. which
is certainly convenient. Strict properness of L,, follows from the fact that, if 7 is
some real-valued random variable with P(T <a) = p.,P(a <T <b) = p, p, and
P(T > b) = p-, then

EL, (T, a)
=(l—a)’pe+at(1—p)+w(d—a=)ps +a2(1—p.)) (52
= P<(1 - P<) + (a< - P<)2 + wP>(1 - P>) + w(a> - P>)2

is minimal as a function of (a-,a.) iff a. = p. and a~ = p-. To avoid the
difficulty that o, (s) will be tiny if b — a is very small, the Neyman—Pearsonian
will be attracted by the idea to impose some restriction on the class of estimators
a = (<, aqp, as), for example, that to the class 7, y, of rules satisfying

Ea_(X,) =1, Ea. (Xp) = ¥, (5.3)
where /1, Y2 € [0, 1] should satisfy ¥; + ¥ < 1 (atleastif a = b = ¢).

Theorem 2. The Bayes risk fol Ry (6, ®)dO is minimal under the restriction
o € Dy, If and only if o minimises

1
/0 E(1j0.0) — a-(Xy))>d0 (5.4)

under the restriction Ea - (X,) = V| and a~ minimises

1
/O E(1.1) — a- (Xg))2d0 (5.5)

under the restriction Ea~ (Xp) = Y2, provided that the q-values o and o thus
obtained satisfy o +af <1.

Proof. Trivial. O

Lemma 1. For ¥, Y < %, the optimal q-values o and o are given by

at(s)= max( Xn: (Z)ax(l —a)" <Z> a’(l1—a)"*, O), (5.6)

x=s+1
where L1 is such that Ea* (X,) = 1, and

s—1

al(s)= max(Z (Z)bx(l -b)" + (Z) b*(1—b)"—*, 0), (5.7)
x=0

where Ay is such that Ea% (Xp) = ¥.
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Proof. See the Appendix. 0

If either v or v is larger than % (a theoretical possibility which we consider to
be “morally rejectable” as it implies that the risk at a boundary point is smaller than
that in its neighbourhood), then in (5.6) and (5.7) max(.. ., 0) should be replaced
by min(..., 1). To apply Theorem 2, we have to verify that «* + o <1.If Y| =
Yy = % then truncation is not necessary, A; = Ay = % and one obtains the solution
with p_(x) = {Q(x)}([0,¢)) and Q(x) = lBeta(x, n—x+1)+ %Beta(x +1,
n — x) discussed before. If Y| and i, are smaller than %, then it follows from the
above that a® +aZ < 1.

As an example, for (n, c) = (12, %) numerical analyses were made for various
values of ¥ = Yo (= V). Results for ¢ = % were already presented in Figure 2.
Figure 3 presents results for ¢ = i. Note that, in this case Eaj(X.) = %

6 Practical example and discussion

In 2008, the Dutch Acute Pancreatitis Study Group (Besselink et al. (2008)) was
astounded when they analysed the results of their carefully designed double-blind
comparison of “placebo” and “treatment” based on a about 150 patients from each
of the two categories. They had assumed that the beneficial effects would out-
weigh the possible risks of complications for these—severely ill—patients. The in-
terim analysis (at half-way) did not point to any significant difference. In the fi-
nal analysis they observed s = 9 deaths in the placebo group and ¢ = 24 deaths
in the treatment group. A Poisson approximation followed by conditioning w.r.t.
n =s + t = 33 (a more precise analysis is discussed in Kardaun and Schaafsma
(2015)) leads us to the problem of discussing truth or falsity of hypotheses like

0 12 0 12

Figure 3 Left: a display of a* for ¢ = % for (n,c) = (12, %). Right: a display of the optimal
two-sided q-value o* derived in Section 3 (see Figure 1) (dashed), and the q-value ot(’; derived as
part of the coherent system displayed on the left.
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H.:p< %, Hp: p = % and H.: p > %, given the outcome s =9 of § ~ B(33, p),
p denoting the probability that a case of death is from the placebo group. The re-
search workers had taken for granted, a priori, that treatment would be beneficial,
that is fewer cases of death in the treatment group. Their intention was to ignore the
possibility that p < % and, hence, to test Hp: p = % versus the one-sided alterna-

tive H.: p > % The experimental results, however, were in the opposite direction.

Thus, they replaced their intention to test Hy versus H.: p > % by a two-sided

testing approach. (This case study provides a clear indication that one-sided test-
ing is only appropriate if one is not only “morally” certain but “absolutely” certain
that the inequality constraint imposed, here p > 1. is valid.)

Discussion

This problem is of particular interest because it is relevant to discuss whether or
not p is exactly equal to % (see also the “concluding remarks”). The two-sided

p-value
9 33 33 1 33
Fisher(9) = ( O+ Z) ( . ) (5) =0.0135 (6.1)
X

x=24

is such that Hy is rejected at the 5% level. (The UMPU size 5% and UMPI size 5%
Neyman—Pearson tests are such that Hy would even have been rejected if s = 10
and, with some type of randomisation probability, even if s = 11.) To express sta-
tistical uncertainty in such accept—reject statement, the neo-Bayesian claim that
p-values tend to be misleadingly small whenever they are small. If one computes
the posterior probability

(393) 933
('Bayes ) = W =0.132 (6.2)
(3)23+1/34

based on p = % and u ~ U(O0, 1), then the controversy is obvious.

Classical statisticians reject the idea that (p, s) is the outcome of a pair (T, X)
of random variables with joint distribution such that L(T) = pe. + (1 — p)p and
L(X|T =6)=B(n,6).

In this paper, we are fascinated by the idea that 1.(p) should be estimated w.r.t.
squared-error loss. The Bayes-optimal weakly similar g-value «*(9) of Section 3

provides
)2 _am(s)
oy (9) = N2 (66
238, ()Y (%)
(Kardaun and Schaafsma (2015) contains several alternative estimators, as well as
generalisations and some asymptotic theory. They suggest that the estimate o, (9)

=0.0229. (6.3)
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just obtained is, perhaps, a bit too small because weak similarity is bit too conser-
vative.)

A subject-matter remark is that a particularly high mortality rate was found
in the subgroup of patients with bowel ischemia, who, all of them, received pro-
biotics. (As described in the paper, this diagnosis was made within two weeks
of admission to the hospitals.) From nine of these patients, only one survived.
Hence, subtracting the eight patients of this subgroup who did pass away, one gets
for the mortality in the non-bowel-ischemia group: (probiotics, placeboltotal) =
(16, 9]25) instead of (24, 9|33) for the entire group. Therefore, in the absence of
ischemia, the statistical significance is considerably less, the hypothesis p = % is
not traditionally rejected at the two-sided 5% level, even based on a simple nor-
mal approximation with continuity correction (which can be calculated by hand):
Z=116—12.5— %|/«/25/4 ~ 1.2. As an approximation to P({X <9}U{X > 16})
this leads to the two-sided p-value P{|Z| > 1.2} = 23% (“exact”: 22.95%) in-
stead of 1.5% (“exact” p-value: 1.35%) for the entire group. The weakly-similar

g-value (see Theorem 1) gives in this case &»5(9) = (295 ) 224 / (gg) = 27%. With-

out any continuity correction, to obtain an approximation of %(P({X <9U{X >
16}) + (P{X < 9} U {X > 16})), one gets Z >~ 1.4 for the (16, 9|25) sub-group
and Z ~ 2.6 for the entire group of patients, with corresponding two-sided mid p-
values of 16% and 0.9%, respectively. For some further discussion on continuity
correction and mid p-values, see Hirji et al. (1991) and Lancaster (1961).

Though several subgroup analyses were performed and the two-week survival
rates of the patients that did not develop bowel ischaemie was given, the longer
term survival ratio was not precisely put under the “candle light” (from Rao
(1999)) in the original article in The Lancet.

Concluding remarks

It is an inconvenient truth that we, mathematical statisticians, advertise our find-
ings using words like optimal, rational, coherent, admissible, unbiased, etc., made
specific in mathematical form and, hence, suggesting that anything else is sub-
optimal, irrational, etc., while there are many reasons to doubt. In this paper, we
derived an optimal method to coherently specify estimators - (s), ag(s), o= (s)
on basis of a Neyman—Pearsonian choice of two numbers ¥; and y». Choosing
Y =ynp = % may be interesting if one accepts g = 0. Dealing with the problem

of the present section, the choice Y| = ) = }1 leads to the Bayes-optimal triple
of = (af, af, af ) with
a33. . (9) =0.9832, 33.0(9) = 0.0168, a33..(9) =0.0000.  (6.4)

The choice ¢ = 411 leads to similar results as the requirement of weak similarity

Eop(X) = % Preoccupation with Hy: p = % implies that this requirement is not
completely satisfactory because one would like to have that the average estimate
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of 1¢1/2y(p) is closer to 1, if Hp: p = % is true, than % This implies that there are

also reasons to choose 1 somewhat smaller than %. For instance, when ¢ = 0.2,
a0(9) = 0.0206. Finally, it is mentioned that the probiotica case study from 2008
also illustrates the importance of investigating the variability of binomial probabil-
ities associated with subgroup selection.

Appendix: Proof of Lemma 1

A reference to the fundamental lemma in the ¢g-value approach in Schaafsma et al.
(1989) might do. This reference, however, did not provide a full proof (because
three different approaches were available). We present an explicit proof for the
special situation of this paper. Note that Fubini’s theorem provides

1
/0 E(1j0.0) — @<(Xg))* d6
~(n 2 [ s n—s
:g(s)<(1—a<(S)) /0 6°(1—0)"""do (A1)

1
+(a<(s))2/ 05 (1 —0)"—* d@).
Using
a 65 (1 — )= n+1

do = b X A2
N e :Z+1 e (A2)

we have to solve the optimisation problem

n n+1 s
Minimise Z ((1 —a- (s))2 Z bpt1,a(x) + (o< (s))2 Z b,,+1,a(x))

s=0 x=s+1 x=0
(A.3)
(" Mo_(5)
subject to
O0<a.(s)<1(s=0,...,n) (A4)
> ()bpals) =1 (A.5)
s=0

Ignoring the (trivial) inequality constraints, we derive, by writing down a La-
grangian and differentiation w.r.t. ¢~ (s) (s =0, 1, ..., n), that the minimum will
be achieved if
n+1 K
=2(1=a<(®) D bur1a®) +20<(5) D bu1(x) + Abpa(s) =0 (A.6)
x=s+1 x=0
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which leads to

n+l

1
ac() =Y bni1.a(x) = Abya(s)
2
x=s+1
(A7)
" 1
= Y b +bn,a<s>(a - 5*)’
x=s+1
where A has to be determined such that
n
Y < ($)bn.a(s) =P(Bya > B, ,)
s=0
’ (A.8)

1 /
+(a= 32 )P(Bra =B o) = 1.

Here By 4, B, , ~ B(n, a) are taken to be independent. If 1| = % then the equality
is satisfied if (a —A/2) = % One obtains iy, where truncation is not necessary. If,

however, ¥ is less than %, then a — A /2 will have to be smaller than % and, usually,
smaller than O with as a consequence that the inequality constraint « - (s) > 0 may
be violated. Note that a® is then well-defined. If ¥; > %, then o — %k has to be
larger than % and a different type of truncation is needed as indicated in the discus-
sion after Lemma 1. To establish that truncation according to o (s) (with X replac-
ing a — A/2 constant) provides the solution, suppose that ¢ (s) =« (s) + £(s) is
another vector satisfying the constraints. Note that «* (s) = 0 implies €(s) > 0
and that Y_7_e(s)b, q(s) = 0. To establish that My (s) < My_(s), note that
My_(s) — My~ (s) is equal to

n n n+1
Y e®)) =23 e (1 —ai() Y burralx)
s=0 s=0 x=s+1

n K (A.9)
+2) e()al(s) Y butta).

s=0 x=0

It suffices to prove

n K n+1
Zs(s)(oei(s)an+1,a<x>—(1—ai<s>) > bn+1,a<x>)zo, (A.10)

s=0 x=0 x=s+1
or, equivalently that

n n n+1

D e@aE) =Y e(s) Y butiax). (A.11)

s=0 s=0 x=s+1
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Splitting the summation in the Lh.s. into cases with «* (s) > 0 and cases with
a* (s) =0, we have that the first sum is equal to

> e(s)( > bn,a<x>+xbn,a<s>>

{s;a% (5)>0} x=s+1
(A.12)

n+1
= Y e(s)( > bn+1,a(x>+(x—a)bn,a(s))
{s;a* (5)>0} x=s+1
while the second sum satisfies
n
PRGOS s(s)( > bn,a<x)+xb,,,a(s)), (A.13)
{s;a% (5)=0} {s;a% (5)=0} x=s+1

because af(s) = 0 implies e(s) > 0 while 0 = aX(s) > > 7_ 1 bna(x) +
Aby 4(s). Combining these sums provides

Yot = Y s(s)< > bn,a<s>+xbn,a(s))
s=0 {s;a% (5)=0} x=s+1
+(—a) Y. e®buals)

{s;a% (s)>0}

= Z e(s)( Z bn,a(S)-l-abn,a(S))
1

{s;a% (s)=0 x=s+1

(A.14)

+ (O —a) ) e(s)bnals).

s=0
The first term is nonnegative because &(s) > 0 and the second term is equal to 0.
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