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Abstract. The estimation of the size of a population is, in general, performed
using capture–recapture experiments. In this paper, we consider a closed
population capture–recapture model in which individuals are captured inde-
pendently and with the same probability in each sampling occasion, but the
probabilities may vary from occasion to occasion. The unknown number of
individuals is the parameter of interest, while the capture probabilities are the
nuisance ones. Four likelihood functions free of nuisance parameters, namely
the profile, conditional, uniform and Jeffrey’s integrated likelihood functions
are derived and procedures for point and interval estimation are discussed.
The estimation of population size is illustrated on a real dataset. The fre-
quentist properties of the estimators are evaluated by means of a simulation
study. The Jeffrey’s integrated likelihood achieved the best performance over
all considered estimators for both point and interval estimation, particularly
in situations with little information with small number of elements, small
capture probabilities and small number of capture occasions.

1 Introduction

The so-called capture–recapture sampling process is frequently used in the esti-
mation of the number of elements of a population. One of the first applications
of such a method was made by Laplace (1783) in order to estimate the number
of inhabitants of France. Later, Petersen (1896) applied the method to study fish
population in Baltic sea and, independently, Lincoln (1930) applied the method
to estimate the size of North American waterfowl population. The method ap-
plied by the later researchers was based on only two sampling occasions and the
applied estimator became known as the “Lincoln–Petersen” estimator, which is
obtained by equating the proportion of marked individuals in the second sample to
the proportion of marked individuals in the population previous to the selection of
the second sample. Since the 1950s several important scientific papers have been
published on the subject. For instance, we may cite Chapman (1954), Darroch
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(1958, 1959), Seber (1965), Jolly (1965), Cormack (1968) and presently capture–
recapture methods finds applications in various fields such as ecology (Otis et al.,
1978; Seber, 1982), software reliability (Nayak, 1988; Basu and Ebrahimi, 2001),
epidemiology (Seber, Huakau and Simmons, 2000; Lee et al., 2001; Chao et al.,
2001; Lee, 2002), linguistics (Boender and Rinooy Kan, 1987; Thisted and Efron,
1987) among others. For a review of different models and applications see Seber
(1982, 1986, 1992), Schwarz and Seber (1999), Pollock (2000), Chao (2001) and
Amstrup et al. (2003).

Let N be the unknown number of elements of a closed population. Estimation
of N is generally carried by maximum likelihood (Cormack, 1968, 1989; Darroch,
1958; Otis et al., 1978; Norris and Pollock, 1996; Pledger, 2000). However, max-
imum likelihood estimates is known to be biased and only an asymptotic estimate
of bias and variance are available (Seber, 1982). Further, maximum likelihood esti-
mates have been criticized because it may lead to some pathologies such as infinite
estimates for the population size. These “likelihood failures” have been pointed out
for different capture–recapture models (see, for instance, Seber and Whale (1970),
Carle and Strub (1978), Leite, Oishi and Pereira (1988) and Fegatelli and Tardella
(2013)).

Interval estimation for the population size are usually obtained by considering
the Wald-type interval (Seber, 1982; Otis et al., 1978) and relies on asymptotic nor-
mality of the maximum likelihood estimator N̂ , which may be highly skewed and
the obtained confidence intervals can be misleading (Garthwaite and Buckland,
1990). Furthermore, this procedure has been criticized because the lower limit in-
terval is not necessarily greater than the number of distinct elements captured and
can even assume negative values. Sprott (1981) pointed out that variances are not
very useful for finite samples when the likelihood function of N is skewed and
suggests the consideration of an appropriate transformation which can achieve an
approximate normal likelihood. Several transformations were considered in the
literature to overcome this problem (Viveros and Sprott, 1986; McDonald and
Palanacki, 1989; Chao, 1989). Another approach, discussed by Evans, Kim and
O’Brien (1996) and Cormack (1992) is the consideration of the profile likelihood
interval in the context of log-linear models for incomplete contingency tables.

Otis et al. (1978) described eight models for closed population which allows
for three sources of variation on capture probabilities: time (t), behavior (b)
and heterogeneity (h). Here, we shall focus on the model Mt , which allows for
capture probabilities to vary from occasion to occasion. The model Mt has re-
ceived much attention from both frequentist (Sanathanan, 1972b, 1973; Pickands
and Raghavachari, 1974; Yip, 1991; Leite, Oishi and Pereira, 1987, 1988) and
Bayesian perspectives (Castledine, 1981; Smith, 1988, 1991; George and Robert,
1992; Bolfarine, Leite and Rodrigues, 1992). From the Bayesian side, difficult re-
lies on how to choose the prior distribution, since the resulting estimator for N

may be very sensitive to this choice (Chao, 1989). Usually, researchers use infor-
mative priors when valuable information is available, otherwise noninformative
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priors may be considered. Wang, He and Sun (2007) give conditions for the exis-
tence of the posterior distributions and its mean for different noninformative prior
distributions for model Mt and compare the frequentist performance of both point
and interval Bayesian estimates under a simulation study. Our approach is closely
related to the Bayesian procedure considered by Wang, He and Sun (2007) if one
chooses the uniform prior for N and the loss function 0–1. They have considered
the squared-error loss function and their estimation process need the calculation of
the posterior marginal mean for N , which is carried by means of MCMC simula-
tions. On the other hand, our method relies only on obtaining the maximum of the
integrated likelihood function, which is much less computationally intensive.

Generally, the main interest resides in the estimation of the population size, so
the capture probabilities are regarded as nuisance parameters. In this context, for
the first time we study how methods for eliminating nuisance parameters (Cox,
1975; Berger, Liseo and Wolpert, 1999; Basu, 1977) can be applied for the so-
called model Mt .

The paper is organized as follows. In Section 2, we present the probabilistic
capture–recapture model. In Section 3, we present the profile, conditional, uni-
form integrated and Jeffreys integrated likelihood functions, as well as the method
for obtaining the respective maximum likelihood estimates. In Section 4, the like-
lihood interval method is presented. In Section 5, the frequentist properties of the
estimators are inspected by means of a simulation study. In Section 6, the methods
are illustrated on a real data-set. In Section 7, some final comments are presented.

2 Capture–recapture model

In the following, we will consider the estimation of the number of elements of a
closed population, that is, no recruitment (birth or immigration) or losses (deaths
or emigration) can occur in the period of the experiment. Consider that the pop-
ulation is composed by N elements numbered 1 to N , which are sampled in k

different occasions, k ≥ 2. In the first sampling occasion, a number of elements
are captured, marked, and then returned to the population. After allowing time for
marked and unmarked elements to mix, a second sample is taken, the captured ele-
ments are marked with a mark distinct from the first occasion and then returned to
the population. The process is repeated until k samples are obtained and provides
the knowledge of the full capture–recapture history (trajectory) of each captured
element.

To the ith element of the population, we associate the vector Xi =
(Xi,1, . . . ,Xi,k) with Xi,j = 1 if the ith element is captured in the j th occa-
sion and Xi,j = 0 otherwise, i = 1, . . . ,N . Further, suppose the ith element is
captured in the j th occasion, independently from the other elements and occa-
sions, with probability pj . Therefore, the Xi’s are independent and identically
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distributed random vectors assuming the trajectory ω = (ω1, . . . ,ωk) with proba-
bility

∏k
j=1 p

ωj

j (1−pj )
1−ωj , ω ∈ {0,1}k . In this way, the process may be regarded

as N independent and identically distributed realizations with outcomes in the set
{0,1}k of all trajectories. The above assumptions corresponds to the model Mt

discussed by Otis et al. (1978) and also to the Geiger and Werner model discussed
by Sanathanan (1972b, 1973).

Indexing each trajectory ω = (ω1, . . . ,ωk) by l = ∑k
j=1 ωj 2j−1, we obtain the

enumeration {ωl = (ωl
1, . . . ,ω

l
k), l = 0,1, . . . ,L} of the set {0,1}k , L = 2k −1. For

each l, let Yl be the number of elements of the population taking the trajectory ωl ,
l = 0,1, . . . ,L. Then, the random vector (Y0, Y1, . . . , YL) has a Multinomial dis-

tribution M(N, (θ0, . . . , θL)), where θl = ∏k
j=1 p

ωl
j

j (1−pj )
1−ωl

j is the probability

of observing the trajectory ωl = (ωl
1, . . . ,ω

l
k), l = 0,1, . . . ,2k − 1. Since the tra-

jectory ω0 = (0, . . . ,0) is not observed, the available data consists of the vector of
counts (Y1, . . . , YL) and the likelihood of N and p is given by

L(N,p) = P {Y1 = y1, . . . , YL = yL|N,p}
= N !

(N − r)!y1! · · ·yL!θ
N−r
0 θ

y1
1 · · · θyL

L

= N !
(N − r)!y1! · · ·yL!

k∏
j=1

(1 − pj )
N−r

(1)

×
L∏

l=1

k∏
j=1

(pj )
ylω

l
j (1 − pj )

yl(1−ωl
j )

= N !
(N − r)!y1! · · ·yL!

k∏
j=1

(1 − pj )
N−r

k∏
j=1

p
nj

j (1 − pj )
r−nj

= �(N + 1)

�(N − r + 1)y1! · · ·yL!
k∏

j=1

p
nj

j (1 − pj )
N−nj ,

N ≥ r,0 < pj < 1, j = 1, . . . , k, where �(·) is the gamma function and nj =∑L
l=1 yjω

l
j is the number of captured elements in the j th occasion, r = ∑L

l=1 yl is
the number of distinct elements captured at least once, and y1, . . . , yL are nonneg-
ative integers such that y1 + · · · + yL ≤ N .

From (2), it follows that the kernel of the likelihood function is given by

K(N,p) = �(N + 1)

�(N − r + 1)

k∏
j=1

p
nj

j (1 − pj )
N−nj , (2)

N ≥ r,0 < pj < 1, j = 1, . . . , k. From the kernel (2), we conclude that n =
(n1, . . . , nk) and r are jointly sufficient to estimate N and p. The kernel of the
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log-likelihood is given by

log
(
K(N,p)

) = log
(
�(N + 1)

) − log
(
�(N − r + 1)

)
(3)

+
k∑

j=1

nj log(pj ) +
k∑

j=1

(N − nj ) log(1 − pj ), (4)

N ≥ r,0 < pj < 1, j = 1, . . . , k.

3 Likelihood functions

In this section, we present the expressions for the conditional, profile, Jeffreys and
uniform integrated likelihoods. The profile likelihood is obtained by replacing the
nuisance parameter p with its conditional maximum likelihood estimate. The con-
ditional likelihood is obtained by conditioning the data on a appropriate statistic
leading to a conditional distribution not depending on the nuisance parameter.

The integrated likelihoods are discussed in Berger, Liseo and Wolpert (1999)
and consists in eliminate the nuisance parameter by integration with respect to a
given density function. Thus, considering π a density function for p, the integrated
likelihood is

Lπ(N) =
∫
(0,1)k

L(N,p)π(p) dp.

3.1 Conditional likelihood

Since captures occur independently from elements and occasions, the number nj

of captures at j th occasion, j = 1, . . . , k, are independent binomial distributed
variables with probability function

P {n1, n2, . . . , nk|N,p} =
k∏

j=1

(
N

nj

)
p

nj

j (1 − pj )
N−nj , (5)

and from (2) and (5), the conditional distribution of (Y1, . . . , YL) given
(n1, . . . , nk) is

P {Y1 = y1, . . . , YL = yL|n1, . . . , nk} = N !
(N − r)!y1! · · ·yL!∏k

j=1
(N
nj

) . (6)

Since the conditional distribution (6) does not depend on the nuisance parame-
ters p, we take (6) as the conditional likelihood and its kernel is given by

KC(N) = �(N + 1)

�(N − r + 1)

k∏
j=1

�(N − nj + 1)

�(N + 1)
, N ≥ r. (7)
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Thus, the kernel of the log-likelihood is

log
(
KC(N)

) = (1 − k) log
(
�(N + 1)

) − log
(
�(N − r + 1)

)
+

k∑
j=1

log
(
�(N − nj + 1)

)
for N ≥ r .

Again, we treat N as a real variable and obtain the maximum ÑC of KC solving

d

dN
log

(
KC(

ÑC)) = (1 − k)ψ
(
ÑC + 1

) − ψ
(
ÑC − r + 1

) +
k∑

j=1

ψ
(
ÑC − nj + 1

)
= 0, ÑC > r,

and the integer maximum conditional likelihood N̂C will be either [ÑC] or
[ÑC] + 1 according to which attains the greatest value of the conditional likeli-
hood.

The conditional likelihood (7) can be also derived from a capture–recapture
model with fixed sample sizes n1, . . . , nk considered in Leite, Oishi and Pereira
(1988). The latter authors proved that a necessary and sufficient condition for a
finite conditional maximum likelihood estimate is that r < n1 + n2 + · · · + nk .
Another approach for deriving a conditional likelihood function is proposed by
Sanathanan (1972a), which is based on a factorization of the likelihood function in
two parts: a likelihood L1(N,p) derived from the conditional distribution of data
given the number r of distinct elements captured and a likelihood L2(p) derived
from the marginal distribution of r . The estimate of N is obtained via a two step
procedure: (i) obtain p̂ which maximizes L2(p); (ii) For p = p̂, obtain N̂C which
maximizes L1(N,p). In this sense, our approach is simpler because the estimation
process is performed in only one step.

3.2 Profile likelihood

The profile likelihood is defined by LP(N) = L(N, p̂(N)), where p̂(N) =
(p̂1(N), . . . , p̂k(N)) is the value of p which maximizes the kernel (2) for each
fixed N ≥ r . It is important to note that because of the discreteness of the param-
eter N , finding the maximum of the profile likelihood is the same of finding the
maximum of the original likelihood (2).

From the kernel of the log-likelihood (3), we solve the equations

∂log(K(N, p̂(N)))

∂pj

= nj

p̂j

− N − nj

1 − p̂j

= 0, j = 1, . . . , k,

to obtain

p̂(N) =
(

n1

N
, . . . ,

nk

N

)
, N ≥ r. (8)
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Replacing (8) into (3), the kernel of the profile likelihood is given by

KP(N) = �(N + 1)

�(N − r + 1)

k∏
j=1

(N − nj )
N−nj

NN
, (9)

and

log
(
KP(N)

) = log
(
�(N + 1)

) − log
(
�(N − r + 1)

)
− kN log(N) +

k∑
j=1

(N − nj ) log(N − nj )

for N ≥ r .
Treating N as a real variable, we obtain the maximum ÑP of KP as the real

solution of
d

dN
log

(
KP(

ÑP)) = ψ
(
ÑP + 1

) − ψ
(
ÑP − r + 1

) − k log
(
ÑP)

+
k∑

j=1

log
(
ÑP − nj

) = 0

for ÑP > r , where ψ(·) denotes the digamma function. Then, the integer maxi-
mum profile likelihood N̂P will be either [ÑP ] or [ÑP ] + 1 according to which
attains the greatest value of the profile likelihood, where [z] denotes the greatest
integer not greater than z, for real z.

The next theorem gives a necessary and sufficient condition for a finite maxi-
mum profile likelihood estimate.

Theorem 1. The maximum profile likelihood estimator, N̂P , is no greater than the
conditional maximum likelihood estimator N̂C . The estimator N̂P is finite if, and
only if, r < n1 + · · · + nk .

The proof of this theorem is placed in the Appendix.

3.3 Uniform integrated likelihood

Another way of eliminating the nuisance parameter p, discussed in Berger, Liseo
and Wolpert (1999), is integrating the likelihood with respect to a probability den-
sity function π(p|N). So, the integrated likelihood with respect to the p.d.f. π is
defined by

Lπ(N) =
∫
(0,1)k

L(N,p) dπ(p|N).

Assuming that, given N , p1, . . . , pk are independent and identically uniform dis-
tributed random variables in the interval (0,1), the uniform integrated likelihood
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is obtained from (2) as

LU (N) = N !
(N − r)!y1! · · ·yL!

k∏
j=1

∫ 1

0
p

nj

j (1 − pj )
N−nj dpj

= N !
(N − r)!y1! · · ·yL!

k∏
j=1

�(nj + 1)�(N − nj + 1)

�(N + 2)
, N ≥ r,

and its kernel is

KU (N) = �(N + 1)

�(N − r + 1)

k∏
j=1

�(N − nj + 1)

�(N + 2)
, N ≥ r. (10)

The kernel of the uniform integrated log-likelihood is

log
(
KU (N)

) = (1 − k) log
(
�(N + 1)

) − log
(
�(N − r + 1)

)
(11)

− k log(N + 1) +
k∑

j=1

log
(
�(N − nj + 1)

)
for N ≥ r and the maximum ÑU of KU is obtained by solving

d

dN
log

(
KU (

ÑU )) = (1 − k)ψ
(
ÑU + 1

) − ψ
(
ÑU − r + 1

)
− k

N + 1
+

k∑
j=1

ψ
(
ÑU − nj + 1

) = 0

for ÑU > r and the integer maximum uniform integrated likelihood N̂U will be ei-
ther [ÑU ] or [ÑU ]+ 1 according to which attains the greatest value of the uniform
integrated likelihood.

3.4 Jeffreys integrated likelihood

Now, we will assume that, given N , the random vector p is distributed according
to the Jeffreys distribution πJ (p|N) which has p.d.f. defined to be proportional to
the square root of the determinant of Fisher information matrix IN(p) given by

IN(p) =
(

E
[
−∂2 logL(N,p)

∂pi ∂pj

])
k×k

∝
(

E
[
−∂2 logK(N,p)

∂pi ∂pj

])
k×k

.

From (3), we have

∂2 logK(N,p)

∂pi ∂pj

=

⎧⎪⎪⎨⎪⎪⎩
0, if i �= j ,

−nj + 2njpj − Np2
j

p2
j (1 − pj )2

, if i = j ,
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i, j = 1, . . . , n.
Since nj ∼ Binomial(N,pj ), j = 1, . . . , k, it follows that

E
[
−∂2 logL(N,p)

∂pi ∂pj

]
=

⎧⎨⎩
0, if i �= j ,

N

pi(1 − pi)
, if i = j .

Therefore, the Jeffreys p.d.f. for p is given by

πJ (p|N) ∝ [
det IN(p)

]1/2

∝
k∏

j=1

1

p
1/2
j (1 − pj )1/2

,

and the Jeffreys integrated likelihood is

LJ (N) =
∫
(0,1)k

L(N,p)πJ (p|N)dp

= �(N + 1)

�(N − r + 1)y1! · · ·yL!
k∏

j=1

∫ 1

0
p

nj−1/2
j (1 − pj )

N−nj−1/2 dpj

= �(N + 1)

�(N − r + 1)y1! · · ·yL!
k∏

j=1

�(nj + 1/2)�(N − nj + 1/2)

�(N + 1)
,

N ≥ r.

The kernel of the Jeffreys integrated likelihood is

KJ (N) = �(N + 1)

�(N − r + 1)

k∏
j=1

�(N − nj + 1/2)

�(N + 1)
, N ≥ r,

and its logarithm is given by

log
(
KJ (N)

) = (1 − k) log
(
�(N + 1)

) − log
(
�(N − r + 1)

)
+

k∑
j=1

log
(
�(N − nj + 1/2)

)
, N ≥ r.

The maximum ÑJ of KJ is obtained by solving
d

dN
log

(
KJ (

ÑJ )) = (1 − k)ψ
(
ÑJ + 1

) − ψ
(
ÑJ − r + 1

)
+

k∑
j=1

ψ
(
ÑJ − nj + 1/2

) = 0, ÑJ > r,

and the integer maximum Jeffreys integrated likelihood N̂J will be either [ÑJ ] or
[ÑJ ] + 1 according to which attains the greatest value of the Jeffreys integrated
likelihood.
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4 Confidence intervals

In the following, we will denote M the method applied to eliminate the nuisance
parameter, that is, M may be P (profile likelihood), C (conditional likelihood),
U (uniform integrated likelihood) or J (Jeffreys integrated likelihood). Based on
the likelihood LM(N), free of nuisance parameters, we will consider the approxi-
mate (1 − α) confidence interval [N̂M

L , N̂M
U ] for N defined by the set{

N : log
(
KM(N)

) ≥ log
(
KM(

N̂M)) − 1

2
χ2

1 (1 − α)

}
,

where χ2
1 (1 −α) denotes the (1 −α)th quantile of the chi-square distribution with

1 degree of freedom, KM the kernel of the likelihood LM and N̂M the maximum
likelihood estimate of N with respect to the likelihood LM(N). The use of the
likelihood free of nuisance parameters for construction of confidence intervals is
suggested by Berger, Liseo and Wolpert (1999). Confidence intervals based on
likelihood function have an intuitive appeal since it contains the most plausible
values of N and have a close relationship with the HPD Bayesian intervals.

For sake of comparison, we shall also consider the popular Wald-type confi-
dence interval for N , mostly used in applications, with lower and upper limits
given by

N̂W
L = N̂ − z(1−α/2)

√
V̂ar(N̂) and N̂W

U = N̂ + z(1−α/2)

√
V̂ar(N̂),

where V̂ar(N̂) is an estimate of the variance of N̂ and zγ is the γ th quantile of
a standard normal distribution. Here, we shall consider the asymptotic estimate
given by Darroch (1958),

V̂ar(N̂) = N̂

[
k∏

j=1

(1 − p̂j )
−1 + k − 1 −

k∑
j=1

(1 − p̂j )
−1

]−1

,

where p̂ = (p̂1, p̂2, . . . , p̂k) is the maximum likelihood estimate of p given by (8)
replacing N with N̂ .

5 Simulation study

In this section, we describe a simulation study designed to assess the frequen-
tist properties of the proposed estimators. The population size was fixed at N =
50,100,200,400,800, the number of capture occasions at k = 3,4, . . . ,10 and
capture probabilities p were generated from the populations P1,P2,P3,P4, where
Pi = Beta(δi(μi), δi(1 − γi)), i = 1, . . . ,4. Note that if p ∼ Beta(δμ, δ(1 − μ)),
then p has mean μ and variance μ(1 − μ)/(δ + 1), which allows us to interpret δ

as a precision parameter. Table 1 displays the values of ki , δi , which were chosen



Likelihood-based inference for the population size 57

Table 1 Populations for capture probabilities

Population μ δ Variance

P1 0.05 3.75 0.01
P2 0.05 0.58 0.03
P3 0.10 3.50 0.02
P4 0.10 0.50 0.06

in order to give different mean and variance values for the generated capture prob-
abilities. For each combination of population size, number of occasions and vector
of capture probabilities, 1000 independent observations of the vector of counts
(Y1, Y2, . . . , Y2k ) were simulated from model (2).

5.1 Point estimation

For the sth simulated observation and each combination of fixed values of N ,
p and k, the maximum likelihood estimate N̂P(s) (profile), N̂C(s) (conditional),
N̂U (s) (uniform integrated) and N̂J (s) (Jeffreys integrated) were determined,
s = 1,2, . . . ,1000. To inspect the frequentists properties of point estimators, we
define the descriptive measures

RMSE
(
N̂M) =

√∑1000
s=1 (N̂M(s) − N)2

1000
,

RBIAS
(
N̂M) = 1

1000

1000∑
s=1

N̂M(s) − N

N
,

where RMSE is the square root of the mean squared-error, RBIAS is the relative
bias of estimates and M assumes P , C, U , J . For some generated samples, the
profile and conditional likelihood are strictly increasing and the maximum likeli-
hood estimate is ∞, which occurs mainly in the case of low capture probabilities
and small number of capture occasions. In such cases, we define both RMSE and
RBIAS to be ∞. Figures 1, 2 and 3 display the above descriptive measures as
function of k for the values of N = 50,200,800, respectively.

By the analysis of the graphs of RMSE and RBIAS as function of k, we con-
clude that: (i) increasing the number of capture occasions k and the capture proba-
bilities p results in decreasing of both RMSE and RBIAS (in absolute value) for all
estimators; (ii) the profile and conditional estimators assume very similar RMSE
and RBIAS values; (iii) in all scenarios, the Jeffreys and uniform integrated esti-
mator assume lower RMSE values in comparison with the profile and conditional
estimators; (iv) the uniform and Jeffreys integrated estimators are negatively bi-
ased while the profile and conditional are slightly positively biased (except in the
cases of low capture probabilities and small number of sampling occasion when it
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Figure 1 Root mean squared-error (left) and relative bias (right) of profile (P), conditional (C),
uniform integrated (U) and Jeffreys integrated (J) maximum likelihood estimates for N = 50.

Figure 2 Root mean squared-error (left) and relative bias (right) of profile (P), conditional (C),
uniform integrated (U) and Jeffreys integrated (J) maximum likelihood estimates for N = 200.

may result in ∞ estimate); (v) for low capture probabilities (P1 and P2), the profile
and conditional estimators assumes greater RMSE values (∞ in many instances)
than he uniform and Jeffreys integrated estimators, specially when heterogeneity
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Figure 3 Root mean squared-error (left) and relative bias (right) of profile (P), conditional (C),
uniform integrated (U) and Jeffreys integrated (J) maximum likelihood estimates for N = 800.

of capture probabilities are greater (P2); (vi) for high capture probabilities (P3 and
P4), the RMSE values for the estimators are quite similar when N ≥ 200.

Based on the above considerations, we suggest the use of the profile or the
conditional estimators when N ≥ 400 and k is moderate to large (k ≥ 6); when
N = 100 or 200, the number of capture occasions is large (k ≥ 8) and capture
probabilities are not very heterogeneous (P1 and P2); and when N = 50, the num-
ber of capture occasions is large (k ≥ 8) and the capture probabilities are in P3 or
P4. In the other cases, when there is a combination of small number of elements
N , small number of capture occasions k and low capture probability p, there is not
enough information to the profile and conditional estimator to have good perfor-
mance and the Jeffreys estimator is preferable.

5.2 Confidence intervals

For the sth simulated observation and each combination of fixed values of
N , p and k, it was determined the 95% confidence interval [NP

L (s),NP
U (s)]

(profile), [NC
L(s),NC

U(s)] (conditional), [NU
L (s),NU

U (s)] (uniform integrated)
and [NJ

L (s),NJ
U (s)] (Jeffreys integrated) and [NW

L (s),NW
U (s)] (Wald), s =

1,2, . . . ,1000. To inspect the frequentists properties of the confidence intervals,
we define the following descriptive measures

CP(M) = 1

1000

S∑
k=1

1[NM
L (s),NM

U (s)](N),
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Figure 4 Coverage proportion (left) and relative length (right) of profile (P), conditional (C), uni-
form integrated (U), Jeffreys integrated (J) and Wald (W) confidence intervals for N = 50.

RLEN(M) = 1

1000

S∑
k=1

NM
U (s) − NM

L (s)

N
,

where 1A denotes the indicator function for the set A, CP is the coverage propor-
tion, RLEN is the relative mean length of intervals and M assumes P , C, U , J
and W . Figures 4, 5 and 6 display the above descriptive measures as function of k

for the values of N = 50,200,800, respectively.
By the analysis of the graphs of CP and RLEN as function of k, we can ob-

serve that: (i) increasing the number of capture occasions k and the number of
elements N results in smaller values of RLEN and CP closer to the nominal 0.95
confidence level; (ii) increasing the capture probabilities results in CP closer to
the 0.95 confidence level and smaller values of RLEN; (iii) the intervals can be
increasingly ordered by RLEN as: uniform, Jeffeys, Wald, profile and conditional;
(iv) the profile, conditional have very similar CP and RLEN values; (v) the uni-
form interval has very poor CP performance compared to the others, particularly
for capture probabilities in P1 and P2; (vi) for N ≥ 400, all the intervals have
similar performance when the capture probabilities are in P3 and P4, Jeffreys in-
terval have superior performance when the capture probabilities are in P1 and P2;
(vii) for N = 50,100,200, the profile, conditional and Wald intervals have CP
slightly closer to the nominal level in comparison to the Jeffreys interval, but have
greater RLEN values, in many instances ∞ (or not defined in the case of Wald
interval) when p is in P1 and P2.

By the consideration of a combination of the criteria CP closer to 0.95 and
smaller RLEN, Jeffreys interval had the best performance when N ≤ 200, particu-
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Figure 5 Coverage proportion (left) and relative length (right) of profile (P), conditional (C), uni-
form integrated (U), Jeffreys integrated (J) and Wald (W) confidence intervals for N = 200.

Figure 6 Coverage proportion (left) and relative length (right) of profile (P), conditional (C), uni-
form integrated (U), Jeffreys integrated (J) and Wald (W) confidence intervals for N = 800.

larly with capture probabilities in P1 and P2. For N ≥ 400, the profile, conditional,
Jeffreys and Wald intervals have very similar performance. The uniform interval
had the worst performance over all considered scenarios.
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6 Numerical example

In this section, we illustrate the proposed method on a real data-set obtained from a
capture–recapture experiment of “Redear Sunfish” in Gordy Lake, Indiana (USA)
(Gerking, 1953). In this experiment, r = 138 distinct fishes were captured and
the number of captures in each of the k = 14 occasions are shown in Table 2.
This example was used by Ricker (1975) to illustrate frequentist methods and by
Castledine (1981), Smith (1988, 1991), George and Robert (1992) to illustrate
Bayesian methods.

For these data, the graphics of the profile, conditional, uniform and Jeffreys in-
tegrated relative log-likelihoods (divided by the maximum absolute value of the
log-likelihood) are presented in Figure 7. We can observe that the profile and
conditional log-likelihoods decrease slower (after the maximum value) than the
uniform and Jeffreys integrated log-likelihoods. This characteristic will imply in
narrower confidence intervals obtained from the uniform and Jeffreys integrated
likelihoods relatives to those obtained from the profile and conditional likelihoods.

For this data-set, the maximum likelihood estimates of (N̂ ) and the 95% con-
fidence interval for each discussed likelihood are displayed in Table 3. Using a
Bayesian approach, Smith (1991) considers the Jeffreys prior (π(N) ∝ 1/N) for

Table 2 Number of captures in each occasion

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ni 10 27 17 7 1 5 6 15 9 18 16 5 7 19

Figure 7 (a) Profile, (b) conditional, (c) uniform Integrated and (d) Jeffreys integrated relative
log-likelihood for the Gordy Lake data.
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Table 3 Maximum likelihood and 95% confidence interval estimates for the Gordy Lake data

Method N̂ 95 % CI

Wald – [290,600]
Profile 445 [325,654]
Conditional 448 [326,658]
Uniform integrated 322 [254,428]
Jeffreys integrated 369 [282,510]

N and Beta(a, b) independent prior distributions for the capture probabilities p,
obtaining posterior estimates for N choosing different values of a and b. In the
cases of uniform (a = 1, b = 1) and Jeffreys (a = 0.5, b = 0.5) prior distribution
for p, the 95% confidence intervals [255,434] and [281,520] for N are reported,
respectively. From Table 3, we conclude that the intervals obtained using the uni-
form and Jeffreys integrated likelihoods are similar to those obtained by Smith
(1991).

7 Concluding remarks

In this paper, we have discussed some likelihood-based approaches for inference
on the number of elements of a population considering different methods for elimi-
nating the nuisance parameters. The profile, conditional, uniform and Jeffreys inte-
grated likelihood functions are presented and estimation based on each likelihood
function is discussed. The integrated likelihood functions are obtained by means of
eliminating the nuisance parameter by integration with respect to a noninformative
density function for the capture probabilities. In situations with little information,
that is, small number of elements, small capture probabilities and small number
of capture occasions, the profile and conditional likelihoods performs poorly and
the integrated likelihoods provide an alternative method of estimation with better
frequentist performance. In such situations, Jeffreys integrated likelihood achieved
the best performance over all considered estimators for both point and interval esti-
mation, the profile and conditional estimators may not exist, and the popular Wald
interval may not be defined. Furthermore, the lower limit of all likelihood-based
intervals considered are no less than r , condition not guaranteed to hold for the
Wald confidence interval.

Appendix: Proof of Theorem 1

In the proof of Theorem 1, we will use the following lemma.



64 L. E. B. Salasar, J. G. Leite and F. Louzada

Lemma 1. For all y > 0 and positive integer t , the following inequality holds:

log(y + t) − log(y) <
1

2(y + t)
+

t∑
i=1

1

y + t − i
− 1

2y

= 1

2(y + t)
+

t−1∑
i=1

1

y + t − i
+ 1

2y
.

Proof. Let y > 0 be fixed.
First, let us prove the assertion for the case t = 1, i.e.,

log(y + 1) − log(y) <
1

2

(
1

y + 1
+ 1

y

)
.

Let f (x) = 1/x be defined for x > 0. Since f is convex, the line segment join-
ing the points (y,1/y) and (y + 1,1/(y + 1)) lies above the graph of f in the
interval (y, y + 1), that is,

1

y + ξ
<

1

y
+

(
1

y + 1
− 1

y

)
ξ, 0 < ξ < 1.

Thus,

log(y + 1) − log(y) =
∫ 1

0

1

y + ξ
dξ

<

∫ 1

0

[
1

y
+

(
1

y + 1
− 1

y

)
ξ

]
dξ (12)

= 1

2

(
1

y + 1
+ 1

y

)
.

For the case t ≥ 2, we see that

log(y + t) − log(y) =
t∑

i=1

[
log(y + t + 1 − i) − log(y + t − i)

]
.

From (12), it follows that

log(y + t) − log(y) <

t∑
i=1

[
1

2

(
1

y + t − i + 1
+ 1

y + t − i

)]

= 1

2(y + t)
+

t−1∑
i=1

1

y + t − i
+ 1

2y

= 1

2(y + t)
+

t∑
i=1

1

y + t − i
− 1

2y
.

�
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Theorem 1. The maximum profile likelihood estimator, N̂P , is no greater than the
conditional maximum likelihood estimator N̂C . The estimator N̂P is finite if, and
only if, r < n1 + · · · + nk .

Proof. Observe that if N̂C = ∞, then N̂P ≤ N̂C is obviously true. Thus, suppose
that N̂C < ∞ and consider the ratios RC(N) = KC(N + 1)/KC(N) and RP(N) =
KP(N + 1)/KP(N), which are given by the expressions

RC(N) =
[
1 − r

N + 1

]−1 k∏
j=1

(
1 − nj

N + 1

)
, (13)

RP(N) =
[
1 − r

N + 1

]−1 k∏
j=1

(
1 − nj

N + 1

)
(14)

×
k∏

j=1

{(
1 + 1

N − nj

)N−nj NN

(N + 1)N+1

}
for N ≥ r .

The ratios are useful to determine the behavior of the likelihood function. Note
that if the ratio in N is less than 1, the likelihood function in N + 1 is less than that
in N ; if it is equal to 1, the likelihood function in N + 1 is equal to that in N ; and,
if is greater than 1, the likelihood in N + 1 is greater than that in N .

Leite, Oishi and Pereira (1988) have proved that: (i) if r < n1 + · · · + nk , then
the maximum conditional likelihood estimate N̂C is finite and RC(N) < 1 for all
N ≥ N̂C ; (ii) if r = n1 + · · · + nk , then RC(N) > 1 for all N ≥ r , which implies
that N̂C = +∞.

Since (1 + 1/k)k is an increasing sequence in k, it follows that

k∏
j=1

{(
1 + 1

N − nj

)N−nj NN

(N + 1)N+1

}
< 1,

which implies from (13) and (14) that RP(N) < RC(N) for all N ≥ r . There-
fore, the maximum profile likelihood estimate is always less than or equal to
the conditional one. As an immediate consequence, it follows that N̂P is finite
if r < n1 + · · · + nk .

To prove the reciprocal, it suffices to show that if r = n1 + · · · + nk then KP is
an strictly increasing function. Considering r = n1 +· · ·+nk , let f be an extension
to real interval [r,∞) of the function KP(N) given by

f (x) =
r−1∑
i=0

log(x − i) +
k∑

i=1

[
(x − ni) log(x − ni) − x log(x)

]
, x ≥ r, (15)

where we assume that 0 log(0) = 0.
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Thus, we shall prove that the f ′(x) > 0 for all x > r , that is,

f ′(x) =
n−1∑
i=0

1

x − i
+

k∑
i=1

[
log(x − ni) − log(x)

]
> 0, x > r,

which is the same as proving that

k∑
i=1

[
log(x) − log(x − ni)

]
<

n1+n2+···+nk−1∑
i=0

1

x − i
(16)

for any choice of values n1, n2, . . . , nk ∈ N
∗ = {1,2, . . .} and any real number x >

n1 + n2 + · · · + nk . The relation (16) will be proved by finite induction on k.
From Lemma 1, it follows that

log(x) − log(x − ni) <
1

2x
+

ni∑
j=1

1

x − j
− 1

2(x − ni)
(17)

= 1

2x
+

ni−1∑
j=1

1

x − j
+ 1

2(x − ni)
(18)

for x > ni , i = 1,2, . . . , k.
Suppose that k = 2 and, without loss of generality, that n1 ≥ n2, it follows from

(17) and (18) that

2∑
i=1

[
log(x) − log(x − ni)

]

<
1

2x
+

n1∑
j=1

1

x − j
− 1

2(x − n1)

+ 1

2x
+

n2−1∑
j=1

1

x − j
+ 1

2(x − n2)

= 1

x
+

n1∑
j=1

1

x − j
+

n2−1∑
j=1

1

x − j
+ 1

2

(
1

x − n2
− 1

x − n1

)

<
1

x
+

n1∑
j=1

1

x − j
+

n2−1∑
j=1

1

x − n1 − j

=
n1+n2−1∑

j=0

1

x − j
,

x > n1 + n2, which proves (16) for k = 2.
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Let us assume that assertion (16) holds for k = k′, k′ ≥ 2. Under this hypoth-
esis, we will prove the assertion (16) for k = k′ + 1. Let n1, . . . , nk′, nk′+1 in
N

∗ = {1,2, . . .} and x > n1 +· · ·+nk′ +nk′+1. Since x > n1 +· · ·+nk′ , it follows
from induction hypothesis that

k′∑
i=1

[
log(x) − log(x − ni)

]
<

n1+n2+···+nk′−1∑
j=0

1

x − j
,

and using Lemma 1, it follows that

k′+1∑
i=1

[
log(x) − log(x − ni)

]

=
k′∑

i=1

[
log(x) − log(x − ni)

] + log(x) − log(x − nk′+1)

<

n1+n2+···+nk′−1∑
j=0

1

x − j
+

nk′+1∑
j=1

1

x − j
+ 1

2

(
1

x
− 1

x − nk′+1

)

<

n1+n2+···+nk′−1∑
j=0

1

x − j
+

nk′+1∑
j=1

1

(x − n1 − · · · − nk′ + 1) − j

=
n1+n2+···+nk′+1−1∑

j=0

1

x − j
,

which implies (16) for k = k′ + 1. �
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