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Abstract. The residual entropy function introduced by Ebrahimi [Sankhyā
A 58 (1996) 48–56], is viewed as a dynamic measure of uncertainty. This
measure finds applications in modeling and analysis of life time data. In
the present work, we propose nonparametric estimators for the residual en-
tropy function based on censored data. Asymptotic properties of the estimator
are established under suitable regularity conditions. Monte Carlo simulation
studies are carried out to compare the performance of the estimators using the
mean-squared error. The methods are illustrated using two real data sets.

1 Introduction

In the recent past, many researchers have taken keen interest in the measurement of
uncertainty associated with a probability distribution. Of particular interest is the
notion of entropy, introduced by Shannon (1948). If X is a nonnegative random
variable admitting an absolutely continuous distribution function F(x) with prob-
ability density function f (x), the Shannon’s entropy associated with the random
variable X is defined as

H(X) = H(f ) = −
∫ ∞

0
f (x) logf (x) dx. (1.1)

If X represents the life time of a unit, then H(f ) can be used as a potential mea-
sure for the associated uncertainty. However, if a unit has survived up to an age
t , the information about the remaining age is of special importance in reliability
and survival analysis. In this scenario, Ebrahimi and Pellerey (1995) followed by
Ebrahimi (1996) have proposed the concept of residual entropy. For a nonnegative
random variable X, representing the life time of a component, the residual en-
tropy function is the Shannon’s entropy associated with the random variable X − t

truncated at t ≥ 0 and is defined as

H(f ; t) = −
∫ ∞
t

f (x)

(1 − F(t))
log

(
f (x)

1 − F(t)

)
dx

(1.2)

= log
(
1 − F(t)

) − 1

(1 − F(t))

∫ ∞
t

f (x) logf (x) dx,
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where f (x) and F(x) denotes the density function and distribution function re-
spectively. Belzunce et al. (2004) has established that if H(f ; t) is increasing in t

then H(f ; t) determines the distribution uniquely. Given that an item has survived
up to time t , H(f ; t) measures the uncertainty about its remaining life. For prac-
tical purposes, we need to develop some inference techniques about this measure.
Ebrahimi (1996) proposed new ageing classes namely, IURL(DURL), using this
measure. Ebrahimi (1997) proposed a test of exponentiality against IURL(DURL)
alternatives. Belzunce et al. (2001) proposed kernel type estimation of the residual
entropy function in the case of independent complete data sets. It is more realistic
to assume some form of dependence among the data are observed. In this paper,
we provide nonparametric kernel type estimation for H(f ; t) under right censored
dependent data. We consider only situations where the data under study are depen-
dent. In this situation, the underlying lifetimes are assumed to be α-mixing (see
Rosenblatt (1956)) and whose definition is given below.

Definition 1. Let {Xi; i ≥ 1} denote a sequence of random variables. Given a pos-
itive integer n, set

α(n) = sup
k≥1

{∣∣P(A ∩ B) − P(A)P (B)
∣∣;A ∈ Fk

1,B ∈ F∞
k+n

}
, (1.3)

where Fk
i denote the σ -field of events generated by {Xj ; i ≤ j ≤ k}. The sequence

is said to be α-mixing (strong mixing), if the mixing coefficient α(n) → 0 as
n → ∞. Among various mixing conditions, α-mixing is reasonably weak and has
many practical applications. Many stochastic processes satisfy the α-mixing con-
dition, see, for example, Doukhan (1994) and Carrasco et al. (2007). Fakoor (2010)
examined the strong uniform consistency of kernel density estimators for censored
dependent data. Cai (1998a) proposed hazard rate estimation for censored depen-
dent data and Cai (1998b) established the asymptotic properties of Kaplan–Meier
estimator for censored dependent data.

The organization of the paper is as follows. In Section 2, we present nonpara-
metric estimators for H(f ; t) using censored samples. In Section 3, we examine
asymptotic properties of the estimator. In Section 4, we evaluate the estimator to
two real data sets and Section 5 a simulation study to illustrate the behavior of the
estimators is undertaken.

2 Estimation

In this section, we propose nonparametric estimators for the residual entropy func-
tion for censored data sets. In reliability and life testing, due to time constraints
or cost consideration the experimenter is forced to terminate the experiment after
specific period of time or after a failure of a specified number of units. In this con-
text, the underlying data will be censored. In the context of right censoring, only
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the lower bounds on life time will be available for some individuals and in the
context of left censoring data will be recorded as the upper bound of life time for
some individuals. Another common type of censoring is random censoring.

Let {Xi;1 ≤ i ≤ n} be a sequence of nonnegative random variables represent-
ing the life times for n components/devices. The random variables are not as-
sumed to be mutually independent. However, they have a common unknown con-
tinuous marginal distribution function F(x) with a probability density function
f (x) = F ′(x). Let the random variable Xi be censored on the right by the random
variable Yi . In this random censorship model, the censoring times Yi are assumed
to be independently and identically distributed and they are also assumed to be in-
dependent of Xi . The censoring times Y1, Y2, . . . , Yn have the common distribution
function G(x). This scheme is very common in clinical trials. In such experiments,
patients enter into the study at random time points, while the experiment itself is
terminated at a pre specified time. Let Zi = Xi ∧ Yi and δi = I (Xi ≤ Yi), where
I (·) denotes the indicator function of the event specified in parentheses. The actu-
ally observed Zi’s have a distribution function L(x) satisfying

1 − L(t) = (
1 − F(t)

)(
1 − G(t)

)
, t ∈ R+ = [0,∞).

Let L∗(t) = P(Z1 ≤ t; δ1 = 1) be the corresponding sub-distribution function
for the uncensored observations and l∗(t) = f (t)(1 − G(t)) be the correspond-
ing sub-density. A reasonable estimator of f should behave like l∗n(t)

(1−G(t))
where

l∗n(t) = b−1
n

∫
R+ K(t−x

bn
) dL∗

n(x) is the kernel estimator pertaining to L∗
n(t) =

1
n

∑n
i=1 I (Zi ≤ t; δi = 1).

A nonparametric density estimator for the density function f (x) (see Cai
(1998a)) under dependence condition is given by

fn(x) = 1

bn

∫
R+

K((x − u)/bn)

1 − G(u)
dL∗

n(u). (2.1)

Under α-mixing dependence conditions, expressions for the bias and variance of
fn(x) are given by

Bias
(
fn(x)

)
� bs

ncs+

s! f (s)(x) (2.2)

and

Var
(
fn(x)

)
� 1

nbn

f (x)

(1 − G(x))
CK, (2.3)

where cs+ = ∫
R+ usK(u)du and CK = ∫ ∞

−∞ K2(u) du.
Let Nn(t) = ∑n

i=1 I (Zi ≤ t; δi = 1) be the number of uncensored observations
less than or equal to t and Yn(t) = ∑n

i=1 I (Zi ≥ t) be the number of censored
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or uncensored observations greater than or equal to t . Then, the Kaplan–Meier
estimator is given by (see Kaplan and Meier (1958))

1 − Fn(t) = ∏
s≤t

(
1 − dNn(s)

Yn(s)

)
, (2.4)

where dNn(s) = Nn(s) − Nn(s−).
A simple nonparametric estimator for H(f ; t) based on the censored data is

H ∗(f ; t) = −1

n

n∑
i=1

log
(

fn(Zi)

1 − Fn(t)

)
I(Zi>t), (2.5)

where fn(Zi) = 1
(n−1)

∑n
j �=i

1
bn

K(
Zi−Zj

bn
) is the kernel estimator obtained from the

sample without Zi and 1 − Fn(t) is the Kaplan–Meier estimator given in (2.4).
A kernel estimator for H(f ; t) under censoring is

Hn(f ; t) = −
∫ ∞
t

fn(x)

(1 − Fn(t))
log

(
fn(x)

(1 − Fn(t))

)
dx

(2.6)

= log
(
1 − Fn(t)

) − 1

(1 − Fn(t))

∫ ∞
t

fn(x) logfn(x) dx.

The assumptions used in this paper are listed below.

1. Suppose that {Xi;1 ≤ i ≤ n} is a sequence of stationary α-mixing random
variables with continuous distribution function F(x).

2. Suppose that the censoring time variables {Yi;1 ≤ i ≤ n} are independent
and identically distributed with a continuous distribution function G(y) and are
independent of {Xi;1 ≤ i ≤ n}.

3. α(n) = O(n−ν) for some ν > 3.
4. K is a continuously differentiable probability density function vanishing out-

side some finite interval, ∞ < s1 < 0 < s2 < ∞.
5. The bandwidth bn → 0 and nbn → ∞ as n → ∞.
6. For each j ≥ 2, the joint probability density function of X1 and Xj , f1,j (·, ·)

exists and |f1,j (u, v) − f (u)f (v)| ≤ C for all j ≥ 2 and all u, v ∈ � and some
constant C.

7. There exists a sequence of real numbers {mn} such that 1 ≤ mn ≤ n, mn →
∞, mnbn → 0 and b

−γ
n

∑
j≥mn

αγ (j) → 0 for some γ ∈ (0,1).
8. Let {cn} and {dn} be sub-sequences of {n} tending to infinity and such that

cn + dn ≤ n and let μn be the largest positive integer for which μn(cn + dn) ≤ n.
Then

(a) dnμn

n
→ 0, μnα(dn) → 0 and cn√

nbn
→ 0.

(b) b
−γ
n

∑
j≥cn

αγ (j) is bounded, where γ is as in (7).
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3 Asymptotic properties

In this section, we look into the strong convergence and asymptotic normality of
the estimator given in (2.6).

In order to simplify the notation, define

an(t) =
∫ ∞
t

fn(x) logfn(x) dx,

a(t) =
∫ ∞
t

f (x) logf (x) dx, (3.1)

mn(t) = log
(
1 − Fn(t)

)
and m(t) = log

(
1 − F(t)

)
.

Using (3.1) on (1.2) and (2.6), we get

H(f ; t) = m(t) − a(t)

(1 − F(t))
(3.2)

and

Hn(f ; t) = mn(t) − an(t)

(1 − Fn(t))
. (3.3)

In the following theorem, we prove the almost sure convergence of the estimator
Hn(f ; t). In addition to the assumptions given in Section 2, we have the following
assumptions.

(i) Let for the distribution functions F(·) and G(·), the possibly infinite times
τF and τG is given by τF = inf{y : F(y) = 1} and τG = inf{y : G(y) = 1}.

Then for the marginal distribution function of L(·) of Z, it holds τL = τF ∧ τG

(see Stute and Wang (1993)).
(ii) For 0 < τ < ∞, L(τ) < 1 (see Cai (1998b)).

(iii) By combining (i) and (ii), we can write for any 0 < τ < τL such that
L(τ) < 1.

Theorem 3.1. Let Hn(f ; t) be a nonparametric estimator of H(f ; t) satisfying
the assumptions in Section 2 and assumption (iii) given above. Then

lim
n→∞ sup

0≤t≤τ

∣∣Hn(f ; t) − H(f ; t)∣∣ = 0 a.s. (3.4)

Proof. Using (3.2) and (3.3), we get

Hn(f ; t) − H(f ; t) = (
mn(t) − m(t)

) −
(

an(t)

1 − Fn(t)
− a(t)

1 − F(t)

)
. (3.5)

We have
∣∣mn(t) − m(t)

∣∣ � |Fn(t) − F(t)|
(1 − F(t))

(3.6)
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and

∣∣an(t) − a(t)
∣∣ �

∫ ∞
t

(
1 + logf (x)

)∣∣fn(x) − f (x)
∣∣dx. (3.7)

Since sup0≤t≤τ |Fn(t) − F(t)| → 0 a.s. (see Cai (1998b)) and simplifies we get,
∣∣∣∣ an(t)

(1 − Fn(t))
− a(t)

(1 − F(t))

∣∣∣∣
(3.8)

� (1 − F(t))|an(t) − a(t)| + a(t)|Fn(t) − F(t)|
(1 − F(t))2 .

Using (3.6), (3.7) and (3.8) in (3.5), we get
∣∣Hn(f ; t) − H(f ; t)∣∣

� |Fn(t) − F(t)|
(1 − F(t))

+ 1

(1 − F(t))

∫ ∞
t

(
1 + logf (x)

)∣∣fn(x) − f (x)
∣∣dx

+ a(t)

(1 − F(t))2

∣∣Fn(t) − F(t)
∣∣.

By using the almost sure convergence of fn(x) and Fn(x) given in Cai (1998a)
and Cai (1998b) respectively, we get

lim
n→∞ sup

0≤t≤τ

∣∣Hn(f ; t) − H(f ; t)∣∣ = 0 a.s. �

In the following theorem, we focus attention on the asymptotic normality of the
estimator Hn(f ; t).

Theorem 3.2. Let Hn(f ; t) be a nonparametric estimator of H(f ; t) satisfying
the assumptions in Section 2. Then

√
nbn

(Hn(f ; t) − H(f ; t))
σH

(3.9)

has a standard normal distribution as n → ∞ with

σ 2
H � CK

(1 − F(t))2

∫ ∞
t

f (x)

(1 − G(x))

(
1 + logf (x)

)2
dx

(3.10)

+
(

a2(t)

(1 − F(t)2)
+ 1

)
bnσ

2

(1 − F(t))
,

where σ 2(t) = Var(ξ(Z1, δ1, t))+ 2
∑∞

j=2 Cov(ξ(Z1, δ1, t), ξ(Zj , δj , t)) (see, Cai
(1998b)), {ξ(Zj , δj , t)}i is a sequence of stationary α-mixing bounded random
variables and CK = ∫ ∞

−∞ K2(u) du.
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Proof. We have,√
nbn

(
Hn(f ; t) − H(f ; t))

= √
nbn

((
mn(t) − m(t)

) −
(

an(t)

(1 − Fn(t))
− a(t)

(1 − F(t))

))

(3.11)
�

√
nbn

(−(Fn(t) − F(t))

(1 − F(t))
− (an(t) − a(t))

(1 − Fn(t))

)

− √
nbn

(
a(t)(Fn(t) − F(t))

(1 − Fn(t))(1 − F(t))

)
.

Since sup0≤t≤τ |Fn(t)−F(t)| → 0 a.s. (see Cai (1998b)), (3.11) is asymptotically
equal to √

nbn

(
Hn(f ; t) − H(f ; t))

�
√

nbn

(
− 1

(1 − F(t))
− a(t)

(1 − F(t))2

)(
Fn(t) − F(t)

)

− √
nbn

(
an(t) − a(t)

(1 − F(t))

)

�
√

nbn

(
− 1

(1 − F(t))
− a(t)

(1 − F(t))2

)(
Fn(t) − F(t)

)

− √
nbn

1

(1 − F(t))

∫ ∞
t

(
fn(u) − f (u)

)(
1 + logf (u)

)
du.

By using the assymptotic normality of fn(x) and Fn(x) given in Cai (1998a) and
Cai (1998b) respectively, it is immediate that

(nbn)
1/2

{
(Hn(f ; t) − H(f ; t))

σH

}

is asymptotically normal with mean zero and variance given in (3.10). �

4 Numerical illustration

Example 1. To illustrate the usefulness of the proposed kernel estimator Hn(f ; t)
discussed in Section 2 with real situations, we consider the failure times (measured
in millions of operations) of 40 randomly selected mechanical switches given in
Nair (1984) and Nair (1993) and is reproduced in Table 1. Three of the test posi-
tions became available much later than the others, so the three switches tested at
these positions were still operating at the termination of the test. The correspond-
ing censored observations are indicated by the code +. This data set is a typical
example of a competing-risk problem where a system fails due to one or more
competing causes and one observes only the time to failure of the system and the
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corresponding failure mode (component). Here the censoring mechanisms are de-
pendent, in fact, since the components are subject to the same stress and operating
environment, it is likely that the failure times of the components are positively de-
pendent. The Gaussian kernel K(z) = 1√

2π
exp(−z2

2 ) is used as the kernel function
for the estimation. Figure 1 shows the plot of Hn(f ; t) calculated using Gaussian
kernel. From Figure 1, it is easy to see that for the data set considered Hn(f ; t) is
decreasing.

Example 2. Here we consider the data of time to tumor appearance in a litter
matched tumorigenesis experiment reported by Mantel and Ciminera (1979). Ying
and Wei (1994) used this data for estimating survival function under dependent
censoring. Animal studies in which it is desired to control for genetic factors often
use a litter-matched design. In such a design, a random sample of litters is chosen.
One or more animals in each litter are, perhaps, treated with a suspected carcinogen
while the remaining animals in the litter are untreated. The data consists of fifty
litters of three female rats each. A suspected carcinogen was administered to one
rat in each litter, the other two rats in each litter served as controls. The experiment
lasted 104 weeks. The data set consists of the week at which each rat developed
a tumor or was lost to follow-up by tumor less death and is given in Table 2. In
Table 2, + indicates the weeks of death prior to any tumor. Here also we use the
Gaussian kernel for the estimation. Figure 2 shows the plot of Hn(f ; t) for this

Table 1 Failure times (in millions of operations) for a mechanical-switch life test

1.151 1.170 1.248 1.331 1.381 1.499 1.508 1.534 1.577
1.584 1.667 1.695 1.710 1.955 1.965 2.012 2.051 2.076
2.109 2.116 2.119 2.135 2.197 2.199 2.227 2.250 2.254
2.261 2.349 2.369 2.547 2.548 2.738 2.79 2.883+ 2.883+
2.910 3.015 3.017 3.793+

Figure 1 Plot of Hn(f ; t) for the failure times (measured in millions of operations) of 40 randomly
selected mechanical switches.
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Table 2 Time (in weeks) to tumor appearance in a litter-matched tumorigenesis experiment

Drug treated Control 1 Control 2 Drug treated Control 1 Control 2

101.0+ 49 104.0+ 89.0+ 104.0+ 104.0+
104.0+ 102.0+ 104.0+ 78.0+ 104.0+ 104.0+
104.0+ 104.0+ 104.0+ 104.0+ 81 64

77.0+ 97.0+ 79.0+ 86 55 94.0+
89.0+ 104.0+ 104.0+ 34 104.0+ 54
88 96 104.0+ 76.0+ 87.0+ 74.0+

104 94.0+ 77 103 73 84
96 104.0+ 104.0+ 102 104.0+ 80.0+
82.0+ 77.0+ 104.0+ 80 104.0+ 73.0+
70 104.0+ 77.0+ 45 79.0+ 104.0+
89 91.0+ 90.0+ 94 104.0+ 104.0+
91.0+ 70.0+ 92.0+ 104.0+ 104.0+ 104.0+
39 45.0+ 50 104.0+ 101 94.0+

103 69.0+ 91.0+ 76.0+ 84 78
93.0+ 104.0+ 103.0+ 80 81 76.0+
85.0+ 72.0+ 104.0+ 72 95.0+ 104.0+

104.0+ 63.0+ 104.0+ 73 104.0+ 66
104.0+ 104.0+ 74.0+ 92 104.0+ 102
81.0+ 104.0+ 69.0+ 104.0+ 98.0+ 73.0+
67 104.0+ 68 55.0+ 104.0+ 104.0+

104.0+ 104.0+ 104.0+ 49.0+ 83.0+ 77.0+
104.0+ 104.0+ 104.0+ 89 104.0+ 104.0+
104.0+ 83.0+ 40 88.0+ 79.0+ 99.0+

87.0+ 104.0+ 104.0+ 103 91.0+ 104.0+
104.0+ 104.0+ 104.0+ 104.0+ 104.0+ 79

Figure 2 Plots of Hn(f ; t) for the time (in weeks) to tumor appearance in a litter-matched tumori-
genesis experiment.
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data calculated using Gaussian kernel. From Figure 2, we can say that Hn(f ; t)
for rats treated with a suspected carcinogen is high when it is compared with the
others which are untreated.

5 Simulation studies

A Monte Carlo simulation study is carried out to compare the kernel estimators
Hn(f ; t) and H ∗(f ; t) in terms of the mean-squared error (MSE). For the simula-
tion under right censored sample, we generated {Xi} from AR(1) with correlation
coefficient ρ = 0.2 from an exponential distribution with parameter λ = 5. Obser-
vations are censored using uniform distribution U(0,1). For simulation we used
four different censoring levels, that is, 15%, 25%, 50% and 80%, four different
sample sizes, that is, 35, 50, 80 and 100 and three different kernels, that is, Gaus-
sian kernel, Exponential kernel and Gompertz kernel. The mean-squared error of
Hn(f ; t) and H ∗(f ; t) are computed and are given in Table 3. The optimal bn

that minimizes the mean-squared error estimate for Hn(f ; t) and H ∗(f ; t) is 0.3.
From the Table 3, we can say that sample size and censoring level jointly affect
the performance of estimators. When the censoring level is high (>80%), MSE of
the estimators become high. MSE of Hn(f ; t) is small when it is compared with
H ∗(f ; t) and it decreases as the sample size increases. In the case of Hn(f ; t),

Table 3 Mean-squared error of Hn(f ; t) and H∗(f ; t) using different censoring levels, sample
sizes, kernels

Censoring
level

MSE’s of Hn(f ; t) MSE’s of H∗(f ; t)
Sample size Gaussian Gompertz Exponential Gaussian Gompertz Exponential

0.15 n = 100 0.0264 0.0079 0.0116 0.3255 0.3257 0.2922
n = 80 0.0341 0.0057 0.0342 0.2720 0.2678 0.2304
n = 50 0.0355 0.0220 0.0363 0.3010 0.2998 0.2632
n = 35 0.0499 0.1087 0.0510 0.3160 0.3122 0.2828

0.25 n = 100 0.0146 0.0305 0.0359 0.3254 0.3307 0.3038
n = 80 0.0336 0.0105 0.0350 0.2670 0.2605 0.2278
n = 50 0.0379 0.0553 0.0484 0.3090 0.3077 0.2745
n = 35 0.0578 0.1070 0.0619 0.3177 0.3122 0.2828

0.5 n = 100 0.0339 0.0112 0.0295 0.3000 0.2995 0.2584
n = 80 0.0421 0.0134 0.0639 0.2389 0.2291 0.1846
n = 50 0.0464 0.0722 0.0407 0.3086 0.3059 0.3195
n = 35 0.0589 0.1667 0.0956 0.3270 0.3250 0.2970

0.8 n = 100 0.0211 0.0667 0.0436 0.2818 0.2749 0.2641
n = 80 0.0524 0.1096 0.0758 0.2970 0.2891 0.2470
n = 50 0.0630 0.3085 0.1841 0.3276 0.3273 0.3030
n = 35 0.1217 0.6176 0.3460 0.3323 0.3298 0.3298
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when the censoring level is 15% the MSE of the estimator using Gompertz kernel
is small when it is compared with the other 2 kernels. The MSE of the estimator
using Gaussian kernel is small, when the censoring level is 80%.
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