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Abstract. Exponentiated Weibull distribution, introduced as an extension of
the Weibull distribution, is characterized by bathtub shaped, unimodal failure
rates besides a broader class of monotone failure rates. In this paper, we derive
maximum likelihood estimators (MLEs), uniformly minimum variance unbi-
ased estimators and three other estimators of the probability density function
and the cumulative distribution function of the exponentiated Weibull distri-
bution and compare their performances through numerical simulations. Sim-
ulation studies show that the MLE is more efficient than the others. Analysis
of a real data set is presented for illustrative purposes.

1 Introduction

The exponentiated Weibull (EW) distribution introduced by Mudholkar and Sri-
vastava (1993) as an extension of the Weibull distribution, is characterized by
bathtub shaped, unimodal failure rates besides a broader class of monotone failure
rates. The applications of the EW distribution in reliability and survival studies
were illustrated by Mudholkar et al. (1995). Its properties were studied in detail by
Mudholkar and Hutson (1996) and Nassar and Eissa (2003, 2004). These authors
presented useful applications of the distribution in the modeling of flood data and
in reliability. Practically, the EW distribution is more realistic than distributions
exhibiting monotone failure rates.

Some researchers pointed out the use of the EW distribution in reliability es-
timation. Singh et al. (2002, 2005a, 2005b, 2006) obtained Bayes estimators of
the parameters, reliability function and hazard function for EW distributed type II
censored data under squared error and LINEX loss functions. Jaheen and Al Harbi
(2011) discussed Bayesian estimation based on dual generalized order statistics
from the EW distribution. Ashour and Afify (2007) analyzed EW distributed life-
time data observed under type I progressive interval censoring with random re-
movals. They derived MLEs of the parameters and their asymptotic variances.
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Ashour and Afify (2008) derived MLEs of the parameters of the EW distribu-
tion and their asymptotic variances for type II progressive interval censoring with
random removals. Kim et al. (2011) derived ML and Bayes estimators for the EW
distribution using symmetric and asymmetric loss functions.

A random variable X is said to have a three-parameter EW distribution if its
cumulative distribution function (CDF) and probability density function (PDF) are

F(x) = (
1 − e−xβ/θβ )α (1.1)

and

f (x) = αβ
xβ−1

θβ
e−xβ/θβ (

1 − e−xβ/θβ )α−1
, (1.2)

respectively, for x > 0, α > 0, β > 0 and θ > 0, where α and β are the shape
parameters and θ is the scale parameter.

The recent applications of the EW distribution have been widespread. We men-
tion: model for carbon fibrous composites (Surles and D’Ambrosio, 2004); mod-
eling tree diameters of Chinese fir plantations located at Kaihua forestry farm,
Zhejiang province, southeastern China (Wang and Rennolls, 2005); models for
firmware system failure (Zhang et al., 2005); estimation of the number of ozone
peaks in Mexico city (Achcar et al., 2009); mean residual life computation of
(n − k + 1)-out-of-n systems for the case of independent but not necessarily iden-
tically distributed lifetimes of the components (Gurler and Capar, 2011).

Because of the numerous applications of the EW distribution, we feel the impor-
tance to investigate efficient estimation of its PDF and CDF. We consider several
different estimation methods: uniformly minimum variance unbiased (UMVU) es-
timation, ML estimation, percentile (PC) estimation, least squares (LS) estimation
and weighted least squares (WLS) estimation.

We have chosen these estimation methods because they are some of the most
popular ones. In particular, ML estimation is the most widely used method. There
are of course many other methods that can be used; for example, method of mo-
ments, generalized method of moments, Bayesian estimation, bootstrapping, jack-
knifing, empirical likelihood method and so on. We hope to consider some of these
methods in a future work.

Studies similar to this paper have appeared in the recent literature for other dis-
tributions. For example, Dixit and Jabbari Nooghabi (2011) investigated efficient
estimation of the PDF, the CDF and the r th moment of the exponentiated Pareto
distribution in the presence of outliers. Bagheri et al. (2014) investigated efficient
estimation of the PDF and the CDF of the generalized exponential-Poisson distri-
bution. The former considered the following estimators: UMVUE, MLE, quantile
estimator and LSE. They showed that the MLE is more efficient than the UMVUE
and the UMVUE is more efficient than others.

The contents of this paper are organized as follows. The MLE and the UMVUE
of the PDF and the CDF and their mean squared errors (MSEs) are derived in
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Sections 2 and 3. Other estimation methods are considered in Sections 4 and 5.
The estimators are compared by simulation and a real data application in Sections 6
and 7. Throughout the paper (except for Section 7), we assume α is unknown, but
both β and θ are known. A future work is to extend the results of the paper to the
case that all three parameters are unknown.

To the best of our knowledge, no one has considered estimation of the PDF and
the CDF of the EW distribution. The results presented here in Sections 2 to 5 are
all new.

2 MLEs of the PDF and the CDF

Let X1,X2, . . . ,Xn denote a random sample from the EW distribution given by
(1.1) and (1.2). The MLE of α is

α̃ = − n∑n
i=1 log[1 − e−x

β
i /θβ ]

. (2.1)

By the invariance property of MLEs, we can easily obtain the MLEs of the PDF
and the CDF as

f̃ (x) = α̃β
xβ−1

θβ
e−xβ/θβ [

1 − e−xβ/θβ ]α̃−1 (2.2)

and

F̃ (x) = (
1 − e−xβ/θβ )α̃ (2.3)

for x > 0 provided that θ > 0 and β > 0 are known. Let T = −∑n
i=1 log(1 −

e−x
β
i /θβ

). We can write

T = − 1

α

n∑
i=1

logF(xi)
d= − 1

α

n∑
i=1

logUi
d=

n∑
i=1

Ei,

where Ui are independent uniform[0,1] random variables, Ei are independent ex-

ponential random variables with scale parameter α and “ d=” denotes equality in
distribution. It is well known that the sum of independent exponential random
variables is a gamma random variable: in fact, the moment generating function
of T is

E
[
exp(sT )

] = E

[
exp

(
s

n∑
i=1

Ei

)]
=

n∏
i=1

[
exp(sEi)

] =
n∏

i=1

α

α − s
= αn

(α − s)n
,

the moment generating function of a gamma random variable with shape parameter
n and scale parameter α. So,

fT (t) = αn

�(n)
tn−1e−αt (2.4)
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for t > 0 and α > 0. By using the transformation α̃ = W = n
T

, we obtain

fW(w) = nnαn

�(n)

e−nα/w

wn+1 (2.5)

for w > 0 and α > 0.
Theorem 2.1 calculates E(f̃ (x))r and E(F̃ (x))r .

Theorem 2.1. We have

E
(
f̃ (x)

)r = 2kr(nα)(r+n)/2

�(n)

(
− 1

r log(1 − b)

)(r−n)/2

(2.6)
× Kr−n

(
2
√

−rnα log(1 − b)
)

and

E
(
F̃ (x)

)r = 2(nα)n/2

�(n)

(
− 1

r log(1 − b)

)−n/2

K−n

(
2
√

−rnα log(1 − b)
)
, (2.7)

where k = β xβ−1

θβ
e−xβ/θβ

1−e−xβ/θβ , b = e−xβ/θβ
, α̃ = w and Kν(·) denotes the modified

Bessel function of the second kind of order ν.

Proof. Given the assumptions, we have f̃ (x) = kw(1 − b)w and F̃ (x) = (1 − b)w

for w > 0. Therefore, by equation (2.5), we can write

E
(
f̃ (x)

)r =
∫ ∞

0
krwr(1 − b)rw

nnαn

�(n)

e−nα/w

wn+1 dw

= krnnαn

�(n)

∫ ∞
0

wr(1 − b)rw
e−nα/w

wn+1 dw

= krnnαn

�(n)

∫ ∞
0

wr−n−1erw log(1−b)e−nα/w dw

= 2kr(nα)(r+n)/2

�(n)

(
− 1

r log(1 − b)

)(r−n)/2

Kr−n

(
2
√

−rnα log(1 − b)
)
,

where the last step follows by equation (3.471.9) in Gradshteyn and Ryzhik (2000).
So, (2.6) follows. Also, by equation (2.5), we can write

E
(
F̃ (x)

)r =
∫ ∞

0
(1 − b)rw

nnαn

�(n)

e−nα/w

wn+1 dw

= nnαn

�(n)

∫ ∞
0

w−n−1erw log(1−b)−nα/w dw

= 2(nα)n/2

�(n)

(
− 1

r log(1 − b)

)−n/2

K−n

(
2
√

−rnα log(1 − b)
)
,
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where the last step follows by equation (3.471.9) in Gradshteyn and Ryzhik (2000).
So, (2.7) follows. �

By using Theorem 2.1, we obtain the MSEs of f̃ (x) and F̃ (x).

Theorem 2.2. The MSEs of f̃ (x) and F̃ (x) are

MSE
(
f̃ (x)

)
= 2k2(nα)(2+n)/2

�(n)

(
− 1

2 log(1 − b)

)(2−n)/2

K2−n

(
2
√

−2nα log(1 − b)
)

(2.8)

− 4kf (x)(nα)(1+n)/2

�(n)

(
− 1

log(1 − b)

)(1−n)/2

K1−n

(
2
√

−nα log(1 − b)
)

+ f 2(x)

and

MSE
(
F̃ (x)

)
= 2(nα)n/2

�(n)

(
− 1

2 log(1 − b)

)−n/2

K−n

(
2
√

−2nα log(1 − b)
)

(2.9)

− 4F(x)(nα)n/2

�(n)

(
− 1

log(1 − b)

)−n/2

K−n

(
2
√

−nα log(1 − b)
)

+ F 2(x),

respectively.

Proof. One can easily find E(f̃ (x)) and E(f̃ (x))2 by setting r = 1 and r = 2 in
Theorem 2.1. Then by using MSE(f̃ (x)) = E(f̃ (x))2 − 2f (x)E(f̃ (x)) + f 2(x),
we obtain (2.8). The proof of (2.10) is similar. �

3 UMVUEs of the PDF and the CDF

In this section, we find the UMVUEs of the PDF and the CDF of the EW distribu-
tion. We also compute the MSEs of these estimators.

Let X1,X2, . . . ,Xn be a random sample from the EW distribution given
by (1.2). Then

T = −
n∑

i=1

log
(
1 − e−x

β
i /θβ )

(3.1)

is a complete sufficient statistic for the unknown parameter α (when β and θ are
known). According to the Lehmann–Scheffe theorem, if fX1|T (x1|t) = f ∗(t) say
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is the conditional PDF of X1 given T , we have

E
[
f ∗(T )

] =
∫

fX1|T (x1|t)fT (t) dt =
∫

fX1,T (x1, t) dt = fX1(x1),

where fX1,T (x1, t) denotes the joint PDF of X1 and T . Therefore, f ∗(t) is the
UMVUE of f (x).

Lemma 3.1. The joint PDF of X1 and T can be expressed as

fX1,T (x1, t) = αnβx
β−1
1

θβ�(n − 1)
e−x

β
1 /θβ (

1 − e−x
β
1 /θβ )α−1[

t + log
(
1 − e−x

β
1 /θβ )]n−2

× e−α[t+(1−e
−x

β
1 /θβ

)].

Proof. The joint PDF of (X1,X2, . . . ,Xn) is

fX1,X2,...,Xn(x1, x2, . . . , xn) =
n∏

i=1

f (xi)

=
n∏

i=1

[
αβ

x
β−1
i

θβ
e−x

β
i /θβ (

1 − e−x
β
i /θβ )α−1

]
.

In order to find the joint PDF of (X1, T ), we set{
Y1 = log

(
1 − e−X

β
1 /θβ )

,

Y2 = log
(
1 − e−X

β
2 /θβ )

,

...

Yn−1 = log
(
1 − e−X

β
n−1/θ

β )
,

T = −
n∑

i=1

log
(
1 − e−X

β
i /θβ )}

.

We obtain the result by integrating the joint pdf of (Y1, Y2, . . . , Yn−1, T ) with re-
spect to y2, y3, . . . , yn−1. �

Theorem 3.2. Given T = t ,

f̂ (x) = (n − 1)β
xβ−1

θβ

e−xβ/θβ

1 − e−xβ/θβ

[t + log(1 − e−xβ/θβ
)]n−2

tn−1 ,

(3.2)
− log

(
1 − e−xβ/θβ )

< t < ∞
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is the UMVUE of f (x) and

F̂ (x) =
[
t + log(1 − e−xβ/θβ

)

t

]n−1

,

(3.3)
− log

(
1 − e−xβ/θβ )

< t < ∞
is the UMVUE of F(x).

Proof. By using (2.4) and Lemma 3.1, we see immediately that (3.2) is the
UMVUE of f (x). That (3.4) is the UMVUE of F(x) follows from the fact (3.4) is
the integral of (3.2) or the more easily verified fact that the right-hand side of (3.2)
is the derivative of the right-hand side of (3.4). �

Theorem 3.2 calculates the MSEs of f̂ (x) and F̂ (x).

Theorem 3.3. The MSEs of f̂ (x) and F̂ (x) are

MSE
(
f̂ (x)

) = D2 αn

�(n)

2n−4∑
j=0

(
2n − 4

j

)
b

j
1�(n − j − 2,−bα) − f 2(x)

and

MSE
(
F̂ (x)

) = αn

�(n)

2n−2∑
j=0

(
2n − 2

j

)
(logb1)

j�(n − j,−bα) − F 2(x),

respectively, where D = (n − 1)β xβ−1

θβ
e−xβ/θβ

1−e−xβ/θβ , b1 = 1 − e−xβ/θβ
and �(s, x) =∫ ∞

x ts−1e−t dt denotes the complementary incomplete gamma function.

Proof. Given the assumptions, we have f̂ (x) = D(t+b1)
n−2

tn−1 , −b1 < t < ∞. So, we
can write

E
(
f̂ (x)

)2 =
∫ (

f̂ (x)
)2

fT (t) dt

=
∫ ∞
−b1

D2(t + b1)
2n−4

t2n−2 fT (t) dt

= D2 αn

�(n)

∫ ∞
−b1

(t + b1)
2n−4

t2n−2 tn−1e−αt dt

= D2 αn

�(n)

∫ ∞
−b1

(
t + b1

t

)2n−4

tn−3e−αt dt

= D2 αn

�(n)

∫ ∞
−b1

(
1 + b1

t

)2n−4

tn−3e−αt dt
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= D2 αn

�(n)

∫ ∞
−b1

[2n−4∑
j=0

(
2n − 4

j

)(
b1

t

)j
]
tn−3e−αt dt

= D2 αn

�(n)

2n−4∑
j=0

(
2n − 4

j

)
b

j
1

∫ ∞
−b

tn−j−3e−αt dt

= D2 αn

�(n)

2n−4∑
j=0

(
2n − 4

j

)
b

j
1�(n − j − 2,−bα),

where the last step follows by the definition of the complementary incomplete
gamma function. The expression for the MSE for f̂ (x) follows by MSE(f̂ (x)) =
E(f̂ (x))2 −f 2(x). The proof for the expression for the MSE for F̂ (x) is similar. �

In the following section, we present the PC method of estimation.

4 Estimators based on percentiles

Estimation based on percentiles was originally explored by Kao (1958, 1959); see
also Mann et al. (1974) and Johnson et al. (1994). PCEs are based on the CDF.
Since the EW distribution has a closed form CDF, PCEs are suited for this distri-
bution.

Let X1,X2, . . . ,Xn denote a random sample from the EW distribution. Let
X(1) < X(2) < · · · < X(n) denote the corresponding order statistics in the ascend-
ing order. Then the PCE of α (when β and θ are known) say α̃pc is obtained by
minimizing

n∑
i=1

[
1 − p

1/α
i − e

−x
β
(i)/θ

β ]2
, (4.1)

where pi = i
n+1 . The PCEs of the PDF and the CDF are

f̃pc(x) = α̃pcβ
xβ−1

θβ
e−xβ/θβ (

1 − e−xβ/θβ )α̃pc−1
, (4.2)

F̃pc(x) = (
1 − e−xβ/θβ )α̃pc . (4.3)

5 Least squares and weighted least squares estimators

In this section, we provide regression based estimators. This method was originally
suggested by Swain et al. (1988) to estimate the parameters of beta distributions.
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Suppose X1,X2, . . . ,Xn is a random sample with common CDF F(·) and let
X(i), i = 1,2, . . . , n denote the corresponding order statistics in the ascending or-
der. The proposed method uses the distribution of F(X(i)) and the facts

E
[
F(X(j))

] = j

n + 1
,

Var
[
F(X(j))

] = j (n − j − 1)

(n + 1)2(n + 2)
,

see Johnson et al. (1994, equation (12.20), page 9). Using the expectations and the
variances, two variants of the least squares method follow.

5.1 Method 1: Least squares estimators

The LS estimators of the unknown parameter can be obtained by minimizing
n∑

j=1

[
F(X(j)) − j

n + 1

]2

with respect to the unknown parameter. For the EW distribution, the LSE of α

(when β and θ are known) say α̃ls can be obtained by minimizing
n∑

j=1

[(
1 − e

−x
β
(j)/θ

β )α − j

n + 1

]2

. (5.1)

So, the LS estimators of the PDF and the CDF are

f̃ls(x) = α̃lsβ
xβ−1

θβ
e−xβ/θβ (

1 − e−xβ/θβ )α̃ls−1
, (5.2)

F̃ls(x) = (
1 − e−xβ/θβ )α̃ls . (5.3)

It is difficult to find the expectation and the MSE of these estimators analytically.
We shall compute them by simulation.

5.2 Method 2: Weighted least squares estimators

The WLSE of the unknown parameter can be obtained by minimizing
n∑

j=1

wj

[
F(X(j)) − j

n + 1

]2

with respect to the unknown parameter, where wj = 1
Var[F(X(j))] = (n+1)2(n+2)

j (n−j+1)
. For

the EW distribution, the WLS estimator of α (when β and θ are known) say α̃wls
can be obtained by minimizing

n∑
j=1

wj

[(
1 − e

−x
β
(j)/θ

β )α − j

n + 1

]2

. (5.4)
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So, the WLS estimators of the PDF and the CDF are

f̃wls(x) = α̃wlsβ
xβ−1

θβ
e−xβ/θβ (

1 − e−xβ/θβ )α̃wls−1
, (5.5)

F̃wls(x) = (
1 − e−xβ/θβ )α̃wls . (5.6)

It is difficult to find the expectation and the MSE of these estimators by mathemat-
ical methods. We shall compute them by simulation.

6 Comparison of the UMVU, ML, PC, LS and WLS estimators

Here, we perform a simulation study to compare the performances of the following
estimators: the MLE, the UMVUE, the PCE, the LSE and the WLSE of the PDF
and the CDF. The comparison is based on the MSEs as follows:

1. Generate one thousand samples of size n from the EW distribution. The inver-
sion method was used to generate samples, that is, variates of the EW distribu-
tion were generated as

X = θ
[− log

(
1 − U1/α)]1/β

,

where U ∼ uniform(0,1).
2. Compute the MLE α̃ in (2.1) and then f̃ (1) and F̃ (1) in (2.2) and (2.3), respec-

tively, for each of the one thousand samples. If say f̃i(1), i = 1,2, . . . ,1000
denote the one thousand values of f̃ (1) the MSE is computed as

MSE1(n) = 1

1000

1000∑
i=1

[
f̃i(1) − f (1)

]2
.

If say F̃i(1), i = 1,2, . . . ,1000 denote the one thousand values of F̃ (1), the
MSE is computed as

MSE2(n) = 1

1000

1000∑
i=1

[
F̃i(1) − F(1)

]2
.

3. Compute the T in (3.1) and then f̂ (1) and F̂ (1) in (3.2) and (3.4), respectively,
for each of the one thousand samples. If say f̂i(1), i = 1,2, . . . ,1000 denote
the one thousand values of f̂ (1) the MSE is computed as

MSE3(n) = 1

1000

1000∑
i=1

[
f̂i(1) − f (1)

]2
.

If say F̂i(1), i = 1,2, . . . ,1000 denote the one thousand values of F̂ (1) the
MSE is computed as

MSE4(n) = 1

1000

1000∑
i=1

[
F̂i(1) − F(1)

]2
.
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4. Compute the α̃pc by minimizing (4.1) and then f̃pc(1) and F̃pc(1) in (4.2)
and (4.3), respectively, for each of the one thousand samples. If say f̃i(1),
i = 1,2, . . . ,1000 denote the one thousand values of f̃pc(1) the MSE is com-
puted as

MSE5(n) = 1

1000

1000∑
i=1

[
f̃i(1) − f (1)

]2
.

If say F̃i(1), i = 1,2, . . . ,1000 denote the one thousand values of F̃pc(1) the
MSE is computed as

MSE6(n) = 1

1000

1000∑
i=1

[
F̃i(1) − F(1)

]2
.

5. Compute the α̃ls by minimizing (5.1) and then f̃ls(1) and F̃ls(1) in (5.2)
and (5.3), respectively, for each of the one thousand samples. If say f̃i(1),
i = 1,2, . . . ,1000 denote the one thousand values of f̃ls(1) the MSE is com-
puted as

MSE7(n) = 1

1000

1000∑
i=1

[
f̃i(1) − f (1)

]2
.

If say F̃i(1), i = 1,2, . . . ,1000 denote the one thousand values of F̃ls(1) the
MSE is computed as

MSE8(n) = 1

1000

1000∑
i=1

[
F̃i(1) − F(1)

]2
.

6. Compute the α̃wls by minimizing (5.4) and then f̃wls(1) and F̃wls(1) in (5.5)
and (5.6), respectively, for each of the one thousand samples. If say f̃i(1), i =
1,2, . . . ,1000 denote the one thousand values of f̃wls(1) the MSE is computed
as

MSE9(n) = 1

1000

1000∑
i=1

[
f̃i(1) − f (1)

]2
.

If say F̃i(1), i = 1,2, . . . ,1000 denote the one thousand values of F̃wls(1) the
MSE is computed as

MSE10(n) = 1

1000

1000∑
i=1

[
F̃i(1) − F(1)

]2
.

We repeated these steps for n = 5,6, . . . ,100 and for various choices for
(α,β, θ), so computing MSEj (n) for j = 1,2, . . . ,10 and n = 5,6, . . . ,100.
Plots of the MSEs of the UMVUEs, the PCEs, the LSEs and the WLSEs



706 Alizadeh, Bagheri, Baloui Jamkhaneh and Nadarajah

relative to the MSEs for the MLEs are shown in Figures 1–3. That is, Fig-
ure 1 plots MSE3(n) − MSE1(n), MSE4(n) − MSE2(n), MSE5(n) − MSE1(n),
MSE6(n) − MSE2(n), MSE7(n) − MSE1(n), MSE8(n) − MSE2(n), MSE9(n) −
MSE1(n) and MSE10(n) − MSE2(n) versus n = 5,6, . . . ,100 for (α,β, θ) =
(1,1,1), (2,2,2), (3,3,3); Figure 2 plots MSE3(n) − MSE1(n), MSE4(n) −
MSE2(n), MSE5(n) − MSE1(n), MSE6(n) − MSE2(n), MSE7(n) − MSE1(n),
MSE8(n) − MSE2(n), MSE9(n) − MSE1(n) and MSE10(n) − MSE2(n) versus
n = 5,6, . . . ,100 for (α,β, θ) = (0.5,2,0.5), (1,2,0.5), (0.5,2,1); Figure 3 plots
MSE3(n) − MSE1(n), MSE4(n) − MSE2(n), MSE5(n) − MSE1(n), MSE6(n) −
MSE2(n), MSE7(n)−MSE1(n), MSE8(n)−MSE2(n), MSE9(n)−MSE1(n) and
MSE10(n) − MSE2(n) versus n = 5,6, . . . ,100 for (α,β, θ) = (1,2,3), (1,3,2),
(3,2,1).

We can see from the figures that the ML estimators of the PDF and the CDF
have the smallest MSEs. The UMVU estimators of the PDF and the CDF have
the second smallest MSEs. The PC estimators of the PDF and the CDF have the
third smallest MSEs. The WLS estimators of the PDF and the CDF have the fourth
smallest MSEs. The LS estimators of the PDF and the CDF have the largest MSEs.

Although not shown (because of space concerns), the MSEs of the estimators of
α follow the same pattern. That is, the ML estimators of α have the smallest MSEs,
followed by the UMVU estimators, the PC estimators, the WLS estimators and the
LS estimators in that order. Moreover, the MSEs for each estimator decrease with
increasing sample size.

In this simulation study, we have reported the results for x = 1 and (α,β, θ) =
(1,1,1), (2,2,2), (3,3,3), (0.5,2,0.5), (1,2,0.5), (0.5,2,1), (1,2,3), (1,3,2),
(3,2,1). The results for other choices were similar.

7 Data analysis

Here, we use a real data set to compare the performances of the MLE, the PCE,
the LSE and the WLSE for the PDF and the CDF. The data gives one hundred
observations on breaking stress of carbon fibers (in Gba): 3.7, 2.74, 2.73, 2.5, 3.6,
3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15,
4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33,
2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17,
2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57,
0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,
1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08,
2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65. The data was obtained from Nichols
and Padgett (2006). Pal et al. (2006) fitted the EW distribution to this data set and
found it to be very good.

In practical applications, all of the parameters of a model are usually unknown.
Let x1, x2, . . . , xn denote the observations of the real data set, assumed to be a
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Figure 1 Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE
of the MLE for f (1) and (α,β, θ) = (1,1,1) (top left); Deviations of the MSEs of the UMVUE, the
PCE, the WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (1,1,1) (top right);
Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE of the MLE
for f (1) and (α,β, θ) = (2,2,2) (middle left); Deviations of the MSEs of the UMVUE, the PCE,
the WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (2,2,2) (middle right);
Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE of the MLE
for f (1) and (α,β, θ) = (3,3,3) (bottom left); Deviations of the MSEs of the UMVUE, the PCE, the
WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (3,3,3) (bottom right).
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Figure 2 Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE
of the MLE for f (1) and (α,β, θ) = (0.5,2,0.5) (top left); Deviations of the MSEs of the UMVUE,
the PCE, the WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (0.5,2,0.5) (top
right); Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE of the
MLE for f (1) and (α,β, θ) = (1,2,0.5) (middle left); Deviations of the MSEs of the UMVUE, the
PCE, the WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (1,2,0.5) (middle
right); Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE of the
MLE for f (1) and (α,β, θ) = (0.5,2,1) (bottom left); Deviations of the MSEs of the UMVUE, the
PCE, the WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (0.5,2,1) (bottom
right).
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Figure 3 Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE
of the MLE for f (1) and (α,β, θ) = (1,2,3) (top left); Deviations of the MSEs of the UMVUE, the
PCE, the WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (1,2,3) (top right);
Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE of the MLE
for f (1) and (α,β, θ) = (1,3,2) (middle left); Deviations of the MSEs of the UMVUE, the PCE,
the WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (1,3,2) (middle right);
Deviations of the MSEs of the UMVUE, the PCE, the WLSE and the LSE from the MSE of the MLE
for f (1) and (α,β, θ) = (3,2,1) (bottom left); Deviations of the MSEs of the UMVUE, the PCE, the
WLSE and the LSE from the MSE of the MLE for F(1) and (α,β, θ) = (3,2,1) (bottom right).
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random sample from the EW distribution. The parameters α, β and θ are unknown
for this data set. We use the following procedures to estimate them:

• The log-likelihood function of the parameters is

L(α,β, θ) = n logα + n logβ + (β − 1)

n∑
i=1

logxi − nβ log θ

(7.1)

−
n∑

i=1

(
xi

θ

)β

+ (α − 1)

n∑
i=1

log
[
1 − e−(xi/θ)β ]

.

The MLEs of α, β and θ say α̃, β̃ and θ̃ , respectively, can be obtained as the
simultaneous solutions of

∂L

∂α
= n

α
+

n∑
i=1

log
[
1 − e−(xi/θ)β ] = 0,

∂L

∂β
= n

β
+

n∑
i=1

logxi − n log θ −
n∑

i=1

(
xi

θ

)β

log
(

xi

θ

)

+ (α − 1)

n∑
i=1

(xi/θ)β log(xi/θ)e−(xi/θ)β

1 − e−(xi/θ)β
= 0,

∂L

∂θ
= −nβ

θ
+ β

θ

n∑
i=1

(
xi

θ

)β

− (α − 1)β

θ

n∑
i=1

(xi/θ)βe−(xi/θ)β

1 − e−(xi/θ)β
= 0.

It is often easier to obtain the MLEs by maximizing (7.1) numerically or by
minimizing the minus of (7.1) numerically.

• The PCEs of α, β and θ say α̃pc, β̃pc and θ̃pc, respectively, can be obtained by
minimizing

n∑
i=1

[
1 − p

1/α
i − e

−x
β
(i)/θ

β ]2
.

• The LSEs of α, β and θ say α̃ls, β̃ls and θ̃ls, respectively, can be obtained by
minimizing

n∑
j=1

[(
1 − e

−x
β
(j)/θ

β )α − j

n + 1

]2

.
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Table 1 Estimates of the parameters, standard errors and log-likelihoods

Estimate of α Estimate of β Estimate of θ Log-likelihood

MLE 1.317 (0.001) 2.409 (0.024) 2.682435 (0.003) −141.332
PCE 1.560 (0.007) 2.151 (0.042) 2.518 (0.112) −141.4632
LSE 0.410 (0.022) 5.498 (0.178) 3.500 (0.191) −153.0544
WLSE 0.847 (0.014) 3.200 (0.056) 3.0588529 (0.149) −142.1879

• The WLSEs of α, β and θ say α̃wls, β̃wls and θ̃wls, respectively, can be obtained
by minimizing

n∑
j=1

wj

[(
1 − e

−x
β
(j)/θ

β )α − j

n + 1

]2

,

where wj = 1
Var[F(X(j))] = (n+1)2(n+2)

j (n−j+1)
.

The EW distribution was fitted to the fiber data by the MLE, the PCE, the LSE
and the WLSE. The MLEs were computed by minimizing the minus of (7.1) nu-
merically. For the minimization, we used the nlm function in the R software (R
Development Core Team, 2014). Table 1 gives the estimates of α, β , θ , their stan-
dard errors and the corresponding log-likelihoods.

The standard errors were computed by simulation as follows:

• simulate one thousand samples each of size 100 from the EW distribution fitted
by the MLE, the PCE, the LSE or the WLSE;

• refit the EW distribution by the respective estimation method (MLE, PCE, LSE
or WLSE) for each of the one thousand samples;

• compute the sampling distribution from the one thousand estimates of α, that
from the one thousand estimates of β and that from the one thousand estimates
of θ for each method;

• compute the standard error as the standard deviation of the sampling distribution
divided by 10.

The standard errors for the MLEs could have been computed by inverting the
observed information matrix or by inverting the expected information matrix.
But for consistency with other estimation methods, we have used the simulation
method.

We see from Table 1 that the log-likelihood value is the largest for the MLE, sec-
ond largest for the PCE, third largest for the WLSE and the smallest for the LSE.
We also see that the standard errors are the smallest for the MLE, second smallest
for the PCE, third smallest for the WLSE and the largest for the LSE.

Figures 4–6 show the Q–Q plots (observed quantiles versus expected quantiles),
the density plots (fitted PDFs versus empirical PDF) and the P–P plots (observed
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Figure 4 Q–Q plots for the fit of the MLE (top left), the PCE (top right), the LSE (bottom left) and
the WLSE (bottom right).

probabilities versus expected probabilities) for the four different estimation meth-
ods. The points are closest to the diagonal line for the MLE, second closest for the
PCE, third closest for the WLSE and furthest for the LSE. The fitted PDF for the
MLE appears to best capture the pattern in the histogram. Hence, the figures show
that the MLE provides the best fit.

We also compared the estimation methods by means of model selection criteria.
The ones we considered were: ‘pure’ maximum likelihood, Akaike information
criterion (Akaike, 1974), corrected AIC (Hurvich and Tsai, 1989), Bayes informa-
tion criterion (Schwarz, 1978) and Hannan–Quinn criterion (Hannan and Quinn,
1979) defined by

ML = −2 logL(θ),

AIC = −2 logL(θ) + 2k,

AICc = −2 logL(θ) + 2k
n

n − k − 1
,
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Figure 5 Histogram of the data and the PDFs for the fit of the MLE, the PCE, the LSE and the
WLSE.

BIC = −2 logL(θ) + k logn,

HQC = −2 logL(θ) + 2k log logn,

respectively, where logL(θ) denotes the log-likelihood, n denotes the number
of observations and k denotes the number of parameters in the distribution. The
smaller the values of these criteria the better the fit. For more on these criteria, see
Burnham and Anderson (2004) and Fang (2011).

Table 2 gives values of the model selection criteria for the four different estima-
tion methods. We can see that the MLEs give the smallest values for all five model
selection criteria. The second smallest values for all five criteria are for the PCE.
The third smallest values for all five criteria are for the WLSE. The largest values
for all five criteria are for the LSE.

Hence, evidence based on the MSEs in the simulation study, the log-likelihood
values, the standard errors, the Q–Q plots, the density plots, the P–P plots and the
model selection criteria show that the ML estimators for the PDF and the CDF are
the best.
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Figure 6 P–P plots for the fit of the MLE (top left), the PCE (top right), the LSE (bottom left) and
the WLSE (bottom right).

Table 2 Model selection criteria for the fiber data

ML AIC BIC AICc HQC

MLE 282.6641 288.6641 296.4796 288.9141 291.8271
PCE 282.9265 288.9265 296.7420 289.1765 292.0895
LSE 306.1087 312.1087 319.9242 312.3587 315.2718
WLSE 284.3759 290.3759 298.1914 290.6259 293.5390
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