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Abstract. We discuss necessary and sufficient conditions for the conver-
gence of disordered asymmetric zero-range process to the critical invariant
measure.

1 Introduction

We first discuss the aims of this paper and our results without formal statements or
definitions, which will be given in the following section. We study inhomogeneous
zero range processes (to be defined in the next section) and the question of conver-
gence to upper invariant measures. Zero range processes (see, e.g., Andjel (1982))
are conservative particle systems, a class containing the much studied exclusion
processes (Liggett (2005)). In this case, to our best knowledge, necessary and suf-
ficient conditions are hard to find. In the setting of homogeneous processes with
product measures for initial conditions, one can profit from hydrodynamic limits
and argue convergence as in Landim (1991). This elegant approach is not relevant
here as our systems are not translation invariant and we are faced with determinis-
tic initial conditions. The lack of translation invariance also hampers the approach
of Ekhaus and Gray (1994). The exclusion process, starting from fixed initial con-
ditions but having an asymptotic density, is treated in Bahadoran and Mountford
(2006) which gives a robust criterion for weak convergence. However, a necessary
and sufficient condition for weak convergence to a given equilibrium seems dif-
ficult. Thus it is of interest to be able to, in some reasonable circumstances, give
a necessary and sufficient condition for weak convergence to a particular equi-
librium. Other works which investigate convergence to equilibrium of zero range
processes, albeit from a different standpoint, include Galves and Guiol (1997) and
Janvresse et al. (1999). This article considers one of the principal results of Andjel
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et al. (2000) concerning the totally asymmetric nearest-neighbour zero range pro-
cess having inhomogeneous “service rates” α(x), x ∈ Z so that at rate α(x) one of
the particles currently at site x (if any) will move to site x + 1. It was postulated
that:

(i) there existed 0 < c < 1 so that for every x,α(x) ∈ (c,1],
(ii) for every flux value λ ∈ [0, c), there existed a particle density, R(λ),

(iii) the liminf of α(x) as x tended to −infinity was equal to c,
(iv) the (increasing) limit of R(λ) as λ increased to c, denoted R(c), was finite.

Under condition (i), for each 0 ≤ λ ≤ c, the measure νλ, under which η(x) were
independently distributed as Geometric random variables with parameter λ/α(x),
was an equilibrium for the zero range process. Property (ii) ensured that for each
λ ∈ [0, c), νλ-a.s.,

lim
n→∞

1

n

−1∑
x=−n

η(x) = lim
n→∞

1

n

−1∑
x=−n

λ

α(x) − λ
=: R(λ).

A motivating special case was where the values α(x) were i.i.d. (or ergodic) ran-
dom variables with marginal law Q. In this case the assumptions amount to law Q

being supported by (c,1] and satisfying

ρc :=
∫ 1

c

c

α − c
Q(dα) < +∞.

Given an equilibrium νλ, it is natural to ask for which initial configurations η0, is
it the case that for the zero range process (ηt )t≥0 beginning at η0, ηt converges in
distribution to νλ as t → +∞. The paper Andjel et al. (2000) concerns the totally
asymmetric constant rate zero-range process, defined by

g(n) = 1{n≥1}, p(1) = 1. (1)

The result of Andjel et al. (2000) is that, if

lim inf
n→∞

1

n

−1∑
x=−n

η0(x) > ρc,

then ηt converges in distribution to νc.
Our objective is to complete this statement in the following ways. First, we

consider rate functions g(·) that increase to a finite limiting value and satisfy a
weak concavity condition (H) (to be stated in the next section). Next, we allow
non-totally asymmetric nearest-neighbour random walk kernels. We address the
following natural questions. On the one hand, we prove that the condition

lim inf
n→∞

1

n

−1∑
x=−n

η0(x) ≥ ρc (2)
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is necessary for weak convergence. On the other hand, we prove that condition (2)
does not imply convergence for jump kernels that are not nearest-neighbour. Note
that the latter result is in sharp contrast with known result for the homogeneous
simple exclusion process. The previous results indicate that it is reasonable to seek
a generalization of the result of Andjel et al. (2000) to nearest-neighbour jump
kernels and more general rate functions g(·). In this paper, we will establish a
general upper bound, and provide some ideas of how to prove a lower bound, using
new hydrodynamic limit results established in Bahadoran et al. (2014b). These
new ideas show that convergence is actually implied by the weaker supercriticality
condition (2), which is another improvement of the result of Andjel et al. (2000).
This leads to the conclusion that (2) is a necessary and sufficient condition. To our
knowledge, this is the first such condition given for conservative systems where
the kernel governing particle motion has nonzero mean. The article Bahadoran
and Mountford (2006) gives a robust condition for convergence to a translation
invariant extremal equilibrium for exclusion processes but, seemingly, finding a
necessary and sufficient condition is more subtle.

2 Notation and results

In the sequel, R denotes the set of real numbers, Z the set of signed integers and
N = {0,1, . . .} the set of nonnegative integers. For x ∈ R, �x� denotes the integer
part of x, that is the largest integer n ∈ Z such that n ≤ x. The notation X ∼ μ

means that a random variable X has probability distribution μ.
Fix some c ∈ (0,1). An environment (or disorder) is a (c,1]-valued sequence

α = (α(x), x ∈ Z). The set of environments is denoted by A := (c,1]Z. From now
on, we assume that

lim inf
x→−∞α(x) = c. (3)

Let g :N→ [0,+∞) be a nondecreasing function such that

g(0) = 0 < g(1) ≤ lim
n→+∞g(n) =: g∞ < +∞. (4)

We extend g to N := N ∪ {+∞} by setting g(+∞) = g∞. Without loss of gen-

erality, we henceforth assume g∞ = 1. Let X := N
Z

denote the set of particle
configurations. A configuration is of the form η = (η(x) :x ∈ Z) where η(x) ∈ N

for each x ∈ Z. Let p(·) be a probability measure on Z. We consider the Markov
process (ηα

t )t≥0 on X with generator given for any cylinder function f : X →R by

Lαf (η) = ∑
x,y∈Z

α(x)p(y − x)g
(
η(x)

)[
f

(
ηx,y) − f (η)

]
, (5)

where, if η(x) > 0, ηx,y := η − δx + δy denotes the new configuration obtained
from η after a particle has jumped from x to y (configuration δx has one particle at
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x and no particle elsewhere; addition of configurations is meant coordinatewise).
In cases of infinite particle number, the following interpretations hold: ηx,y = η −
δx if η(x) < η(y) = +∞, ηx,y = η + δy if η(x) = +∞ > η(y), ηx,y = η if η(x) =
η(y) = +∞.

Because g is nondecreasing, (ηα
t )t≥0 is an attractive process (Andjel (1982)).

For λ < 1, we define the probability measure θλ on N by

θλ(n) := Z(λ)−1 λn

g(n)! , n ∈N, (6)

where g(n)! = ∏n
k=1 g(k) for n ≥ 1, g(0)! = 1, and Z(λ) is the normalizing factor:

Z(λ) :=
+∞∑
n=0

λn

g(n)! .

We extend θλ into a probability measure on N by setting θλ({+∞}) = 0. For λ ≤ c,
we denote by μα

λ the invariant measure of Lα defined (see, e.g., Benjamini, Ferrari
and Landim (1996)) as the product measure on X with one-site marginal θλ/α(x).
Since (θλ)λ∈[0,1) is an exponential family, the mean value of θλ, given by

R(λ) :=
+∞∑
n=0

nθλ(n),

is a C∞ increasing function from [0,1) to [0,+∞). The quenched mean particle
density at x under μα

λ is defined by

Rα(x,λ) := Eμα
λ

[
η(x)

] = R

(
λ

α(x)

)
.

In order to define a notion of critical density, we assume existence of an annealed
mean density to the left of the origin:

R(λ) := lim
n→+∞n−1

0∑
x=−n

R

(
λ

α(x)

)
exists for every λ ∈ [0, c). (7)

The function R is increasing and C∞ on [0, c) (see Lemma 3.3 below). We define
the critical density by

ρc := R(c−) := lim
λ↑c

R(λ) ∈ [0,+∞]. (8)

Note that formally, one is tempted to define R(c) by plugging λ = c into (7). How-
ever the corresponding limit may have a different value than ρc, or even not exist.
In fact, it can be made non-existent or given any value in [ρc,+∞) by modifying
the α(x) for x in a zero-density subset of Z, an operation which does not modify
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the value (7) nor the value of ρc. The only stable property with respect to such
change is that

lim inf
n→+∞

1

n + 1

0∑
x=−n

R

(
c

α(x)

)
≥ ρc.

It is thus natural, and it will be our choice in the sequel, to extend R by continuity
to [0, c] by defining

R(c) := R(c−) = ρc. (9)

One additional assumption for Theorem 2.4 and Proposition 2.1 below will be
finiteness of the critical density:

ρc < +∞. (10)

We can now state our results. With the exception of Theorem 2.3, we will consider
a nearest-neighbour jump kernel with non-zero drift, that is

p(1) = p ∈ (1/2,1], p(−1) = q := 1 − p. (11)

This is not a technical artefact, see Theorem 2.3 below. In the forthcoming state-
ments, η0 ∈ N

Z denotes the initial particle configuration, and (ηα
t )t≥0 the evolved

quenched process with generator (5) starting from η0 in the environment α ∈ A.
Our general problem is to determine whether, and for what kernels p(·), rate func-
tions g(·) and environments α(·), the supercriticality condition (2), with ρc defined
by (8), is necessary and sufficient for the convergence

ηt −→ μα
c in distribution as t → +∞. (12)

The study of (12) can be decomposed into an upper bound and a lower bound. For
the former, we prove in Section 4 the following result.

Theorem 2.1. Assume (3) and (11). Then, for every η0 ∈ N
Z and every bounded

local nondecreasing function h : X →R,

lim sup
t→∞

Eh
(
ηα

t

) ≤
∫

X
h(η)dμα

c (η). (13)

The upper bound (13) was established in Ferrari and Sisko (2007) for i.i.d. envi-
ronments, in any space dimension and for any (not necessarily nearest-neighbour)
jump kernel p(·) with nonzero drift, under an additional assumption on the initial
configuration: ∑

n∈N
e−βn

∑
x : |x|=n

η0(x) < +∞ ∀β > 0. (14)

In one dimension with nearest-neighbour jumps, we prove Theorem 2.1 without
assumption (14), and under the weak assumption (15) on the environment. This
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is done by extending an argument used in Andjel et al. (2000) in the special case
p = 1 and g(n) = 1{n≥1}.

Our next result shows that the supercriticality condition (2) is in fact necessary
if we slightly strengthen (3) by assuming that the slow sites (i.e., with rates close
to c) are not too sparse in the following sense: there exists a sequence (xn)n∈N of
sites such that

xn+1 < xn < 0, lim
n→+∞

xn+1

xn

= 1, lim
n→+∞α(xn) = c. (15)

Theorem 2.2. Assume (7), (11) and (15). Assume further that η0 satisfies

ρ = lim inf
n→∞ n−1

0∑
x=−n

η0(x) < ρc. (16)

Then ηα
t does not converge in distribution to μα

c as t → +∞.

We shall prove Theorem 2.2 in Section 5.
Before turning eventually to the question of convergence (12) under supercrit-

icality condition (2), we show that this property cannot hold in general beyond
the nearest-neighbour case (11). Indeed, the following theorem, proved in Sec-
tion 6, provides a family of counterexamples for jump kernels p(·) not satisfying
the nearest-neighbour assumption.

Theorem 2.3. Assume (3) and (7). Assume further that the jump kernel p(·) is
totally asymmetric and p(1) < 1. Then there exists η0 ∈ N

Z satisfying (2), such
that ηα

t does not converge in distribution to μα
c as t → +∞.

For the purpose of convergence, we need to introduce the following weak con-
vexity assumption:

(H) For every λ ∈ [0, c), R(λ) − R(c) − (λ − c)R
′+

(c) > 0, where R(c) is
defined by (9), and

R
′+

(c) := lim sup
λ→c

R(c) − R(λ)

c − λ
(17)

is the left-hand derivative at c of the convex envelope of R (notice that our assump-
tions do not imply existence of the derivative R

′
(c)).

For instance, if R is strictly convex, then for any environment satisfying (3)
and (7), R is strictly convex (see Lemma 3.3 below), and thus (H) is satisfied.
A sufficient condition for R to be strictly convex (see Balázs and Seppäläinen
(2007), Proposition 3.1) is that

n �→ g(n + 1) − g(n) is a nonincreasing function.
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For the next results, we need to assume that condition (7) holds also on the right
of the origin, namely

R(λ) = lim
n→+∞n−1

n∑
x=0

R

(
λ

α(x)

)
for every λ ∈ [0, c). (18)

The following result is established in Bahadoran et al. (2014b).

Theorem 2.4. Assume (7), (18), (10), (11), (15) and (H). Then (2) implies (12).

Given Theorem 2.1, Theorem 2.4 requires the proof of the following lower
bound.

Proposition 2.1. Assume (7), (18), (10), (11), (15) and (H). Then the following
holds: for any η0 ∈ N

Z satisfying (2), and every bounded local nondecreasing func-
tion h : X →R,

lim inf
t→∞ Eh

(
ηα

t

) ≥
∫

X
h(η)dμα

c (η).

The ideas of the proof of Proposition 2.1, and in particular the role of assump-
tion (H), are explained in Section 7.

3 Preliminaries

In this section, we introduce some material that will be used in the sequel.

3.1 Harris construction

We define the graphical construction of the quenched process on a probability
space (
,F,P). A generic element ω—called a Harris system (Harris (1972))—
of 
 is a point measure of the form

ω(dt, dx, du, dz) = ∑
n∈N

δ(Tn,Xn,Un,Zn), (19)

on (0,+∞) ×Z× (0,1) ×Z, where δ denotes Dirac measure.
Under the probability measure P, ω is a Poisson measure with intensity
dt dx 1(0,1)(u) dup(z) dz. An alternative interpretation of this random point mea-
sure is that we have three mutually independent families of independent random
variables (Dx

k )x∈Z,k∈N, (Ux
k )x∈Z,k∈N and (Zx

k )x∈Z,k∈N, such that Dx
k has exponen-

tial distribution with parameter 1, Ux
k has uniform distribution on (0,1), Zk

x has
distribution p(·), and that if we set

T x
k :=

k∑
j=0

Dx
j , (20)
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then, P-a.s.,

ω(dt, dx, du, dz) = ∑
x∈Z

∑
k∈N

δ(T x
k ,x,Ux

k ,Zx
k ). (21)

On (
,F,P), a càdlàg process (ηα
t )t≥0 with generator (5) and initial configu-

ration η0 can be constructed in a unique way so that at each time t = T x
k , if

Ux
k ≤ α(x)g[ηt−(x)] (which implies ηt−(x) > 0, cf. (4)), then one of the parti-

cles at x jumps to x + Zx
k , whereas nothing occurs outside times T x

k .
For details on this graphical construction, we refer to Bahadoran et al. (2014a).

When necessary, random initial conditions are constructed on an auxiliary proba-
bility space 
0 equipped with a probability measure P0.

Expectation with respect to P (resp. P0) is denoted by E (resp. E0). The product
space 
0 × 
 is equipped with the product measure and σ -fields (thus environ-
ment, initial particle configuration and Harris system are mutually independent).
Joint expectation with respect to the product measure is denoted by E0E.

In the sequel, we shall have to couple different processes with different (pos-
sibly random) initial configurations, and possibly different environments. Such
couplings will be realized on 
0 × 
 by using the same Poisson clocks for all
processes.

3.2 Finite propagation

The following version of finite propagation property will be used in the sequel.

Lemma 3.1. For each W > 1, there exists b = b(W) > 0 such that for large
enough t , if ζ0 and ζ ′

0 are any two particle configurations that agree on an in-
terval (x, y), then, outside probability e−bt ,

ζs(u) = ζ ′
s(u) for all 0 ≤ s ≤ t and u ∈ (x + Wt,y − Wt),

where (ζt )t≥0 and (ζ ′
t )t≥0 denote processes with generator (5) coupled through the

Harris construction, with respective initial configurations ζ0 and ζ ′
0.

Proof. Given the Harris system and a point x ∈ Z, we can define the process
(B

x,+
t )t≥0 to be the (càdlàg) Poisson process beginning at value x at time 0 such

that Bx,+· jumps to the right from y to y + 1 at time s if and only if B
x,+
s− = y, and

s = T
y
k for some positive integer k, with (T

y
k )k∈N introduced in (20). We similarly

define the decreasing Poisson process (B
x,−
t )t≥0. It follows from the graphical

construction that, if we have two configurations ζ0 and ζ ′
0 which agree on interval

(x, y), then ζs and ζ ′
s will agree on spatial interval (Bx,+

s ,B
y,−
s ) for all 0 ≤ s ≤ t .

Given that the defined processes (or their negatives) are rate one Poisson processes
we deduce the result. �
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3.3 Currents

Let x· = (xs)s≥0 denote a Z-valued piecewise constant càdlàg path such that
|xs − xs−| ≤ 1 for all s ≥ 0. In the sequel, we will only use deterministic paths
(x·), hence we may assume that x· has no jump time in common with the Harris
system used for the particle dynamics. We denote by �x·(t, η) the rightward cur-
rent across the path x· up to time t in the quenched process (ηα

s )s≥0 starting from η

in environment α, that is, the number of times a particle jumps from xs− to xs− +1
(for s ≤ t), minus the number of times a particle jumps from xs− + 1 to xs−, mi-
nus or plus (according to whether the jump is to the right or left) the number of
particles at xs− ∨ xs if s is a jump time of x·. If

∑
x>x0

η(x) < +∞, we also have

�x·(t, η) = ∑
x>xt

ηα
t (x) − ∑

x>x0

η(x). (22)

For x0 ∈ Z, we will write �x0 to denote the current across the fixed site x0; that
is, �x0(t, η) := �x·(t, η), where x· is the constant path defined by xt = x0 for all
t ≥ 0.

The following results will be important tools to compare currents. For a particle
configuration ζ ∈ X and a site x0 ∈ Z, we define

Fx0(x, ζ ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x∑
y=1+x0

ζ(y), if x > x0,

−
x0∑

y=x

ζ(y), if x ≤ x0.

(23)

Let us couple two processes (ζt )t≥0 and (ζ ′
t )t≥0 in the usual way through the Harris

construction.

Lemma 3.2.

�x·(t, ζ0) − �x·
(
t, ζ ′

0
) ≥ −

(
0 ∨ sup

y∈Z
[
Fx0(y, ζ0) − Fx0

(
y, ζ ′

0
)])

. (24)

Proof. Without loss of generality, we assume x0 = 0. We shall simply write F for
F0 and � for �x· .

We label particles of each system increasingly from left to right. We denote
by σi(t) ∈ Z ∪ {+∞,−∞}, respectively. σ ′

i (t) ∈ Z ∪ {+∞,−∞}, the position at
time t of the ζ -particle with label i ∈ Z, respectively ζ ′-particle with label i. This
labeling is unique if we impose the following conditions: (a) σi(0) ≤ σi+1(0),
respectively σ ′

i (0) ≤ σ ′
i+1(0), for every i ∈ Z, (b) σ−1(0) ≤ x0 = 0 < σ0(0) and

σ ′−1(0) ≤ x0 = 0 < σ ′
0(0), (c) if n+ := ∑

y>0 ζ0(y) < +∞, then σi(0) = +∞
for i ≥ n+, (d) if n− = ∑

y≤0 ζ(y) < +∞, then σi(0) = −∞ for i < −n−. In
the sequel, for notational simplicity, we simply write σi and σ ′

i instead of σi(0)

and σ ′
i (0).
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The motion of labels is deduced from the initial labeling and Harris construction
as follows. Whenever a particle in one of the processes jumps to the right (resp.
left), the highest (resp. lowest) label occupying this site is moved to the right (resp.
left), so that at its new location it becomes the particle with lowest (resp. highest)
label. Let k = 0 ∨ supy∈Z[F(y, ζ ) − F(y, ζ ′)].

First, we show that the definition of F implies σn ≥ σ ′
n−k for all n ∈ Z. In-

deed, assume first n ≥ 0, and let y = σn > 0. By definition of F , F(y, ζ ) − 1 is
the highest label of a ζ -particle at y, thus F(y, ζ ) ≥ n + 1. By definition of k,
F(y, ζ ′) − 1 ≥ F(y, ζ ) − k − 1 ≥ n + 1 − k − 1 = n − k, and this is the high-
est label of a ζ ′-particle at y. Hence σ ′

n−k ≤ y = σn. Assume now n < 0, and let
y = σ ′

n ≤ 0. By definition of F , F(y, ζ ′) is the lowest label of a ζ ′-particle at y,
thus F(y, ζ ′) ≤ n. By definition of k, F(y, ζ ) ≤ F(y, ζ ′) + k ≤ n + k, and this is
the lowest label of a ζ ′-particle at y. Hence, σn+k ≥ y = σ ′

n.
Next, we show that σn ≥ σ ′

n−k for all n ∈ Z implies

σn(t) ≥ σ ′
n−k(t) ∀n ∈ Z. (25)

Setting σ̃ ′
n = σ ′

n−k , we define another increasing labeling of ζ ′, and the definition
of labels’ motion implies that σ̃ ′

n(t) = σ ′
n−k(t) for all t ≥ 0. Therefore, we have to

show that σn ≥ σ̃ ′
n for all n ∈ Z implies σn(t) ≥ σ̃ ′

n(t) for all n ∈ Z. It is enough to
show that this ordering is preserved by the Harris construction each time a jump
occurs. Assume that at time t a potential jump to the right occurs in the Harris
construction. We have to verify the following for any n ∈ Z:

(1) If a particle at y ∈ Z in ζ ′ jumps right, and the particle in ζ with the same
label is also at y, then the latter particle also jumps right.

Indeed, since we are assuming σn ≥ σ ′
n for all n ∈ Z we have F(z, ζ ) ≤ F(z, ζ ′)

for all z ∈ Z. Suppose σn = σ ′
n = y for some n ∈ Z, and that n is the highest la-

bel of ζ ′-particles at y. That is n = F(y, ζ ′) ≥ F(y, ζ ). If F(y, ζ ′) > F(y, ζ )

then F(y, ζ ) ≤ n − 1. This implies that σn ≥ y + 1. Since we assumed σn = y

we conclude that F(y, ζ ′) = F(y, ζ ) = n. Therefore n is the highest label of ζ -
particles at y. Also, F(y, ζ ) ≤ F(y, ζ ′) for all y ∈ Z and F(y, ζ ′) = F(y, ζ ) im-
plies ζ(y) ≥ ζ ′(y). Since g is increasing, if a jump occurs from ζ ′(y), then a jump
from ζ(y) must occur.

(2) If a particle at y ∈ Z in ζ jumps left, and the particle in ζ ′ with the same
label is also at y, then the latter particle also jumps left.

Indeed, suppose n is the smallest label of ζ -particles at y. Then n = F(y −
1, ζ )+1 or F(y−1, ζ ) = n−1. If F(y−1, ζ ′) > F(y−1, ζ ) = n−1 then σ ′

n < y.
Since we assumed σ ′

n = y, it follows that F(y − 1, ζ ′) = F(y − 1, ζ ) = n − 1.
Again, since σ ′

n = y, we have that n is the smallest label of ζ ′-particles at y. Again
from the fact that F(y − 1, ζ ′) = F(y − 1, ζ ) and F(z, ζ ) ≤ F(z, ζ ′) for all z ∈ Z,
it follows that ζ(y) ≤ ζ ′(y). Therefore, since g is increasing, we have that if a
jump to the left from y occurs in ζ , then it occurs also for ζ ′.
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To conclude the proof, we use the following definition of current in terms of
labels:

�(t, ζ ) = − inf
{
m ∈ Z∩ (−∞,0) :σm(t) > xt

}
if �(t, ζ ) > 0,

�(t, ζ ) = − sup
{
n ∈ Z∩ [0,+∞) :σn(t) ≤ xt

}
if �(t, ζ ) ≤ 0.

Since �(t, ζ ) ≥ �(t, ζ ′) − k holds if �(t, ζ ) ≥ 0 and �(t, ζ ′) ≤ 0, it is enough
to consider the following cases. Assume first that m := −�(t, ζ ′) < 0, hence
σ ′

m−1(t) ≤ xt < σ ′
m(t). By (25), σm+k(t) ≥ σ ′

m(t) > xt . Thus �(t, ζ ) ≥ −(m +
k) = �(t, ζ ′) − k. Next, assume that n := −�(t, ζ ) > 0, hence σn−1(t) ≤
xt < σn(t). By (25), σ ′

n−1−k(t) ≤ σn−1(t) ≤ xt . Thus �(t, ζ ′) ≤ −n + k =
�(t, ζ ) + k. �

Corollary 3.1. For y ∈ Z, define the configuration

η∗,y := (+∞)1(−∞,y]∩Z. (26)

Then, for every z ∈ Z such that y ≤ z and every ζ ∈ X,

�z(t, ζ ) ≤ �z

(
t, η∗,y) + 1{y<z}

z∑
x=y+1

ζ(x). (27)

Proof. Note that, for every ζ ′ ∈ X and u ∈ Z, we have

Fy

(
u,η∗,y) ≤ Fy

(
u, ζ ′) − 1{y<u}ζ ′(u), (28)

and

Fy

(
u, ζ ′) = Fz

(
u, ζ ′) + 1{y<z}

z∑
x=y+1

ζ ′(x) + 1{y<u<z}ζ ′(u). (29)

It follows that

Fz

(
u,η∗,y) = Fy

(
u,η∗,y)

≤ Fy(u, ζ ) − 1{y<u}ζ(u)
(30)

= Fz(u, ζ ) + 1{y<z}
z∑

x=y+1

ζ(x) + 1{y<u<z}ζ(u) − 1{y<u}ζ(u)

≤ Fz(u, ζ ) + 1{y<z}
z∑

x=y+1

ζ(x),

where we used (28) on the second line with ζ ′ = ζ , and (29) on the first line for
ζ ′ = η∗,y , and on the third line with ζ ′ = ζ . Combining (30) and Lemma 3.2 yields
the result. �
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3.4 Hydrodynamic limits

It follows from (6) that

∀x ∈ Z,∀α ∈ A,

∫
X

g
(
η(0)

)
dθλ

(
η(0)

) = λ =
∫

X
α(x)g

(
η(x)

)
dμα

λ(η). (31)

The quantity∫
X

[
pα(x)g

(
η(x)

) − qα(x + 1)g
(
η(x + 1)

)]
dμα

λ(η) = (p − q)λ

is the stationary current under μα
λ . As a function of the mean density R(λ), the

current writes

f (ρ) := (p − q)R
−1

(ρ). (32)

We state its basic properties in the following lemma.

Lemma 3.3. The functions R and f are increasing and C∞, respectively from
[0, c] to [0, ρc] and from [0, ρc] to [0, c]. Besides, R is strictly convex if R is
strictly convex.

Proof. Since α(·) is a bounded sequence with values in (c,1], we can find an
infinite subset I of N and a probability measure Q on [c,1] such that the limit
Qn → Q, as n → +∞ in I , holds in the topology of weak convergence, where

Qn := 1

n + 1

0∑
x=−n

δα(x).

Since R ∈ C∞([0,1)), for any λ ∈ [0, c), the function α �→ R(λ/α) lies in
C∞([c,1]). Thus

R(λ) =
∫
(c,1]

R

(
λ

α

)
Q(dα).

It follows that R ∈ C∞([0, c)), and

R
′
(λ) =

∫
(c,1]

1

α
R′

(
λ

α

)
Q(dα).

Since R′ > 0 on (0,1), the above expression implies R
′
> 0 on (0, c). The same

argument applied to R′′ shows that, if R is strictly convex, then R inherits this
property. �

The expected hydrodynamic equation for the limiting density field ρ(t, x) of
the subcritical disordered zero-range process is

∂tρ(t, x) + ∂xf
[
ρ(t, x)

] = 0. (33)
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Hydrodynamic limit of homogeneous asymmetric zero-range processes was estab-
lished by Rezakhanlou (1991) (see also Kipnis and Landim (1999)). Convergence
of general disordered zero-range processes to the entropy solution of (33) is proved
in Benjamini, Ferrari and Landim (1996) for subcritical Cauchy data. For more
general Cauchy data (i.e., data with certain density values above ρc), the hydro-
dynamic limit was derived in Krug and Seppäläinen (1999) in the special case (1)
of the totally asymmetric constant rate model. The result of Krug and Seppäläinen
(1999) includes the case of a source initial condition, which can be viewed as a
particular supercritical datum. For our purpose, we need hydrodynamic limits for
a general nearest-neighbour zero-range process starting with a source, which does
not follow from Benjamini, Ferrari and Landim (1996) and Krug and Seppäläi-
nen (1999). Besides, we also need a strong local equilibrium statement which, to
our knowledge, is not available in the disordered or non-convex setting. We recall
that strong local equilibrium was derived for the homogeneous zero-range process
with strictly convex flux in Landim (1993). However, the method used there relies
on translation invariance of the dynamics, which fails in the disordered case. The
strategy introduced in Bahadoran et al. (2014a), where shift invariance is restored
by considering the joint disorder-particle process, is not feasible either. Therefore
another approach is required here.

The extensions we need are carried out in Bahadoran et al. (2014b), whose re-
sults are now stated. We consider the process (ηα,t

s )s≥0 whose initial configuration
is of the form (with the convention (+∞) × 0 = 0)

η
α,t
0 (x) = (+∞)1{x≤xt }. (34)

This process is a semi-infinite process with a source/sink at xt : with rate pα(xt ),
a particle is created at xt + 1, with rate qα(xt + 1)g(η(xt + 1)) a particle at xt + 1
is destroyed.

For v ≥ 0, define λ−(v) as the smallest maximizer of λ �→ (p − q)λ − vR(λ)

over λ ∈ [0, c]. Equivalently, R(v) := R[λ−(v)] is the smallest maximizer of ρ �→
f (ρ) − vρ over ρ ∈ [0, ρc]. We also define the Lagrangian, that is the Legendre
transform of the current (or Hamiltonian): for v ∈ R,

f ∗(v) := sup
ρ∈[0,ρc]

[
f (ρ) − vρ

] = sup
λ∈[0,c]

[
(p − q)λ − vR(λ)

]
. (35)

From standard convex analysis (Rockafellar (1970)), we have that

R(v) = −(
f ∗)′

(v+), (36)

where (f ∗)′(v+) denotes the right-hand derivative of the convex function f ∗. The
concave envelope of f is defined by

f̂ (ρ) := f ∗∗(ρ) := inf
v∈R

[
ρv + f ∗(v)

] = inf
v≥0

[
ρv + f ∗(v)

]
. (37)
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The second equality follows from the fact that f is nondecreasing. Indeed, in this
case, (35) implies that for v ≤ 0,

f ∗(v) = f (ρc) − vρc = (p − q)c − vρc,

and plugging this into the second member of (37) shows that the infimum can
be restricted to v ≥ 0. It follows from (36) that R is a nonincreasing and right-
continuous function.

Proposition 3.1. Assume that xt in (34) is such that β := limt→+∞ t−1xt exists.
If β < 0, and conditions (15) and (7) are satisfied, then statement (38) below holds
for v ∈ (0,−β], and (39) below holds for v0 < v < −β and h :NZ →R a bounded
local increasing function. If (18) holds in addition to (7), then the restrictions
v ≤ −β and v < −β can be removed.

lim
t→∞E

∣∣∣∣t−1
∑

x>xt+�vt�
η

α,t
t (x) − f ∗(v)

∣∣∣∣ = 0, (38)

lim inf
t→∞

{
Eh

(
τ�xt+vt�ηα,t

t

) −
∫

X
h(η)dμ

τ�xt+vt�α
λ−(v)

(η)

}
≥ 0, (39)

where τ denotes the shift operator acting on environments by (τyα)(·) = α(y + ·)
for any y ∈ Z and α ∈ A.

Statement (38) deals with the hydrodynamics away from the source, while (39)
is a strong local equilibrium statement. Remark that the latter differs from the stan-
dard strong local equilibrium property in the homogeneous setting, since instead
of a fixed limiting equilibrium measure, one has an equilibrium measure moving
along the disorder. We have actually stated in (39) only half of the complete lo-
cal equilibrium statement (which also includes a reverse inequality and the largest
maximizer), because it is sufficient for our current purpose.

The values f ∗(v) and λ−(v) in (38)–(39) can be understood as follows, see also
Bahadoran et al. (2002) for a similar variational formula in a different context.
The source process is compared with an equilibrium process with distribution μα

λ ,
which has asymptotic current (p − q)λ and mean density R(λ). Hence its current
across an observer travelling with speed v is (p − q)λ − vR(λ). The source has a
bigger current, which thus dominates the supremum of these equilibrium currents,
that is f ∗(v) defined in (35). On the other hand, if one admits that the source
process around the observer is close to some equilibrium process, then the current
must be (p−q)λ−vR(λ) for some (possibly random) λ ∈ [0, c], hence dominated
by f ∗(v), and this λ is a maximizer of (35), hence dominating λ−(v).

In the sequel, the following quantity will play an important role:

v0 := (p − q) inf
λ∈[0,c)

c − λ

R(c) − R(λ)
. (40)
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This quantity can be interpreted as the speed of a front of uniform density ρc issued
by the source. Assumption (H) is equivalent to the infimum in (40) being achieved
uniquely for λ tending to c, which in turn is equivalent to

v0 = (p − q)R
′+

(c)−1 ∈ [0,+∞), (41)

where R
′+

was defined in (17). Let λ0 denote the smallest minimizer of (40), or
λ0 = c if the infimum in (40) is achieved only for λ tending to c, that is under
condition (H). The following lemma shows that R(λ0) is the density observed
right behind the front.

Lemma 3.4.

(i) For every v < v0, λ−(v) = c.
(ii) For every v > v0, λ−(v) < λ0, and limv↓v0 λ−(v) = λ0.

Proof.
Proof of (i). Assume v < v0. Then by definition (40) of v0, for every λ ∈ [0, c),

(p − q)λ − vR(λ) < (p − q)c − vR(c).

Thus c is the unique maximizer in (35), which implies the result.
Proof of (ii). Assume first that λ−(v) ≥ λ0 for some v ≥ 0. Then, for every

λ ∈ [0, λ0),

(p − q)λ − vR(λ) ≤ (p − q)λ−(v) − vR
[
λ−(v)

]
.

Hence,

v ≤ (p − q) inf
λ∈[0,λ0)

λ−(v) − λ

R[λ−(v)] − R(λ)
=: v1.

If λ−(v) = λ0, then v1 = v0. If λ−(v) > λ0, (40) implies

(p − q)
λ−(v) − λ0

R[λ−(v)] − R(λ0)
≤ v0,

which in turn implies v1 ≤ v0.
Let now (vn)n∈N\{0} be a decreasing sequence of real numbers such that

limn→+∞ λ−(vn) = v0, and set λn := λ−(vn). The sequence (λn)n∈N\{0} is non-
decreasing and nonnegative. The above implies that it is bounded above by λ0. Let
λ ∈ [0, λ0] denote its limit, and assume λ < λ0. By definition of λn,

(p − q)λn − vnR(λn) ≥ (p − q)λ0 − vnR(λ0).

Passing to the limit as n → +∞, we obtain the contradiction

v0 ≥ (p − q)
λ0 − λ

R(λ0) − R(λ)
> v0,

where the strict inequality follows from the fact that λ0 is the smallest minimizer
in (40). �
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4 Proof of Theorem 2.1

Let α ∈ A, l < 0 < r , and η0 ∈ X a configuration such that η0(x) ∈ N for x ∈ (l, r),
η0(l) = η0(r) = +∞. Consider the process (ηα

t )t≥0, with initial configuration η0,

and generator Lα (see (5)). The restriction (η
α,l,r
t )t≥0 of (ηα

t )t≥0 to (l, r) is a
Markov process on N

(l,r) with generator given by, for an arbitrary (since g is
bounded) function f on N

(l,r),

Lα,l,rf (η) =
r−2∑

x=l+1

pα(x)g
(
η(x)

)[
f

(
ηx,x+1) − f (η)

]

+
r−2∑

x=l+1

qα(x + 1)g
(
η(x + 1)

)[
f

(
ηx+1,x) − f (η)

]

+ qg
(
η(l + 1)

)[
f (η − δl+1) − f (η)

]
(42)

+ pg
(
η(r − 1)

)[
f (η − δr−1) − f (η)

]
+ pα(l)

[
f (η + δl+1) − f (η)

]
+ qα(r)

[
f (η + δr−1) − f (η)

]
.

The above process is an open Jackson network, whose invariant measure is well-
known in queuing theory. In our case this measure is explicit:

Lemma 4.1. Set

λα,l,r (x) = α(r) − α(l)

1 − (q/p)r−l

(
q

p

)r−x

+ α(l) − α(r)(q/p)r−l

1 − (q/p)r−l

(43)
∈ [

α(l), α(r)
]
.

The process with generator (42) is positive recurrent if and only if

λα,l,r (x) < α(x) ∀x ∈ (l, r) ∩Z. (44)

If condition (44) is satisfied, the unique invariant measure of the process is the
product measure μα,l,r on N

(l,r)∩Z with marginal θλ(x)/α(x) at site x ∈ (l, r) ∩Z.

Proof. An explicit computation shows that λα,l,r (·) given in (43) is the unique
solution to the following system:

λ(x) = pλ(x − 1) + qλ(x + 1) if x ∈ (l + 1, r − 1) ∩Z, (45)

λ(l + 1) = pα(l) + qλ(l + 2), (46)

λ(r − 1) = pλ(r − 2) + qα(r). (47)
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A standard result in queuing theory (see e.g. Pardoux (2008)) states that the pro-
cess with generator (42) is positive recurrent if and only if this solution satisfies
condition (44), and that in this case, it has as unique invariant measure μα,l,r . �

We can now conclude the following.

Proof of the upper bound (13). Recall that the quenched process (ηα
t )t≥0 in (13)

has initial configuration η0 ∈ N
Z, and generator (5). For ε > 0, let

Aε := Aε(α) = max
{
x ≤ 0 :α(x) ≤ c + ε

}
, (48)

aε := aε(α) = inf
{
x ≥ 0 :α(x) ≤ c + ε

}
. (49)

We can regard aε and Aε as positions of potential bottlenecks since the flux across
these points is close to the maximum uniformly on all configurations. Thanks to
assumption (3), the set in (48) is never empty. In contrast, the set in (49) may be
empty, in which case, by the usual convention, aε(α) is set to +∞. It follows from
definition (48) that

lim
ε→0

Aε(α) = −∞. (50)

Set

l := Aε(α), r := aε(α)1{
aε(α)<+∞} + ε−11{

aε(α)=+∞}. (51)

We define r ′ ∈ Z, α′ ∈ A, a [0, c]-valued function λε(·) on (l, r ′) and a probability
measure με on N

(l,r ′) as follows, so that με is an invariant measure for Lα′,l,r ′
.

First case. Condition (44) is satisfied, thus the measure μα,l,r of Lemma 4.1 is
well defined. This is true in particular if aε(α) < +∞, see (43). We set r ′ := r ,
α′ = α, λε(·) = λα,l,r (·) and με := μα,l,r .

Second case. Condition (44) is not satisfied. We then set

r ′ = r ′(α, l, r) := min
{
x > l :λα,l,r (x) ≥ α(x)

}
, (52)

and define a modified environment α′ = α′(α, l, r) by setting

α′(x) =
{

α(x), if x �= r ′,
λα,l,r (x), if x = r ′. (53)

Since α(·) and λα,l,r (·) satisfy (45)–(47), by construction, α′(·) and the restriction
of λα,l,r (·) to (l, r ′) ∩ Z still satisfy these equalities, and we define λε(·) as this
restriction. Thus με := μα′,l,r ′

, is an invariant measure for Lα′,l,r ′
.

Define the initial configuration η0 ∈ X by η0(x) = η0(x) for all x /∈ {l, r ′},
η0(l) = η0(r

′) = +∞. As above for Lemma 4.1, (ηα
t )t≥0 denotes the process with

generator (5) and initial configuration η0, and (η
α,l,r ′
t )t≥0 its restriction to (l, r ′).

Recall from the above preliminary that (η
α,l,r ′
t )t≥0 is a Markov process with gen-

erator Lα,l,r ′
defined by (42). Since η0 ≤ η0, by attractiveness, we have ηα

t ≤ ηα
t .
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Let (η
α′,l,r ′
t )t≥0 be the process with generator Lα′,l,r ′

defined by (42), and whose
initial configuration is the restriction of η0 to (l, r ′). This process converges in dis-
tribution as t → +∞ to its invariant measure με defined above. By attractiveness,
and the fact that the entrance rate qα′(r ′) at r ′ in Lα′,l,r ′

has been increased with
respect to that of Lα,l,r ′

, we have that η
α,l,r ′
t ≤ η

α′,l,r ′
t .

From (43) it follows that λε(x) in a finite neighbourhood of 0 can be made
arbitrarily close to α(l) by choosing ε appropriately small. This in turn implies
that r ′ goes to infinity as ε goes to 0 in both first and second cases. Thus for ε

small enough, the support of h is contained in (l, r ′). Since h is nondecreasing
with support in (l, r), we then have

lim sup
t→∞

Eh
(
ηα

t

) ≤ lim
t→∞Eh

(
ηα

t

) = lim
t→∞Eh

(
η

α,l,r ′
t

)

≤ lim
t→∞Eh

(
η

α′,l,r ′
t

) =
∫

X
h(η)dμε(η).

Since as ε goes to 0, α(Aε) goes to c, we have that λε(x) converges uniformly to
c on every finite subset of Z. Hence,

lim
ε→0

∫
X

h(η)dμε(η) =
∫

X
h(η)dμα

c (η).

This concludes the proof of Theorem 2.1. �

5 Proof of Theorem 2.2

Let y ∈ Z∩ (−∞,0). By Corollary 3.1 (with z = 0 and ζ = η0),

�0(t, η0) ≤ �0
(
t, η∗,y) +

0∑
x=y+1

η0(x). (54)

Let z ∈ (0,+∞), and (tn)n∈N denote a sequence of nonnegative real numbers such
that

lim
n→+∞ tn = +∞, lim

n→∞(tnz)
−1

0∑
x=�−tnz�

η0(x) = ρ,

where ρ < ρc is given in (16). Let yn := �−tnz�. Taking quenched expectation
of (54) yields

E
{
t−1
n �0(tn, η0)

} ≤ E
{
t−1
n �0

(
tn, η

∗,yn
)} + t−1

n

0∑
x=�−tnz�

η0(x). (55)

By Proposition 3.1,

lim
n→+∞E

{
t−1
n �0

(
tn, η

∗,yn
)} = f ∗(z), (56)
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where f ∗ is the Legendre transform of f defined by (35). Passing to the limit
in (55) as n → +∞, we obtain

lim sup
n→+∞

E
{
t−1
n �0(tn, η0)

} ≤ ρz + f ∗(z).

Since the above is true for every z > 0, we have

lim inf
t→+∞E

{
t−1�0(t, η0)

} ≤ inf
z>0

[
ρz + f ∗(z)

] = f̂ (ρ), (57)

where f̂ is the concave envelope of f defined in (37). Note that the infimum in (57)
is equal to the one in (37) by continuity of f ∗. Since f is strictly increasing, we
have that f̂ (ρ) < f̂ (ρc) = f (ρc) = (p − q)c. We have thus shown that

lim inf
t→+∞E

{
t−1�0(t, η0)

}
< (p − q)c. (58)

Now assume that the conclusion of the proposition is false, i.e. that ηα
t converges

in distribution to μα
c as t → +∞. Since

E
{
t−1�0(t, η0)

} = t−1
∫ t

0
E

{
pα(0)g

(
ηs(0)

) − qα(1)g
(
ηs(1)

)}
ds,

it would follow that

lim
t→+∞E

{
t−1�0(t, η0)

} =
∫ {

pα(0)g
(
η(0)

) − qα(1)g
(
η(1)

)}
dμα

c (η)

= (p − q)c,

which contradicts (58).

6 Proof of Theorem 2.3

By assumption (3), there exists a decreasing sequence (Xk)k∈N of negative integers
such that

lim
k→+∞α(Xk) = c. (59)

Given this sequence, we construct a decreasing sequence (xn)n∈N of negative inte-
gers such that (xn)n∈N is a subsequence of (Xk)k∈N, and

lim
n→+∞

xn

δn

= 0, (60)

where

δn := xn+1 − xn. (61)

Set x0 = 0 and pick t0 > 0, then set δ0 = (1+V )t0, where V is a finite propagation
speed constant given for this kernel p(·) by Lemma 3.1. Then for every n ∈ N,
define

tn+1 = δn+1

1 + V
. (62)
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Let η0 ∈ X be the particle configuration defined by

η0(x) =
{

yn, if x = xn, n ≥ 1,
0, if x /∈ {xn,n ≥ 1}, (63)

where the sequence (yn)n∈N is defined as follows:

yn =
{ �ρcδn�, if ρc < +∞,

�ρnδn�, if ρc = +∞,
(64)

and (ρn)n∈N (in the case ρc = +∞) is a sequence satisfying

ρn ∈ [0,+∞), lim
n→+∞ρn = +∞, lim

n→+∞ρn

xn

tn
= 0. (65)

Let ηn
0 be the truncated particle configuration defined by

ηn
0(x) =

{
η0(x), if x ≥ xn,
0, if x < xn.

(66)

We denote respectively, by ηα
t and η

α,n
t the evolved zero-range processes starting

from η0 and ηn
0 . By finite propagation (see Lemma 3.1), (61) and (66), there exists

a vanishing sequence (pn)n∈N with values in [0,1], such that the P-probability of
the event

ηα
t (x) = η

α,n
t (x) ∀t ∈ [0, tn],∀x ≥ xn,

is bounded below by 1 − pn, uniformly with respect to α ∈ A. On the other hand,
for ηn

t , because p(·) is totally asymmetric and there are initially no particles to the
left of xn, we have the following bound:

�0
(
tn, η

n
0
) ≤ N

xn
tn + ∑

x>xn

ηn
0(x) = N

xn
tn + ∑

x>xn

η0(x), (67)

where (Nx
t )t≥0 denotes the Poisson process of potential jumps to the right from x

in the Harris construction, that is a Poisson process with rate

λ(x) := α(x)
∑
z>0

p(z) = α(x).

Note that definitions (63)–(64) and assumption (65) imply

lim
n→+∞

1

xn

∑
x>xn

η0(x) = lim
n→+∞

1

xn

n−1∑
i=0

yi = ρc. (68)

Hence, the supercriticality condition (2) is satisfied by η0. The bound (67), com-
bined with the law of large numbers for Poisson processes, (60), (62), (68)
and (59), yields that the limit

lim sup
n→+∞

E
{
t−1
n �0

(
tn, η

n
0
)} ≤ lim

n→+∞E
{
t−1
n N

xn
tn

} = c
∑
z>0

p(z) = c, (69)
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holds P-a.s. The finite propagation property (Lemma 3.1) applied to ηt and ηn
t on

[0, tn], together with (69), implies

lim sup
n→+∞

E
{
t−1
n �0(tn, η0)

} ≤ c
∑
z>0

p(z) = c.

But

E
{
t−1
n �0(tn, η0)

} = t−1
n

∫ tn

0

∑
x≤0

∑
z>−x

p(z)α(x)g
(
ηα

t (x)
)
dt. (70)

It follows that ηα
t cannot converge in distribution to μα

c as t → +∞, for if this
were true, the r.h.s. of (70) would converge to∫

X

∑
x≤0

∑
z>−x

p(z)α(x)g
(
η(x)

)
dμα

c (η) = c
∑
z∈Z

zp(z) > c.

7 The lower bound

The lower bound of Proposition 2.1 can be established along the following lines,
see Bahadoran et al. (2014b) for (lengthy) details of this scheme. The supercriti-
cality condition (2) is shown in a first step to imply that locally around the origin,
our process (ηα

s )s≥0 dominates the source process (η
α,t,β
s )s≥0 with initial config-

uration defined by (34), with xt := �βt�, and β < 0. This holds in the following
sense. Recalling the definition (48) of Aε , we have that

Lemma 7.1. There exists a function β = β(ε), such that β < −v0, limε→0 β(ε) =
−v0, and

lim
ε→0

lim inf
t→+∞ P

({
ηα

t (x) ≥ η
α,t,β
t (x),∀x ≥ Aε(α)

}) = 1.

Due to (50), Lemma 7.1 implies domination in any fixed neighbourhood of the
origin. Next, we show that the source process stays above critical equilibrium:

Lemma 7.2. For any bounded local increasing function h :NZ →R,

lim
β→−v0

lim inf
t→+∞Eh

(
η

α,t,β
t

) ≥
∫

X
h(η)dμα

c (η).

Proof. For given β < −v0, by Proposition 3.1,

lim inf
t→+∞Eh

(
η

α,t,β
t

) ≥
∫

X
h(η)dμα

λ−(−β)(η).

Letting β → −v0, by statement (ii) of Lemma 3.4, we have

lim
β↑−v0

∫
X

h(η)dμα
λ−(−β)(η) =

∫
X

h(η)dμα
λ0

(η).
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But Assumption (H) is exactly the necessary and sufficient condition to have
λ0 = c. �

Proposition 2.1 then follows from Lemmas 7.1 and 7.2.
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