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Sub-Gaussian bound for the one-dimensional Bouchaud
trap model

Manuel Cabezas
Instituto Nacional de Matemática Pura e Aplicada

Abstract. We establish a sub-Gaussian lower bound for the transition kernel
of the one-dimensional, symmetric Bouchaud trap model, which provides a
positive answer to the behavior predicted by Bertin and Bouchaud in (Phys.
Rev. E (3) 67 (2013) 026128). The proof rests on the Ray–Knight description
of the local time of a one-dimensional Brownian motion. Using the same
ideas, we also prove the corresponding result for the FIN singular diffusion.

1 Introduction

The Bouchaud trap model (BTM) is a random walk in a random medium. The
medium represents a landscape composed of traps which retain the walk for some
amount of time. In this paper, we will consider the BTM taking values on the
line Z. Each z ∈ Z represents a trap of some depth τz > 0. For every fixed realiza-
tion of the traps τ = (τz)z∈Z, let (Xt)t≥0 be a continuous-time Markov chain with
X0 = 0 and whose jump rates are given by

c(x, y) :=
{

(2τx)
−1 if |x − y| = 1,

0 otherwise.

That is, (Xt)t≥0 is a random walk on Z which, each time it visits a site z ∈ Z,
it waits there an exponentially distributed time with mean τz and then jumps to
z − 1, z + 1 with probability 1/2 each. Hence, τz should be regarded as the depth
of the trap at z. The environment τ is chosen at random, more precisely, (τz)z∈Z is
an i.i.d. sequence of positive random variables. The random walk (Xt)t≥0 defined
in this way is the one-dimensional Bouchaud trap model.

When the environment is highly inhomogeneous (i.e., when the distribution of
τ0 has heavy tails), the trapping mechanism becomes relevant even in the large
scale behavior of the system, and the BTM displays some striking features, such
as localization (see Fontes et al. (1999)), subdiffusivity (see Fontes et al. (2002))
and aging (see Fontes et al. (2002), Černý (2006), Ben Arous and Černý (2005)).
More precisely, localization means that, for P-a.e. realization of the environment
τ , we have that

lim sup
t→∞

max
z∈Z P(Xt = z|τ ) > 0,
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that is, for arbitrarily large times, there is a site z which carries a positive proportion
of the distribution of Xt . Localization reflects the fact that, at all time scales, the
depth of the deepest trap found by the BTM is of the same order of magnitude as
the sum of the depths of all the traps visited by the BTM up to that time.

Hence, the evolution of the BTM is characterized by the effect of the deepest
traps visited, which dominate the dynamics at all time scales. In agreement with
this picture, the BTM has an anomalously slow evolution. In fact, the subdiffusivity
displayed by the BTM means that the typical displacement of X at time t is o(t1/2).

Other interesting properties of the BTM can be found by analyzing some two-
time functions as f (tw, t) := P(Xtw+t = Xtw). We should think that we are letting
that the system ages for a time tw , and then we measure the probability that the
system is at the “initial position” Xtw after a time t . In equilibrium, one would
expect that f (tw, t) depends only on t (i.e., the aging has no effect on the mea-
surement). Nevertheless, for the BTM on a strongly inhomogeneous environment,
f (tw, t) depends on the ratio t/tw rather than on t . More precisely, as shown in
Fontes et al. (2002), we have that

lim
tw→∞
t/tw→θ

f (tw, t) = F(θ),

where F is a non-trivial function of θ . This phenomenon is usually referred as
aging and is yet another consequence of the ever slower dynamics of the BTM.

The standard assumption to ensure an inhomogeneous environment is that the
law of τ0 is in the domain of attraction of an α-stable law, for some α ∈ (0,1).
For the sake of simplicity, in this article we will make the stronger assumption that
there exists α ∈ (0,1) such that

lim
u→∞uα

P(τx ≥ u) = 1.

A basic question of the model is to describe its transition kernel. In Bertin and
Bouchaud (2003), it is predicted that the anomalously slow dynamics should be
reflected on a non-Gaussian diffusion front. Moreover, they conjectured that the
transition kernel has a decay given by a stretched exponential. More precisely, they
claimed that P(|Xt | ≥ x) should behave as C exp(−c( x

tγ
)1+α) for some positive

constants C, c, where γ = α/(1+α). Their prediction was supported by numerical
simulations and non-rigorous arguments. In this article we confirm the predicted
behavior by providing the sub-Gaussian lower bound for the transition kernel. The
corresponding upper bound was previously obtained in Černý (2006).

The main result of this article is the following theorem.

Theorem 1. There exist positive constants C1, c1,C2, c2 and ε1 such that

C1 exp
(
−c1

(
x

tγ

)1+α)
≤ P

(|Xt | ≥ x
) ≤ C2 exp

(
−c2

(
x

tγ

)1+α)

for all t ≥ 0 and x ≥ 0 such that x
ε1

≤ t .
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As we have previously stated, the upper bound in Theorem 1 has been already
obtained in Černý (2006), Lemma 3.2.

The proof that we will present for the lower bound relies heavily on the fact that
(Xt)t≥0 has a clearly identified scaling limit. This scaling limit is the Fontes–Isopi–
Newman singular diffusion (FIN) (Zt )t≥0. It was discovered by Fontes, Isopi and
Newman in Fontes et al. (2002) and it should be thought of as a Brownian motion
moving among a random environment of traps. More accurately, the FIN singular
diffusion Z is obtained as a speed-measure change of a Brownian motion through
a random, purely atomic measure ρ, where ρ is the Stieltjes measure associated to
an α-stable subordinator.

It is a known fact that α-stable subordinators are pure-jump processes. Hence,
we can write

ρ = ∑
i∈N

viδxi
. (1.1)

Each atom viδxi
of ρ plays the role of a trap located at xi and whose depth is vi . It

can be shown that {xi : i ∈ N} is dense in R. Hence, the FIN diffusion is a Brownian
motion moving among a random, dense set of traps viδxi

, i ∈ N.
As we have said, the FIN singular diffusion is the scaling limit of the one-

dimensional Bouchaud trap model, more precisely, as proved in Fontes et al.
(2002), Theorem 4.1, we have that

(
ε−1Xε1/γ t

)
t≥0

d→ (Zt )t≥0 as ε → 0,

where
d→ denotes convergence in distribution. Note that the scaling in the display

above is sub-diffusive, in accordance with the subdiffusivity of the BTM.
The techniques used to prove Theorem 1 can also be applied to establish the

sub-Gaussian behavior of the transition kernel for the FIN singular diffusion, that
is, we will prove the following theorem.

Theorem 2. There exist positive constants C3, c3, C4 and c4 such that

C3 exp
(
−c3

(
x

tγ

)1+α)
≤ P

(|Zt | ≥ x
) ≤ C4 exp

(
−c4

(
x

tγ

)1+α)

for all t ≥ 0 and x ≥ 0.

Again, the upper bound of Theorem 2 was obtained in Černý (2006), Corol-
lary 3.3.

At this point we would like to give some references concerning the BTM. The
model was introduced in Bouchaud (1992) as a toy model to study metastability on
some complex system such as spin glasses. In this case the state space of the walk
was a large complete graph. Each vertex x of the complete graph represented a
metastable state of the system, and the depths where chosen as τx := exp(−βEx),
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where Ex represented the energy barrier that the system must overcome to leave
that metastable state and β is the inverse temperature. When the state space is
Z

d, d ≥ 2, the BTM has a behavior completely different from the one-dimensional
case, as shown in Ben Arous and Černý (2007), and by Ben Arous, Černý and
Mountford in Ben Arous et al. (2006) (see also Mourrat (2011)). In these papers,
it is shown that the scaling limit of the BTM on Z

d (d ≥ 2) is the fractional ki-
netics process (FK), which is a time-change of a d-dimensional Brownian motion
through the inverse of an α-stable subordinator. In Ben Arous et al. (2003a) and
Ben Arous et al. (2003b) Ben Arous, Bovier and Gayrard obtained aging properties
of the model on the complete graph. For an spectral characterization of aging see
Bovier and Faggionato (2005). More on the one-dimensional BTM can be found
in Ben Arous and Černý (2005), where it was shown that the model displays sev-
eral aging regimes. The hydrodynamic behavior of one-dimensional BTM can be
found in Jara et al. (2011). The response of the one-dimensional BTM to a drift
is the subject of Zindy (2009). In Gantert et al. (2010) a drift which decays to 0
is introduced, and a phase transition in terms of the speed of decay of the drift
is identified (see also Cabezas (2010)). A study of the BTM on a wider class of
graphs can be found on Ben Arous and Černý (2008). For a general account on the
mathematical study of the Bouchaud trap model and the FIN singular diffusion,
we refer to Ben Arous and Černý (2006).

The organization of the paper is as follows: In Section 2, we give some prelim-
inaries and we briefly sketch the main ideas of the proofs. The proofs of the main
results are the subject of Section 3. Section 3.1 contains the proof of Theorem 2
and Section 3.2 deals with the proof of Theorem 1.

In this article, C and c will represent positive constants which might change
their values from line to line.

2 Preliminaries and strategy of the proof

2.1 Preliminaries

Here we will give the precise definition of the FIN singular diffusion and we will
state the Ray–Knight Theorem.

To define the FIN singular diffusion, first we recall the definition of a speed-
measure changed Brownian motion. Let (Bt )t≥0 be a standard one-dimensional
Brownian motion starting at zero and l(t, x) be a jointly continuous version of its
local time. Given any locally finite measure μ on R, denote

φμ(s) :=
∫
R

l(s, y)μ(dy),

and its right-continuous generalized inverse by

ψμ(t) := inf
{
s > 0 :φμ(s) > t

}
.
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The speed-measure change of B with speed-measure μ, (B[μ]t )t≥0, is defined as

B[μ]t := Bψμ(t). (2.1)

Now, we proceed to define the random measure appearing on the definition of the
FIN singular diffusion. Let (Vx)x∈R be a two sided, α-stable subordinator inde-
pendent of B . Let ρ be the Lebesgue–Stieltjes measure associated with V , that is
ρ(a, b] := Vb −Va . The process (Zt )t≥0 defined as Zs := B[ρ]s is the FIN singular
diffusion.

Observation 3. The measure ρ has scale invariance in the sense that λ−1/αρ(0, λ)

is distributed as ρ(0,1) for all λ > 0. Also, the Brownian motion B is scale invari-
ant in the sense that (λ−1/2Bλt )t≥0 is distributed as (Bt )t≥0. Those two facts imply
that Z is scale invariant in the sense that (λ−γ Zλt )t≥0 is distributed as (Zt )t≥0
for all λ > 0. This fact reflects that the FIN singular diffusion has a subdiffusive
behavior.

Next, we will recall the main tool of our proof, that is, the Ray–Knight de-
scription of the local time of the Brownian motion. Recall that B is a standard
one-dimensional Brownian motion started at the origin and l(t, x) is its local time.
For any b ∈ R let τb := inf{t ≥ 0 :Bt = b}. The Ray–Knight Theorem (Ray (1963)
and Knight (1963)) states the following.

Proposition 4 (Ray–Knight). For each a > 0, the process (l(τ−a, x) :x ≥ −a) is
Markovian. Moreover, (l(τ−a, x) :−a ≤ x ≤ 0) is distributed as a squared Bessel
process of dimension d = 2 started at 0 (l(τ−a,−a) = 0). Further, (l(τ−a, x) :x ≥
0) is distributed as a squared Bessel process of dimension d = 0 started at
l(τ−a,0) and killed at 0.

2.2 Strategy of the proof

In what follows, we will sketch the proof of Theorem 2. The proof of Theorem 1
follows the same line of reasoning but the technical details are slightly more com-
plicated.

The main step in the proof of Theorem 2 is to find a lower bound for
P(min{Zs : s ∈ [0, t]} ≤ −x). That is equivalent to find a lower bound for P(H−x ≤
t), where, for any b ∈ R, Hb := inf{t ≥ 0 :Zt = b}. The idea of the proof is to split
the interval [−x,0) into n sub-intervals [−x i

n
,−x (i−1)

n
), i = 1, . . . , n. Let i be

the time spent in [−x i
n
,−x (i−1)

n
) up to H−x . Then we consider the events:

Oi :=
{
i ≤ t

n

}
, i = 1, . . . , n. (2.2)

Clearly, we have that the intersection of those events implies that the time spent
by Z in the negative axis before hitting −x is less than t . If we ignore for the mo-
ment the problem of controlling the time spent in the positive axis, we just have
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to control the probability of the intersection
⋂n

i=1 Oi . At this point, we would like
to use the product rule to compute the probability of such intersection. Unfortu-
nately, we are dealing with events which are not independent, and we cannot use
the product rule. Nevertheless, one can proceed by using a similar strategy, and
obtain independence by virtue of the Ray–Knight Theorem.

First, note that, recalling the definition of the FIN singular diffusion, we have
that

i =
∫
[−xi/n,−x(i−1)/n)

l(τ−x, u)ρ(du), (2.3)

where ρ is the measure appearing in the definition of the FIN singular diffusion
and l(·, ·) is the Brownian local time.

We start by dealing with the dependence between O1 and (Oi)i=2,...,n. Since ρ

is defined as the Lebesgue–Stieltjes measure associated to a Lévy process (more
precisely, an α-stable subordinator), we have that ρ has independent increments,
in the sense that, for any sequence (Ji)i∈N of disjoint Borel subsets of R, we have
that the family of random variables (ρ(Ji))i∈N is independent. Moreover, by the
Ray–Knight Theorem, we know that (l(τ−x, u))u≥0 is a Markov process. The key
step in our reasoning is that, by virtue of the independence of increments of ρ and
the Markovianity of l(τ−x, u), we have that 1 depends of i , i = 2, . . . , n only
through the value of l(τ−x,−x/n). Hence, O1 depends of Oi , i = 1, . . . , n only
through l(τ−x,−x/n). As we will see in Section 3, it is not hard to deal with that
kind dependence.

The same argument can be applied to deal with the dependence between Oj

and Oi , i = j + 1, . . . , n, for all j = 1, . . . , n − 1. In this way we will obtain a
formula for the probability of the intersection

⋂n
i=1 Oi which will play the role of

the product rule.
Finally, thanks to the scale invariance of the FIN singular diffusion one can

choose the number of sub-intervals n in such a way that the probability of the
events Oi is a constant c which does not depend on x, t or n. The proper choice
of n will be n = ( x

tγ
)1+α . Hence, by using our product rule-type formula, we will

get that the probability of {min{Zs : s ∈ [0, t]} ≤ −x} will be bounded below by
c(x/tγ )1+α

and that is the type of result that we want.

3 Proofs of Theorems 1 and 2

3.1 Proof of Theorem 2

We will prove only the lower bound, since the upper bound is proved in Černý
(2006), Lemma 3.2. Thanks to the scale invariance of Z (see Observation 3), to
prove the lower bound in Theorem 2 it is enough to show that there are positive
constants C,c > 0 such that

P
(|Z1| ≥ x

) ≥ C exp
(−cx1+α)

for all x ≥ 0.
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Moreover, both P(|Z1| ≥ x) and C exp(−cx1+α) are decreasing in x. Hence it will
suffice to show that there are positive constants C,c > 0 such that

P
(|Z1| ≥ an

) ≥ C exp(−cn) for all n ∈ N,

where an := n1/(1+α). The main step in the proof of Theorem 2 is the following
lemma:

Lemma 5. There exist positive constants C,c > 0 such that

P
(
min

{
Zs : s ∈ [0,1]} ≤ −an

) ≥ C exp(−cn) for all n ∈ N.

Proof. Note that the event {min{Zs : s ∈ [0,1]} ≤ −an} is equivalent to {H−an ≤
1}. We recall that ρ is the random measure appearing in display (1.1), B is the
Brownian motion used in the construction of Z and l(·, ·) is its local time. We have
that

H−an =
∫ ∞
−an

l(τ−an, u)ρ(du).

We split [−an,0) into n subintervals Ii := [−in−γ ,−(i − 1)n−γ ), i = 1, . . . , n

(recall that γ = α/(1 + α)). Let us define the events Ai , i = 1, . . . , n − 1 as

Ai :=
{∫

Ii

l(τ−an, u)ρ(du) ≤ 1

n

}
.

Also define

An :=
{∫

In

l(τ−an, u)ρ(du) ≤ 1

2n

}

and

A0 :=
{∫

[0,∞)
l(τ−an, u)ρ(du) ≤ 1

2n

}
.

Clearly

n⋂
i=0

Ai ⊂ {H−an ≤ 1}. (3.1)

At this point we would like to use the product rule on the display above to obtain a
lower bound for P(H−an ≤ 1), but the events Ai , i = 0, . . . , n are not independent.
Nevertheless, we will harness the Markovianity of l(τ−an, u) (guaranteed by the
Ray–Knight Theorem) and the independence of increments of ρ to obtain a for-
mula for P(

⋂n
i=0 Ai) which will play the role of a product rule. We will start by

dealing with the dependence between A0 and
⋂n

i=1 Ai .
As we have explained in Section 2.2, the measure ρ has independent increments.

The key observation here is that, by virtue of the independence of increments of
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ρ and by the Markovianity of (l(τ−an, u))u≥−an we have that the random vari-
able

∫
[0,∞) l(τ−an, u)ρ(du) depends of the random variables

∫
Ii

l(τ−an, u)ρ(du),
i = 1, . . . , n only through the value of l(τ−an,0). In particular, we have that A0
depends of Ai , i = 1, . . . , n only through the value of l(τ−an,0).

To get rid of that dependence we will condition on the event that l(τ−an,0) is
below a certain fixed level n−γ . That is, we introduce the event

L1 := {
l(τ−an,0) ≤ n−γ }

.

The strategy will be that, when conditioned on the event L1, the event A0 is
stochastically dominated by {∫[0,∞) Yuρ(du) ≤ 1

2n
}, where (Yu)u≥0 is a squared

Bessel process of dimension d = 0 started at n−γ (Y0 = n−γ ) and independent
of ρ. In this way, we will overcome the dependence between A0 and l(τ−an,0).

We start by writing

P

(
n⋂

i=0

Ai

)
≥ P

(
A0 ∩ L1

n⋂
i=1

Ai

)
= P

(
A0

∣∣∣L1

n⋂
i=1

Ai

)
· P

(
L1

n⋂
i=1

Ai

)
. (3.2)

On the other hand, as we have said, the Markovianity of l(τ−an, ·) and the inde-
pendence of increments of ρ imply that A0 depends of L1

⋂n
i=1 Ai only through

the value of l(τ−an,0). Hence, we can write

P

(
A0

∣∣∣L1

n⋂
i=1

Ai

)
=

∫ n−γ

0
P

(
A0|l(τ−an,0) = y

)
ν0(dy), (3.3)

where ν0 is the distribution of l(τ−an,0) conditioned on L1
⋂n

i=1 Ai .
Let us make a technical comment about the meaning of the conditional prob-

abilities P(A0|l(τ−an,0) = y) appearing in (3.3). One can use any regular ver-
sion of the conditional probabilities of (l(τ−an, u))u≥0 given l(τ−an,0) to define
the function y 	→ P(A0|l(τ−an,0) = y) up to a set of ν0-measure zero. Never-
theless, it will be convenient to define P(A0|l(τ−an,0) = y) for all y ≥ 0. To do
so, we use the fact that (l(τ−an, u))u≥0 is a squared Bessel process, and Bessel
processes can be defined as starting from any y ≥ 0. Hence, for all y ≥ 0 we de-
fine P(A0|l(τ−an,0) = y) using the law of a 0-dimensional squared Bessel process
started at y.

Now, we will show that, for all y ∈ [0, n−γ ], we have that

P
(
A0|l(τ−an,0) = y

) ≥ P
(
A0|l(τ−an,0) = n−γ )

. (3.4)

For all y ∈ [0, n−γ ], we can couple two 0-dimensional squared Bessel processes,
(X1

t )t≥0, (X2
t )t≥0 with X1

0 = y, X2
0 = n−γ and such that P(X1

s ≤ X2
s for all s ≥

0) = 1. In particular, we have that for any measure μ on R∫ ∞
0

X1
uμ(du) ≤

∫ ∞
0

X2
uμ(du).
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Recalling the definition of the event A0, we see that the previous display implies
(3.4). On the other hand, displays (3.4) plus (3.3) imply that

P

(
A0

∣∣∣L1

n⋂
i=1

Ai

)
≥ P

(
A0|l(τ−an,0) = n−γ )

.

Hence, using (3.2) we get that

P

(
n⋂

i=0

Ai

)
≥ P

(
L1

n⋂
i=1

Ai

)
P

(
A0|l(τ−an,0) = n−γ )

. (3.5)

In this way we have been able to deal with the dependence between A0 and Ai ,
i = 1, . . . , n.

The next step is to get rid of the dependence between A1 and Ai , i = 2, . . . , n.
We will proceed analogously. Let

L2 := {
l
(
τ−an,−n−γ ) ≤ n−γ }

.

We have that

P

(
L1

n⋂
i=1

Ai

)
≥ P

(
A1 ∩ L1 ∩ L2

n⋂
i=2

Ai

)
,

which, in turn, equals

P

(
A1 ∩ L1

∣∣∣L2

n⋂
i=2

Ai

)
· P

(
L2

n⋂
i=2

Ai

)
.

Again, by the Markovianity of l(τ−an, ·) and the independence of increments
of ρ, we have that A1 ∩ L1 depends on L2

⋂n
i=2 Ai only through the value of

l(τ−an,−n−γ ). That is

P

(
A1 ∩ L1

∣∣∣L2

n⋂
i=2

Ai

)
=

∫ n−γ

0
P

(
A1 ∩ L1|l(τ−an,−n−γ ) = y

)
ν1(dy),

where ν1 is the distribution of l(τ−an,−n−γ ) conditioned on L2
⋂n

i=2 Ai . We can
use the same type of coupling that we have used to obtain (3.4) to see that

P
(
A1 ∩ L1|l(τ−an,−n−γ ) = y

) ≥ P
(
A1 ∩ L1|l(τ−an,−n−γ ) = n−γ )

for all y ≤ n−γ . Hence, the same reasoning used to obtain (3.5) gives us

P

(
L1

n⋂
i=1

Ai

)
≥ P

(
L2

n⋂
i=2

Ai

)
P

(
A1 ∩ L1|l(τ−an,−n−γ ) = n−γ )

, (3.6)

which allows us to deal with the dependence between A1 and Ai , i = 2, . . . , n.



Sub-Gaussian bound for the one-dimensional Bouchaud trap model 121

By analogous arguments, we get that, for all j = 1, . . . , n − 1

P

(
Lj

n⋂
i=j

Ai

)
≥ P

(
Lj+1

n⋂
i=j+1

Ai

)
P

(
Aj ∩ Lj |l(τ−an,−jn−γ ) = n−γ )

, (3.7)

where

Lj := {
l
(
τ−an,−(j − 1)n−γ ) ≤ n−γ }

.

Putting together displays (3.5), (3.6) and (3.7), we get that

P

(
n⋂

i=0

Ai

)
≥ P(An ∩ Ln)P

(
A0|l(τ−an,0) = n−γ

)

×
n−1∏
i=1

P
(
Ai ∩ Li |l(τ−an,−in−γ ) = n−γ )

.

(3.8)

The formula above is the sort of product rule we were after.
Next, note that using the spatial homogeneity of the random measure ρ, display

(3.8) yields

P

(
n⋂

i=0

Ai

)
≥ P(An ∩ Ln)P

(
A0|l(τ−an,0) = n−γ

)
× (

P
(
A1 ∩ L1|l(τ−an,−n−γ

) = n−γ
))n−1

.

(3.9)

Lemma 5 will follow after we have showed that the quantities appearing in the
display above are independent of n and positive. The key at this point is the scale
invariance of the FIN diffusion together with our choice of an.

First, we will deal with P(A1 ∩ L1|l(τ−an,−n−γ ) = n−γ ). By definition, we
have that P(A1 ∩ L1|l(τ−an,−n−γ ) = n−γ ) equals

P

(∫ 0

−n−γ
l(τ−an, u)ρ(du) ≤ 1

n
; l(τ−an,0) ≤ n−γ

∣∣∣l(τ−an,−n−γ ) = n−γ

)
.

Recall that, if (Yt )t≥0 is a squared Bessel process started at some a ≥ 0, then,
for each λ ≥ 0, (λYλ−1t )t≥0 is a squared Bessel process started at λa. Hence, by
choosing λ = n−γ , we have that the last display equals

P

(∫ 0

−n−γ
n−γ l

(
τ−an, unγ )

ρ(du) ≤ 1

n
; l(τ−an,0) ≤ 1

∣∣∣l(τ−an,−1) = 1
)
.

Using the scale invariance of the measure ρ we obtain that the previous display
equals

P

(∫ 0

−n−γ
l
(
τ−an, unγ )

ρ
(
n−γ du

) ≤ 1; l(τ−an,0) ≤ 1
∣∣∣l(τ−an,−1) = 1

)
.
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Finally, let us perform a change of variables inside the integral in the display above
to get

P

(∫ 0

−1
l(τ−an, u)ρ(du) ≤ 1; l(τ−an,0) ≤ 1

∣∣∣l(τ−an,−1) = 1
)
. (3.10)

Hence P(A1 ∩L1|l(τ−an,−n−γ ) = n−γ ) is equal to (3.10), which clearly does not
depend on n.

Similar arguments can be used to show that

P(An ∩ Ln) = P

(∫ 0

−1
l(τ−1, u)ρ(du) ≤ 1

2
; l(τ−1,0) ≤ 1

)
(3.11)

and

P
(
A0|l(τ−an,0) = n−γ ) = P

(∫ ∞
0

l(τ−an, u)ρ(du) ≤ 1

2

∣∣∣l(τ−an,0) = 1
)
, (3.12)

which shows that the last two expressions are independent of n.
The core of the proof has been completed. It only remains to show the trivial

fact that displays (3.10), (3.11) and (3.12) are non-zero. Using the independence
between the Brownian motion B and the random measure ρ, we have that display
(3.10) is bigger or equal than

P

(
sup

u∈[−1,0]
l(τ−an, u) ≤ δ−1; l(τ−an,0) ≤ 1

∣∣l(τ−an,−1) = 1
)

· P(
ρ(−1,0] ≤ δ

)
for any δ ≥ 0. We can see that the above display is positive for δ < 1 by notic-
ing that the first factor in the product above is positive for δ < 1 (this follows
from standard properties of Bessel processes) and, on the other hand, we have that
P(ρ[−1,0) ≤ δ) > 0 for each δ > 0. An analogous argument gives that the quan-
tity appearing in (3.11) is positive. To see the positivity of the quantity appearing
in (3.12), we need also to use the fact that, for any t > 0, a 0-dimensional Bessel
process hits the origin before time t with positive probability. �

We have managed to show Lemma 5, which provides the sub-Gaussian lower
bound for P(min{Zs : s ∈ [0,1]} ≥ −an). To prove Lemma 8, we need to obtain
the same type of bound for Z1 instead of min{Zs : s ∈ [0,1]}. The standard argu-
ment of applying symmetry of the process after the stopping time H−an to obtain
P(Z1 ≤ −an) = 1

2P(min{Zs : s ∈ [0,1]} ≤ −an) cannot be applied in our case, be-
cause the annealed FIN singular diffusion is not Markovian (in particular, the event
{min{Zs : s ∈ [0,1]} ≤ −an} should be positively correlated with the absence of
very deep traps on [−an,0]).

Instead, we will proceed as follows, Lemma 5 guarantees that the probability
that Z reaches −an before time 1 is at least c−n. From Lemma 6 below, it will
follow that, after hitting −an, the probability that Z remains “to the left” of −an

for a time larger than 1 is also larger than c−n. In the argument we follow the
reasoning used in Černý (2006), Lemma 3.2.
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Lemma 6. There exist positive constants C,c > 0 such that

P

(∫ 0

−an

l(τ−an, u)ρ(du) ≥ 1;Zs ≤ n−γ for all s ≤ H−an

)
≥ C exp(−cn)

for all n ∈ N.

Proof. We divide the interval [−an,0) into n subintervals

Ii := [−in−γ ,−(i − 1)n−γ )
, i = 1, . . . , n

(recall that γ = α/(1 + α)). For i = 1, . . . , n we define

Ti :=
∫
Ii

(
l(τ−in−γ , u) − l(τ−(i−1)n−γ , u)

)
ρ(du).

That is, Ti is the time spent by Z on the interval Ii between times H−(i−1)n−γ and
H−in−γ . Also define, for i = 1, . . . , n

θi := min
{
s ≥ H−(i−1)n−γ :Zs ∈ {−in−γ ,−(i − 2)n−γ }}

and

Di :=
{
Ti ≥ 1

n
;Zθi

= −in−γ

}
.

That is, Di is the event that the time spent by Z on the interval Ii between times
H−(i−1)n−γ and H−in−γ is greater than 1/n and that, after reaching −(i − 1)n−γ ,
Z exits the interval Ii through −in−γ . We have that

n⋂
i=1

Di ⊂
{∫ 0

−an

l(τ−an, u)ρ(du) ≥ 1;Zs ≤ n−γ for all s ≤ H−an

}
.

Observe that the event Di depends on the realization of ρ only in the interval Ii .
Also, the family of intervals Ii , i = 1, . . . , n is disjoint. That, plus the independence
of increments of the measure ρ and the strong Markov property of the Brownian
motion (applied at the stopping times τ−in−γ , i = 1, . . . , n − 1) implies that the
events Di , i = 1, . . . , n are independent. Hence, we have that

n∏
i=1

P(Di) ≤ P

(∫ 0

−an

l(τ−an, u)ρ(du) ≥ 1;Zs ≤ n−γ ∀s ≤ H−an

)
. (3.13)

On the other hand, using the scale invariance of the measure ρ and the scale
invariance of the Brownian motion B , we can show that

P(Di) = P

(∫ 0

−1
l(τ−1, u)ρ(du) ≥ 1;H1 ≥ H−1

)
.

That is, the probability of Di does not depend on n (and is greater than 0). That,
plus display (3.13), proves Lemma 6. �
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Now we use Lemmas 5 and 6 to prove Theorem 2. We define

G1 := {H−(n+1)n−γ ≤ 1},
I ∗ := [−(2n + 1)n−γ ,−(n + 1)n−γ )

,

T :=
∫
I∗

(
l(τ−(2n+1)n−γ , u) − l(τ−(n+1)n−γ , u)

)
ρ(du) and

G2 := {
T ≥ 1;Zs ≤ −an for all s ∈ [H−(n+1)n−γ ,H−(2n+1)n−γ ]}.

In the event G1, we have that Z reaches −(n+ 1)n−γ before time t = 1. On the
other hand, in the event G2 we have that, after reaching −(n + 1)n−γ , the process
Z remains inside the interval [−(2n+1)n−γ ,−nα/(1+α)] for at least a unit of time.
Hence, in the event G1 ∩ G2, we have that Z1 ∈ [−(2n + 1)n−γ ,−nα/(1+α)], in
particular

G1 ∩ G2 ⊂ {Z1 ≤ −an}.
We know, by Lemma 5, that P(H−an ≤ 1) ≥ C1 exp(−c1n), for suitable C1, c1 > 0.
From that, it follows that there exist constants C,c ≥ 0 such that P(G1) ≥
C exp(−cn) (to show that, take M ∈ N such that (Mn)1/(1+α) ≥ (n + 1)n−γ for
all n ∈ N and then apply Lemma 5 at Mn). Also, Lemma 6 (plus the strong
Markov property of the Brownian motion B applied at time τ−(n+1)n−γ ) implies
that P(G2) ≥ C2 exp(−c2) for suitable C2, c2 > 0. Now, observe that the event G1
depends on the realization of ρ only on the interval [−(n + 1)n−γ ,∞), whereas
G2 depends on the realization of ρ only on the interval I ∗. Those intervals are
disjoint, hence, by virtue of the independence of increments of the measure ρ and
the strong Markov property of the Brownian motion B applied at the stopping
time τ−(n+1)n−γ , we deduce that the events G1 and G2 are independent. We have
showed that

P
(|Z1| ≥ an

) ≥ CC2 exp
(−(c + c2)n

)
,

and that proves Theorem 2.

3.2 Proof of Theorem 1

The strategy to prove Theorem 1 will be to mimic the arguments leading to Theo-
rem 2 using the fact that the scaling limit of the one-dimensional BTM is the FIN
singular diffusion. The main tool used in Fontes et al. (2002) to show that the BTM
scales to the FIN singular diffusion is a coupling between different time scales of
the BTM. We will make use of this coupling for the proof of Theorem 1, so we
proceed to recall it.

To better understand the idea of the coupling, first we have to stress the fact
that some discrete-space processes can be expressed as speed-measure changed
Brownian motions (see Stone (1963)). In particular, we will express the scal-
ings of the BTM, (εXε−(1+α)/αt )t≥0, ε > 0 as speed-measure changed Brownian
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motions, using a family of random, discrete measures ρε , ε > 0 as their speed-
measures. In fact, we will have that for each ε > 0, (B[ρε]t )t≥0 will be distributed
as (εXε−(1+α)/αt )t≥0, where B is a Brownian motion independent of the ρε , ε > 0
and B[ρε] is as in (2.1).

On the other hand, the random measures ρε, ε > 0 will be coupled in such a

way that ρε ε→0→ ρ almost surely, where ρ is the random measure appearing in the
definition of the FIN singular diffusion. At this point, we recall that convergence
of speed measure changed Brownian motions follows from the convergence of
their respective speed measures. More precisely Stone (1963), Theorem 1, states
that, if με is a family of measures on R which converges to some measure μ

as ε → 0, then we have that (B[με]t )t≥0 converges to (B[μ]t )t≥0 as ε → 0 in the
Skorohod topology. Hence, we will have that the convergence of ρε to ρ will imply
the convergence of B[ρε] to B[ρ], i.e., we will have that the FIN diffusion is the
scaling limit of the BTM.

Next, we present the construction of such measures. Let G : [0,∞) → [0,∞)

be the function defined by the relation

P
(
V1 > G(u)

) := P(τ0 > u),

where we recall from the introduction that (Vx)x∈R is a two sided α-stable sub-
ordinator and τ0 is the depth of the trap at x = 0. The function G is well
defined since V1 has a continuous distribution function. Moreover, G is non-
decreasing and right-continuous. Thus, G has a right-continuous generalized in-
verse G−1(s) := inf{t :G(t) > s}. Now, for all ε > 0 and z ∈ Z, we define the
random variables τ ε

z as

τ ε
z := G−1(

ε−1/αρ
(
εz, ε(z + 1)

])
.

As V has independent and stationary increments, we have that (τ ε
z )z∈Z is i.i.d.

Moreover, the function G was defined in order to have that τ ε
0 is distributed ac-

cording to τ0. For a proof of that fact, we refer to Fontes et al. (2002), Proposi-
tion 3.1.

Finally, we define the coupled family of random measures as

ρε := ∑
z∈Z

ε1/ατ ε
z δεz

for all ε > 0.

Observation 7. Define, for each measure μ over R and r ∈ R+, the following
rescaling

μr(·) := r1/αμ
(
r−1·). (3.14)

Then ρ1
r = ∑

z∈Z r1/ατ 1
z δrz and, since (τ 1

z )z∈Z is distributed as (τ r
z )z∈Z, we have

that ρ1
r is distributed as ρr .
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The next proposition states the two key properties of the coupled measures ρε ,
ε > 0.

Proposition 8 (Fontes, Isopi, Newman). For all ε > 0 the stochastic process
(εXtε−(1+α)/α )t≥0 has the same distribution as (B[ρε]t )t≥0. Moreover, we have that

ρε v→ ρ P-a.s. as ε → 0, (3.15)

where
v→ denotes vague convergence of measures.

For the proof of this statement, we refer to Fontes et al. (2002), Proposition 3.1.
Having recalled the coupling between different time scales of the BTM, we turn
our attention to the proof of Theorem 1.

First, note that Proposition 8 implies, in particular, that (Xt)t≥0 is distributed as
(B[ρ1]t )t≥0. Hence, we have that

P
(|Xt | ≥ x

) = P
(∣∣B[

ρ1]
t

∣∣ ≥ x
)

for all x ≥ 0 and t ≥ 0.
For any b ∈ Z, we define H 0

b := inf{t ≥ 0 :B[ρ1]t = b}. Theorem 1 will be
deduced from the two following lemmas, which are the analogous of Lemmas 5
and 6, respectively.

Lemma 9. There exist positive constants C,c, ε > 0 such that

P

(
min

{
Xs : s ∈

[
0,

m1/γ

n1/α

]}
≤ −m

)
≥ C exp(−cn),

for all m,n ∈ N such that n/m ≤ ε.

Lemma 10. There exist positive constants C,c, ε > 0 such that

P

(∫ 0

−m
l(τ−m,u)ρ1(du) ≥ m1/γ

n1/α
;Zs ≤ m

n
for all s ≤ H 0−m

)
≥ C exp(−cn),

for all m,n ∈ N such that n/m ≤ ε.

First, we will prove Lemma 9 by imitating the proof of Lemma 5. Note that,
since X is distributed as B[ρ1], we have that {min{Xs : s ∈ [0, m1/γ

n1/α ]} ≤ −m} is

equivalent to {H 0−m ≤ m1/γ

n1/α }. Next, define the events A0
i , i = 1, . . . , n − 1 as

A0
i :=

{∫ −m(i−1)/n

−mi/n
l(τ−m,u)ρ1(du) ≤

(
m

n

)1/γ }
.

Also define

A0
n :=

{∫ −m(n−1)/n

−m
l(τ−m,u)ρ1(du) ≤ 1

2

(
m

n

)1/γ }
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and

A0
0 :=

{∫
R+

l(τ−m,u)ρ1(du) ≤ 1

2

(
m

n

)1/γ }
.

Clearly, we have that
n⋂

i=0

A0
i ⊂

{
H 0−m ≤ m1/γ

n1/α

}
.

As in the proof of Lemma 5, we would like to apply the product rule to the inter-
section of events above, but those events are not independent. We will deal with
the dependence by using the same reasoning as in the proof of Lemma 5. For
i = 1, . . . , n, we define

L0
i := {

l
(
τ−m,−m(i − 1)/n

) ≤ m/n
}
.

The same argument leading to display (3.8) gives that

P

(
H 0−m ≤ m1/γ

n1/α

)
≥ P

(
A0

n ∩ L0
n

)
P

(
A0

0|l(τ−m,0) = m/n
)

×
n−1∏
i=1

P
(
A0

i ∩ L0
i |l(τ−m,−im/n) = m/n

)
.

(3.16)

Having dealt with the dependence of the events A0
i , i = 0, . . . , n, it remains

to show that the quantities above can be bounded from below, uniformly on i, n

and m. In the proof of Lemma 5, the uniform lower bound for the probability of
Ai , i = 0, . . . , n follows from the scale invariance of the FIN singular diffusion.
A technicality arises at this point, since the BTM is not scale invariant. Instead, we
will use that, under appropriate scaling, the BTM converges to the FIN diffusion.
Specifically, will rely on display (3.15).

Note that, for i = 1, . . . , n − 1, P(A0
i ∩ L0

i |l(τ−m,−im/n) = m/n) equals

P

(∫ 0

−m/n
l(τ−m,u)ρ1(

du−m(i − 1)/n
) ≤

(
m

n

)1/γ

; l(τ−m,0) ≤ m

n

∣∣∣
(3.17)

l(τ−m,−m/n) = m

n

)
.

The measure ρ1 is translation invariant in the sense that ρ1(· − k) is distributed as
ρ1 for any k ∈ Z. Hence, we can replace ρ1(du − mi−1

n
) by ρ(i)(du) := ρ1(du −

(mi−1
n

− �mi−1
n

)) on display (3.17). Moreover, performing a change of variables
inside the integral (and recalling the notation introduced in (3.14)), we obtain that
display (3.17) equals

P

(∫ 0

−1
l(τ−m,um/n)

(
m

n

)1/α

ρ
(i)
n/m(du) ≤

(
m

n

)1/γ

; l(τ−m,0) ≤ m

n

∣∣∣
l(τ−m,−m/n) = m

n

)
.
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Using the scale invariance of the local time, we obtain that the display above is
equal to

P

(∫ 0

−1
l(τ−m,u)ρ

(i)
n/m(du) ≤ 1; l(τ−m,0) ≤ 1

∣∣∣l(τ−m,−1) = 1
)
.

By the independence between the random measure ρ1 and the Brownian motion
B , we can see that the previous display is at least

P

(
sup

u∈[−1,0]
l(τ−m,u) ≤ δ−1; l(τ−m,0) ≤ 1

∣∣l(τ−m,−1) = 1
)

(3.18)
·P(

ρ
(i)
n/m(−1,0] ≤ δ

)
for any δ > 0.

We will show that the display above is uniformly bounded away from zero for
all δ < 1 and m,n ∈ N with n/m is small enough. It follows from standard consid-
erations about Bessel processes that the first factor in (3.18) is positive for δ < 1.
Then, it suffices to bound from below P(ρ

(i)
n/m(−1,0] ≤ δ).

From Observation 7, it follows that ρ
(i)
n/m is distributed as

ρn/m

(
· − n

m

(
m

i − 1

n
−

⌊
m

i − 1

n

⌋))
. (3.19)

On the other hand, using display (3.15) in Lemma 8 and the fact that mi−1
n

−
�mi−1

n
 ≤ 1 we obtain that (3.19) converges to ρ as n

m
goes to 0. Moreover, we see

that P(ρ
(i)
n/m(−1,0] ≤ δ) converges to P(ρ(−1,0] ≤ δ) uniformly on i as n

m
goes

to 0, for each δ > 0. Thus, there exists ε small enough such that, for n,m ∈N such
that n/m ≤ ε we have that the quantity on display (3.17) is bounded away from
zero uniformly on n, m and i.

Following analogous arguments, we can find uniform lower bounds for P(A0
n ∩

L0
n) and P(A0

0|l(τ−x,0) = m/n). That, plus display (3.16), proves Lemma 9.
In a similar way, we can apply the vague convergence of ρε to ρ to obtain

Lemma 10 by imitating the argument leading to Lemma 6.
Now we are ready to prove Theorem 1. The strategy is analogous to the proof

of Theorem 2. Since both, P(|Xt | ≥ x) and C exp(−c( x
tγ

)1+α) are decreasing on
x, it will suffice to show that there exist constants C,c, ε1 > 0 such that

P
(|Xt | ≥ m

) ≥ C exp
(
−c

(
m

tγ

)1+α)

for all m ∈ N and t such that m
ε

≤ t . Moreover, we can restrict ourselves to t ≤
m1/γ , because for t ≥ m1/γ , we have that P(|Xt | ≥ m) ≥ P(|Xt | ≥ tγ ), and the
convergence of (ε−1Xε1/γ t )t∈R+ to the FIN singular diffusion (proved in Fontes
et al. (2002), Theorem 4.1) implies that P(|Xt | ≥ tγ ) converges to P(|Z1| ≥ 1) as
t → ∞.
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Let n ≥ 2 be a natural number such that t ∈ [m1/γ

n1/α , m1/γ

(n−1)1/α ] (which exists be-

cause t ≤ m1/γ ) and K ∈ N be a fixed constant satisfying Kα > 2. Hence, since

t ≤ m1/γ

(n−1)1/α , we have

t ≤ (Km)1/γ

(Kn)1/α
. (3.20)

Let us define

G0
1 :=

{
min

{
Xs : s ∈

[
0,

m1/γ

n1/α

]}
≤ −n + 1

n
m

}
;

T 0 :=
∫ −(n+1)/nm

−((K+1)n+1)/nm

(
l(τ−(((K+1)n+1)/n)m,u) − l(τ−((n+1)/n)m,u)

)
ρ1(du),

and

G0
2 :=

{
T 0 ≥ (Km)1/γ

(Kn)1/α
;

Xs ≤ −m for all s ∈ [
H 0−((n+1)/n)m,H 0−(((K+1)n+1)/n)m

]}
.

In the event G0
1, X reaches −n+1

n
m before time m1/γ

n1/α and, since t ≥ m1/γ

n1/α , this

implies that X reaches −n+1
n

m before time t . On the other hand, in the event G0
2

we have that, after reaching −n+1
n

m, X remains inside the interval (−∞,−m] for

a time larger than (Km)1/γ

(Kn)1/α which, by (3.20), is in turn larger than t . Hence, we have
that

G0
1 ∩ G0

2 ⊂ {Xt ≤ −m}.
As in the proof of Theorem 2, we have that G0

1 and G0
2 are independent. Thus,

we can apply Lemma 9 to find that P(G1) ≥ C1 exp(−c1n). We can also apply
Lemma 10 (at Km and Kn) to find that P(G2) ≥ C2P(c2Kn). Thus we have that

P(Xt ≤ −m) ≥ C1C2 exp
(−(c1 + Kc2)n

)
.

As we have chosen n such that t ≤ m1/γ

(n−1)1/α , we have that n ≤ ( m
tγ

)1+α + 1 and we
obtain

P(Xt ≤ −m) ≥ C1C2 exp
(−(c1 + Kc2)

)
exp

(
−(c1 + Kc2)

(
m

tγ

)1+α)
.

The last display provides the lower desired lower bound with c = c1 + Kc2 and
C = C1C2 exp(−(c1 + Kc2)).
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