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Some refinements on Fedorov’s algorithms for constructing
D-optimal designs
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Abstract. Well-known and widely used algorithms for constructing D-
optimal designs are Fedorov’s sequential algorithm and Fedorov’s exchange
algorithm. In this paper, we modify these two algorithms by adding or ex-
changing two or more points simultaneously at each step. This will signif-
icantly reduce the number of steps needed to construct a D-optimal design.
We also prove the convergence of the proposed sequential algorithm to a
D-optimal design. Optimal designs for rational regression are used as an il-
lustration.

1 Introduction

The modern theory of optimal design started with the pioneering works of
Kiefer (1959, 1961a, 1961b, 1962, 1971 and 1974) and Kiefer and Wolfowitz
(1959, 1960) who made a number of important contributions to the theory. Their
main result is the general equivalence theorem, which plays a central role in con-
structing D-optimal designs.

There are two well-known approaches for constructing D-optimal designs. The
first approach starts from an initial n-point design (an arbitrary design with a non-
singular information matrix). Then new points are added to the design following a
certain rule. These algorithms are known as sequential algorithms. Generally, the
number of design points for such algorithms is increasing. Fedorov (1972) appears
to have been the first to develop a general algorithm for obtaining D-optimal de-
signs. He gave a sequence of continuous designs which converges monotonically
to a D-optimal design. Wynn (1970) provided another algorithm for construct-
ing a converging sequence of discrete (exact) designs. He also obtained bounds
which can be used to find out how close one is to an optimal design without
knowing the true optimal design. Pazman (1974) gave a different proof for the
Wynn’s algorithm. Covey-Crump and Silvey (1970), Dykstra (1971), and Hebble
and Mitchell (1971) suggested algorithms similar to Wynn’s, but did not give con-
vergence proofs. Tsay (1976) gave a general procedure for constructing D-optimal
designs, which includes Wynn’s algorithm as a special case. Silvey, Titterington
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and Torsney (1978) gave an additional algorithm, named the multiplicative al-
gorithm. They also proved that this algorithm converges monotonically to a D-
optimal design. Recently, Yu (2011) proposed a cocktail algorithm based on Fe-
dorov’s algorithm and the multiplicative algorithm. Pronzato (2003) and Herman
and Pronzato (2007) proposed some inequalities in order to remove non-optimal
support points.

The second procedure for constructing D-optimal designs starts with a nonsin-
gular n-point design. Next, it adds and deletes one or more observations points
following a certain rule. These algorithms are called exchange algorithms. The
number of design points for such algorithms remains constant. Unfortunately, to
this day there is no proof that guarantees the convergence of such algorithms to
a D-optimal design. However, there is a strong numerical evidence that they con-
verge to a D-optimal design very fast (sometimes even in few steps). Historically,
the first exchange algorithm for the construction of exact D-optimal design was de-
veloped by Fedorov (1972). The details of this algorithm is given in the Section 3
of this paper. Another exchange algorithm, due to Mitchell and Miller (1970), be-
gins with an arbitrary n-point design. Then it finds a candidate point which max-
imizes the variance function and adds it to the design. Next, it looks for a point
from the design points which minimizes the variance function and removes it form
the design. Mitchell (1974) proposed the DETMAX algorithm which allows the
value of n, the number of the design points, to increase and decrease in order to
get a better search within the design region. However, constraints are placed on
the amount of changes in the value of n, and the algorithm forces a return to an
n-point design. Another exchange algorithm for constructing D-optimal designs is
the k-exchange algorithm due to Johnson and Nachtsheim (1983). The foregoing
authors figured out that the points selected for deletion by the Fedorov exchange
algorithm are normally not the ones with the lowest variance of prediction. In-
stead of considering all candidate points, they suggested to use a set of k points
with the lowest variance. Then each iteration is broken into k steps. Inside each
of these k steps a couple is exchanged if the determinant of the information ma-
trix of the new design is increased. The selection of the k-value is difficult and
in most cases problem-dependent. Common values are k = 3 or k = 4 (Johnson
and Nachtsheim, 1983). Meyer and Nachtsheim (1995) later advised to select k

such that k ≤ n/4. Setting k = n gives Cook and Nachtsheim (1980) algorithm.
An additional exchange algorithm is the kl-exchange developed by Atkinson and
Donev (1989). This algorithm reduces the list of points to be added and deleted.
The use of the k points with the lowest variance of prediction is similar to the
k-exchange procedure. In addition to this, it only considers the l candidates with
the highest variance of prediction among the support points. The main advantage
of the k-exchange algorithm and the kl-exchange algorithm is that they speed up
in an effective way Fedorov’s exchange algorithm. However, the quality of design
is not always as good as the one obtained from Fedorov’s original exchange al-
gorithm (Cook and Nachtshem, 1980; Johnson and Nachtsheim, 1983; Atkinson
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and Donev, 1989; Triefenbach, 2008). Nguyen and Miller (1992) showed that, the
worse the starting design, the longer it takes for this algorithm to converge to the
D-optimal design. Meyer and Nachtsheim (1995) described a cyclic coordinate-
exchange algorithm, a generalization k-exchange algorithm. We refer the reader to
the ordinal papers for more details and comparisons between existing algorithms.

The aforementioned algorithms for constructing D-optimal designs are single
point algorithms. That is, at each step only one point can be added or exchanged
simultaneously. However, in many practical situations it may be possible to add or
exchange two or more points simultaneously. Typically, such cases happen when
there is a certain symmetry in the design (Atwood, 1973; Al Labadi and Zhen,
2010). It must be noted, however, that most the examples available in the literature
are symmetric designs. See, for example, among others, Fedrov (1972, Chapters 2
and 3), Wynn (1970), Liski, Mandal, Shah and Sinha (2002, p. 3), and Harman and
Pronzato (2007).

The main objective of this paper is to extend Fedorov’s sequential algorithm and
Fedorov’s exchange algorithms in order to add or exchange two or more points
simultaneously at each step. Achieving this goal reduces the computational time
required to construct a D-optimal design via Fedorov’s algorithms. For simplicity,
we will consider the case when two points are added or exchanged simultaneously
at each step. The general case follows similarly.

The remainder of the paper is organized as follows. In Section 2, we introduce
some preliminary material about optimal design theory. In Section 3, Fedorov’s
original algorithms for constructing D-optimal designs are reviewed. The steps
of the modified Fedorov’s sequential and exchange algorithms are presented in
Section 4 and Section 5, respectively. Our main theoretical results come in the fol-
lowing two sections. First, some matrix algebra and optimal design theory results
are developed in Section 6. We then prove the convergence modified Fedorov’s
sequential algorithm to a D-optimal design in Section 7. An example illustrating
and comparing the modified algorithms is presented in Section 8. Finally, some
concluding remarks are made in Section 9.

2 Optimal design theory

In this section, we introduce necessary concepts and classical theory of D-optimal
design. Following the setup of Kiefer and Wolfowitz (1959), let f1, f2, . . . , fp be
p linearly independent continuous functions on a compact region X . We assume
that at each point x in X a random variable Yx (response) is defined such that

E(Yx) = β ′f(x) =
p∑

i=1

βifi(x),

where f(x) is a p × 1 column vector of the functions fi (i = 1, . . . , p) evaluated
at x and β is a p × 1 column vector of unknown parameters βi (i = 1, . . . , p). We
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assume also that Var(Yx) = σ 2, Cov(Yx1,Yx2) = 0 for x, x1, x2 in X (x1 �= x2).
If observations {Yxi

}Ni=1 are taken, then we have the corresponding N × p design
matrix X whose ith row is the vector f′(xi). If the unknown parameter vector β is
estimated by the method of least squares, then the resulting estimator β̂ is known
to be the best linear unbiased estimator and its covariance matrix is σ 2(X′X)−1,
assuming that the matrix X′X is non-singular. The variance of the best linear un-
biased estimator of β ′f(x) is thus equal to

σ 2f′(x)
(
X′X

)−1f(x). (2.1)

We always distribute the N observations in (approximately) equal portions among
n ≥ p design points. A design ξ can be written as

ξ =
{

x1, x2, . . . , xn

w1, w2, . . . , wn

}
,

where the n support points x1, x2, . . . , xn are elements of the design region X and
the associated weights w1,w2, . . . ,wn are nonnegative real numbers which sum
to one. If all the associated weights are rational numbers (i.e., multiples of 1/n),
then the resulting design is called a discrete (i.e., exact) design. Removing this
restriction, we can extend this idea to a design measure (Kiefer and Wolfowitz,
1959; John and Draper, 1975) which satisfies, in general: ξ(A) ≥ 0, A ⊂ X , and∫
X ξ(dx) = 1. The resulting design is called a continuous (i.e., approximate) de-

sign.
A design ξ is symmetric if, for some natural number k, it has either of the fol-

lowing forms:

1. ξ =
{

x1, x2, . . . , xk, −xk, . . . , −x2, −x1
w1, w2, . . . , wk, wk+1, . . . , wn−1, wn

}
when n = 2k,

or

2. ξ =
{

x1, x2, . . . , xk, 0, −xk, . . . , −x2, −x1
w1, w2, . . . , wk, wk+1, wk+2, . . . , wn−1, wn

}
when n = 2k + 1.

For an arbitrary design ξ , the information matrix is defined as

M(ξ) =
∫
X

f(x)f′(x)ξ(dx).

Throughout this paper, an n-point design will be denoted by ξn. The subscript de-
notes the number of points in the design. For any discrete design ξn we will attach
a mass of 1/n to each point in the design. The design matrix X corresponding to a
design ξn will be given the same subscript. If ξn is a discrete (exact) design, then
the information matrix for this n-point design satisfies the following equation

nM(ξn) = X′
nXn.

For a general design ξ , define

d(x, ξ) = f′(x)M−1(ξ)f(x).



Some refinements on Fedorov’s algorithms 57

Thus,

d(x, ξn) = nf′(x)
(
X′

nXn

)−1f(x).

It can be seen that the variance of the best linear unbiased estimator of β ′f(x) in
(2.1) is now equal to (σ 2/n)d(x, ξn).

A design ξ∗ is D-optimal if and only if M(ξ∗) is non-singular and
det{M(ξ∗)} = maxξ det{M(ξ)}. ξ∗ is G-optimal if and only if maxx∈X d(x, ξ∗) =
minξ maxx∈X d(x, ξ). Kiefer and Wolfowitz (1959) proved the following general
equivalence theorem.

Theorem 2.1. The following three conditions are equivalent: (i) ξ∗ is D-optimal,
(ii) ξ∗ is G-optimal, (iii) maxx∈X d(x, ξ∗) = p.

The major use of this Theorem 2.1 is to provide a simple way for constructing D-
optimal designs. Simply, if condition (iii) is satisfied, then the design is D-optimal.

3 Fedorov’s original algorithms

In this section, we discuss Fedorov’s original sequential and exchange algorithms
for constructing D-optimal designs.

3.1 Fedorov’s original sequential algorithm

In order to improve the current design ξn, Fedorov (1972, Chapter 2) suggested
adding to the design sequentially that point of the design region X where the
variance function d(x, ξn) achieves its maximum. The steps of Fedorov’s original
sequential algorithm are:

1. Find an initial non-degenerate n0-point design ξn0 on X , and i = n0.
2. Compute M(ξi), M−1(ξi) and d(x, ξi).
3. Find xi+1 such that

d(xi+1, ξi) = max
x

d(x, ξi) = d̄(ξi).

If d̄(ξi) is sufficiently close to p, stop: the design ξi+1 is almost D-optimal,
where the design ξi+1 is defined as in step 5.

4. Otherwise, let

αi = d̄(ξi) − p

p(d̄(ξi) − 1)
.

5. Define a new design by ξi+1 = (1 − αi)ξi + αiξ(xi), where ξ(xi+1) is a design
consisting of one point xi+1.

6. Set i = i + 1 and return to step 2.
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It is worth mentioning that the value of αi in step 4 of the algorithm is the best
value that maximizes the determinant of the information matrix of the new design.
The selection of α in this way makes the determinant of the information matrix
keep increasing. Note that, the choice αi = 1/n corresponds to Wynn’s algorithm
(1970).

3.2 Fedorov’s original exchange algorithm

Fedorov (1972, Chapter 3) proposed an exchange algorithm for constructing D-
optimal designs. This algorithm starts with an arbitrary non-degenerate n-point
design ξ0

n . During the j th iteration (exchange) a point, say xi , is deleted from
the design and another point x ∈ χ is added in a way which leads to a maximal
increase of det(X′

nXn). Thus the number of design points remains constant.
As mentioned earlier, in both Fedorov’s algorithms only one point is added or

exchanged at each step. However, in many practical situations the maximum of
the variance function d(x, ξn) may be achieved at two different points. This case
typically happens when there is a symmetry in the variance function (or equiva-
lently a symmetry in the response function f). In this case, adding/exchanging two
points simultaneously may reduce the number of iterations (exchanges) needed to
construct D-optimal designs by a half.

4 Modified Fedorov’s sequential algorithm

In the section, we describe the modified Fedorov’s sequential algorithm. The proof
that this algorithm generates a D-optimal designs is given in Section 7. The steps
of the modified Fedorov’s sequential algorithm are:

1. Find an initial non-degenerate symmetric n0-point design ξn0 on X , and
i = n0.

2. Compute M(ξi), M−1(ξi) and d(x, ξi).
3. Find xi+1 and xi+2 such that

d(xi+1, ξi) = d(xi+2, ξi) = max
x

d(x, ξi) = d̄(ξi).

If d̄(ξi) is sufficiently close to p, stop: the design ξi+2 is almost D-optimal,
where the design ξi+2 is defined as in step 5. Note, by symmetry, xi+2 = −xi+1.

4. Otherwise, choose αi that maximizes det{M(ξi+2)}. This can be done either
numerically or by using an approximate value

αi = (
d̄(ξi) − p

)
/
(
2p

(
d̄(ξi) − 1

))
.

(The approximate value of αi is derived in Section 6 of the present paper.)
5. Define a new design by ξi+2 = (1 − 2αi)ξi + αiξ(xi+1) + αiξ(xi+2), where

ξ(xi+1) and ξ(xi+2) are one-point designs.
6. Set i = i + 2 and return to step 2.
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5 Modified Fedorov’s exchange algorithm

The basic idea of the modified Fedorov’s exchange algorithm for constructing D-
optimal symmetric designs is to select a pair of points, say ±xi , from the design ξ

j
n

and replace it with another pair of points, say ±x, from the design region χ which
leads to a maximal increase of det(X′

nXn). To formulate this into a mathematical

equation, let the matrix (X′
nXn)

j be the matrix that corresponds to the design ξ
j
n .

Then the new matrix (X′
nXn)

j+1 can be obtained by the equation:
(
X′

nXn

)j+1 = (
X′

nXn

)j − f (xi)f
′(xi) − f (−xi)f

′(−xi)
(5.1)

+ f (x)f ′(x) + f (−x)f ′(−x).

The pair of points ±x ∈ χ is selected so that the determinant of the matrix
(X′

nXn)
j+1 in (5.1) is maximal. This determinant can be viewed as a function

in x.
Now we describe the main steps for numerical implementation of the modified

Fedorov’s exchange algorithm. The required steps are:

1. Start with a randomly non-degenerate symmetric n-point design ξ0
n .

2. Set j = 0 and compute (X′
nXn)

j and det{(X′
nXn)

j } .
3. Compute maxx∈χ det{(X′

nXn)
j+1} for all pairs ±xi in the design, where

(X′
nXn)

j+1 is given by (5.1). Choose the pairs ±xi and ±x which achieve

max
xi∈ξ

j
n

max
x∈χ

det
{(

X′
nXn

)j+1}
,

and replace ±xi by ±x.
4. After each exchange, a new design ξ

j+1
n is obtained. We also recompute

(X′
nXn)

j+1 and det{(X′
nXn)

j+1}.
5. Set j = j + 1 and repeat steps 3–4 until the largest value of

� = det{(X′
nXn)

j+1} − det{(X′
nXn)

j }
det{(X′

nXn)j }
is sufficiently close to zero.

6 Preliminary lemmas

This section contains some fundamental lemmas that will be used to prove the
convergence of the modified algorithm to a D-optimal design.

Lemma 6.1. Let W be a non-singular p × p matrix and V be a p × q matrix.
Then for any real number λ

det
{
W + λVV′} = det{W}det

{
Iq + λV′W−1V

}
.
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The proof can be found in Fedorov (1972), page 100.

Corollary 1. If W is a p × p symmetric positive definite matrix and a, b are two
p × 1 column vectors, then for any real number λ

det
{
W + λaa′ + λbb′} = [

1 + λa′W−1a + λb′W−1b + λ2a′W−1ab′W−1b
(6.1)

− λ2(
a′W−1b

)2]
det{W}.

Proof. The proof follows by setting V = (a b) in Lemma 6.1. �

Lemma 6.2. Let M(ξn) be the information matrix of a non-degenerate design
ξn. Let M(ξ(xn+1)) and M(ξ(xn+2)) be the information matrices of the one-point
designs ξ(xn+1) and ξ(xn+2), respectively. Then

det
{
M(ξn+2)

}

= (1 − 2α)p
[
1 +

(
2α

1 − 2α

)
d̄(ξn) +

(
α

1 − 2α

)2
d̄2(ξn)

−
(

α

1 − 2α

)2(
f′(xn+1)M−1(ξn)f(xn+2)

)2
]

det
{
M(ξn)

}
,

where ξn+2 = (1 − 2α)ξn + αξ(xn+1) + αξ(xn+2) and d̄(ξn) = maxx d(x, ξn) =
d(xn+1, ξn) = d(xn+2, ξn).

Proof. From the definition of information matrix, we have

M(ξn+2) = (1 − 2α)M(ξn) + αM
(
ξ(xn+1)

) + αM
(
ξ(xn+2)

)

= (1 − 2α)

[
M(ξn) + α

1 − 2α
f(xn+1)f′(xn+1)

+ α

1 − 2α
f(xn+2)f′(xn+2)

]
.

Therefore,

det
{
M(ξn+2)

} = (1 − 2α)p det
{

M(ξn) + α

1 − 2α
f(xn+1)f′(xn+1)

+ α

1 − 2α
f(xn+2)f′(xn+2)

}
.

Setting W = M(ξn), a = f(xn+1), b = f(xn+2) and λ = α/(1 − 2α) in (6.1), we
obtain

det
{
M(ξn+2)

}
= (1 − 2α)p
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×
[
1 + α

1 − α
f′(xn+1)M−1(ξn)f(xn+1)

+ α

1 − 2α
f′(xn+2)M−1(ξn)f(xn+2)

+
(

α

1 − 2α

)2

f′(xn+1)M−1(ξn)f(xn+1)f′(xn+2)M−1(ξn)f(xn+2)

−
(

α

1 − 2α

)2(
f′(xn+1)M−1(ξn)f(xn+2)

)2
]

det
{
M(ξn)

}

= (1 − 2α)p
[
1 + 2α

1 − 2α
d̄(ξn) +

(
α

1 − 2α

)2

d̄2(ξn)

−
(

α

1 − 2α

)2(
f′(xn+1)M−1(ξn)f(xn+2)

)2
]

det
{
M(ξn)

}
. �

Corollary 2.

det
{
M(ξn+2)

} ≥ (1 − 2α)p
[
1 + 2α

1 − 2α
d̄(ξn)

]
det

{
M(ξn)

}
. (6.2)

In the next lemma we show that it is always possible to find an α for which
det{M(ξn+2)} > det{M(ξn)}, if the design ξn is not D-optimal.

Lemma 6.3. For a given design ξn which is not D-optimal, we have

det
{
M(ξn+2)

} ≥ max
α

[
(1 − 2α)p

(
1 + 2α

1 − 2α
d̄(ξn)

)
det

{
M(ξn)

}]

=
[
d̄(ξn)

p

]p

×
[

p − 1

d̄(ξn) − 1

]p−1

det
{
M(ξn)

}

> det
{
M(ξn)

}
,

where ξn+2 = (1 − 2α)ξn + αξ(xn+1) + αξ(xn+2) and d̄(ξn) = maxx d(x, ξn) =
d(xn+1, ξn) = d(xn+2, ξn).

Proof. Denote

F = (1 − 2α)p
(

1 + 2α

1 − 2α
d̄(ξn)

)
det

{
M(ξn)

}
,

then from Corollary 2 we have

det
{
M(ξn+2)

} ≥ max
α

[
(1 − 2α)p

(
1 + 2α

1 − 2α
d̄(ξn)

)
det

{
M(ξn)

}]

(6.3)
:= max

α
F.
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To find the α which maximizes F , note that
∂

∂α
logF = ∂

∂α
log

{
(1 − 2α)p

(
1 + 2α

1 − 2α
d̄(ξn)

)
det

{
M(ξn)

}}

= ∂

∂α

{
p log(1 − 2α) + log

(
1 + 2α

1 − 2α
d̄(ξn)

)
+ log det

{
M(ξn)

}}

= ∂

∂α

{
p log(1 − 2α) + log

(
1 − 2α + 2αd̄(ξn)

) − log(1 − 2α) (6.4)

+ log det
{
M(ξn)

}}

= 2d̄(ξn) − 2

1 − 2α + 2αd̄(ξn)
− 2p − 2

1 − 2α
.

Equating the right-hand side of (6.4) to 0, yields the solution for the α.

2d̄(ξn) − 2

1 − 2α + 2αd̄(ξn)
= 2p − 2

1 − 2α
⇒ αn = d̄(ξn) − p

2p[d̄(ξn) − 1] . (6.5)

Since by assumption the design ξn is not D-optimal, we have d̄(ξn) − p > 0. It
follows that αn > 0.

On the other hand,

∂2

∂α2 log(F )

∣∣∣∣
α=αn

= ∂

∂α

{
2(d̄(ξn) − 1)

1 − 2α + 2αd̄(ξn)
− 2(p − 1)

1 − 2α

}∣∣∣∣
α=αn

= − 4(d̄(ξn) − 1)2

(1 − α + αd̄(ξn))2
− 4(p − 1)

(1 − α)2

∣∣∣∣
α=αn

< 0.

Therefore, αn corresponds to the maximum of logF . Thus,

max
α

logF = max
α

log
{
(1 − 2α)p

(
1 + 2α

1 − 2α
d̄(ξn)

)
det

{
M(ξn)

}}

(6.6)
> log det

{
M(ξn)

}
.

Setting αn defined by (6.5) into (6.2) we obtain, after a simple calculation,

F |α=αn =
(

1 − 2 · d̄(ξn) − p

2[d̄(ξn) − 1]p
)p

×
{

1 + 2 · d̄(ξn) − p

2[d̄(ξn) − 1]p
/(

1 − 2 · d̄(ξn) − p

2[d̄(ξn) − 1]p
)
d̄(ξn)

}

(6.7)
× det

{
M(ξn)

}

=
[
d̄(ξn)

p

]p

×
[

p − 1

d̄(ξn) − 1

]p−1

det
{
M(ξn)

}
.

Combining (6.3), (6.6) and (6.7) finishes the proof of the lemma. �



Some refinements on Fedorov’s algorithms 63

7 Convergence of modified Fedorovs’s sequential algorithm

In this section, we show that the modified Fedorov’s sequential algorithm con-
verges to a D-optimal design.

Theorem 7.1. For the sequence of designs constructed by the modified Fedorov’s
algorithm, we have

lim
n→∞ det

{
M(ξn)

} = det
{
M

(
ξ∗)}

,

where ξ∗ is a D-optimal design.

Proof. Suppose the initial design ξn0 itself is not D-optimal. Then, by Lemma 6.3
and the definition of D-optimality,

det
{
M(ξn0)

}
< det

{
M(ξn0+2)

} ≤ · · · ≤ det
{
M(ξn)

} ≤ · · · ≤ det
{
M

(
ξ∗)}

.

As is well known, any bounded monotone nondecreasing sequence converges. It
follows that the sequence

det
{
M(ξn0)

}
,det

{
M(ξn0+2)

}
, . . . ,det

{
M(ξn)

}
, . . . (7.1)

converges to some limit L ≤ det{M(ξ∗)}. Therefore, it is sufficient to show that

det
{
M

(
ξ∗)} = L.

Let us assume that

L < det
{
M

(
ξ∗)}

. (7.2)

This means that the designs ξn0, ξn0+2, . . . , ξn, . . . all are not D-optimal, and

det
{
M(ξn0)

}
< det

{
M(ξn0+2)

}
< · · · < det

{
M(ξn)

}
< · · · < L.

In view of the convergence of the sequence (7.1), for any small positive number γ

there is an n∗ such that for any n > n∗ the following inequality holds:

0 < det
{
M(ξn+2)

} − det
{
M(ξn)

} ≤ γ. (7.3)

By Lemma 6.3,

det
{
M(ξn+2)

} − det
{
M(ξn)

}

≥
[
d̄(ξn)

p

]p

×
[

p − 1

d̄(ξn) − 1

]p−1

det
{
M(ξn)

} − det
{
M(ξn)

}
> 0

(7.4)

= det
{
M(ξn)

}[[
d̄(ξn)

p

]p

×
[

p − 1

d̄(ξn) − 1

]p−1

− 1
]

> 0.
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Thus by (7.3) and (7.4), we have

0 < det
{
M(ξn)

}[(
d̄(ξn)

p

)p

×
(

p − 1

d̄(ξn) − 1

)p−1

− 1
]

≤ γ,

or equivalently, setting δn = d̄(ξn) − p,

0 < det
{
M(ξn)

}[(
δn + p

p

)p(
p − 1

δn + (p − 1)

)p−1

− 1
]

≤ γ. (7.5)

Inequality (7.5) can be rewritten in the form

1 < �(δn) ≤ 1 + γ1,

where

�(δn) =
(

δn + p

p

)p(
p − 1

δn + (p − 1)

)p−1

and γ1 = γ /det
{
M(ξn)

}
.

Furthermore, for δn > 0

∂�(δn)

∂δn

= ∂

∂δn

{(
δn + p

p

)p(
p − 1

δn + (p − 1)

)p−1}

= (p − 1)p−1

pp

(δn + p)p−1δn

(δn + p − 1)p

> 0.

It follows that �(δn) is increasing continuous function. Therefore, �−1 exists and
is also continuous and increasing function (Bartel and Sherbert, 2000, page 152).
Thus, we have

1 < �(δn) ≤ 1 + γ1 ⇒ 0 = �−1(1) < δn ≤ �−1(1 + γ1). (7.6)

It follows that for any γ > 0, we can find γ1 such that for any ε > 0, we have

�−1(1 + γ1) ≤ ε. (7.7)

Thus by (7.6) and (7.7), we can always find n∗ which depends on ε such that for
n > n∗

d̄(ξn) − p = δn ≤ ε.

On the other hand, by the general equivalence theorem, d̄(ξn) − p = δn ≥ 0 with
equality if and only if ξn is D-optimal. By the assumption (7.2), there is a positive
number ζ such that for any n

d̄(ξn) − p = δn ≥ ζ > 0. (7.8)

Since ε is arbitrary, we can choose ε < ζ . Then if we have δn ≤ ε < ζ , we get a
contradiction with (7.8), which proves the theorem. �
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Remark 1. Since

max
x∈χ

det
{(

X′
nXn

)j+1} ≥ det
{(

X′
nXn

)j+1}∣∣
x=xi

= det
{(

X′
nXn

)j }
,

the exchange algorithms never results in a decrease of the determinant of the in-
formation matrix M(ξ

j
n ) = (X′

nXn)
j /n. Therefore,

det
{
M

(
ξ0
n

)} ≤ det
{
M

(
ξ1
n

)} ≤ · · · ≤ det
{
M

(
ξj
n

)} ≤ · · · . (7.9)

The sequence (7.9) is bounded above by det{M(ξ∗
n )}, where ξ∗

n is a D-optimal

design. Thus, the sequence {det{M(ξ
j
n )}} is monotonically convergent. Whether it

actually converges to a D-optimal design remains an open question, although made
plausible by numerical evidence. This will be discussed in the next section.

8 Empirical results

In this section, we explain and compare the modified Federov’s algorithms. We
consider the following rational regression model

E(Yx) = β1 + β2

1 − 0.2x
+ β3

1 + 0.2x
+ β4

1 − 0.4x
+ β5

1 + 0.4x
+ β6

1 − 0.6x

+ β7

1 + 0.6x
+ β8

1 − 0.8x
+ β9

1 + 0.8x
.

Here

f(x) =
(

1,
1

1 − 0.2x
,

1

1 + 0.2x
,

1

1 − 0.4x
,

1

1 + 0.4x
,

1

1 − 0.6x
,

1

1 + 0.6x
,

1

1 − 0.8x
,

1

1 + 0.8x

)′
.

This example was also considered by Al Labadi and Zhen (2010). All algorithms
are implemented in R, and the source code is available upon request from the au-
thor. We have considered 100 possible (candidate) points to be added/exchanged
from the design region [−1,1]. These candidate points are given by xi = −1 +
2i/99, i = 0, . . . ,99. We let the starting design for the two algorithms be the
Chebyshev 9-point design. That is, xi = cos((2i − 1)π/18), i = 1, . . . , p = 9 with
equal weight 1/9. Thus, the initial design is given by

ξ9 =
⎧⎨
⎩

−0.9848, −0.8660, −0.6428, −0.3420, 0,
1

9
,

1

9
,

1

9
,

1

9
,

1

9
,

0.3420, 0.6428, 0.8660, 0.9848
1

9
,

1

9
,

1

9
,

1

9

⎫⎬
⎭ .
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In what follows, to simplify the notations, the weights of the design points are
omitted.

We consider first the modified Fedorov’s algorithm. We compute M(ξ9) and
M−1(ξ9). Then the maximum value of the variance function d(x, ξ9) is 36.0783
and it occurs at x = ±1.0000. Since d̄(ξ9) �= 9, by the general equivalence theo-
rem, this design is not D-optimal. Then the two points x = ±1.0000 are added to
the designs to get the new design ξ11. We recalculate M(ξ11) as follows. First we
find the best α that maximizes

det
{
M(ξ11)

} = (1 − 2α)9 det
{

M(ξ9) + α

1 − 2α
f(−1)f′(−1) + α

1 − 2α
f(1)f′(1)

}
.

The best α is 0.0850. Next we find M(ξ11), where

M(ξ11) = (1 − 2 × 0.085)M(ξ9) + 0.0850f(−1)f′(−1) + 0.085f(1)f′(1).

The maximum variance is now 18.2583. Thus, the variance at the points x =
±1.0000 has been appreciably reduced by the addition of these two extra points.
As d̄(ξ11) �= 9, by the general equivalence theorem, this design is still not D-
optimal. The two maxima of the curve d(x, ξ11) are now x = ±0.9394. When
these two points are added to the design ξ11, we obtain ξ13. We recalculate M(ξ13)

as above. The maximum variance of the new design ξ13 is now 13.5945 and it oc-
curs at x = ±0.7576. Clearly, this design is still not D-optimal. The process can
be continued. Table 1 shows the construction of the design for 24 iterations.

Now we consider the modified exchange algorithm. To find the pair that will
be exchanged, we compute maxxi∈ξ1

9
maxx∈χ det{(X′

9X9)
2} which is achieved

at ±0.9848. Then we find new pair of the candidates points which makes
det{(X′

9X9)
2} as large as possible. The maximum value is found at x = ±1.0000.

Thus, the pair ±0.9848 is exchanged by ±1.0000. The obtained design is

ξ1
9 = {±1.0000,±0.8660,±0.6428,±0.3420,0}.

Then we recompute (X′
9X9)

2 and det{(X′
9X9)

2} before exchanging the next pair
of points. The largest value of � for this iteration is 2.5256. The variance function
for the design ξ2

9 is reduced to 30.4722. Since maxxi∈ξ2
9

maxx∈χ det{(X′
9X9)

3} is
achieved at ±0.8660, this pair of points is exchanged by ±0.9192. The new design
is

ξ2
9 = {±1.0000,±0.9192,±0.6428,±0.3420,0}.

Again, we recompute (X′
9X9)

3 and det{(X′
9X9)

3}. The largest value of � at this
step is 1.16709. Since maxxi∈ξ3

9
maxx∈χ det{(X′

9X9)
4} is achieved at ±0.6428, this

pair of points is exchanged by ±0.7374. The new design is given by

ξ3
9 = {±1.0000,±0.9192,±0.7374,±0.3420,0}.
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Table 1 The modified Fedorov’s sequential algorithm for constructing D-optimal design rational
regression

Iteration n xn+1 xn+2 α d̄(ξn) det{M(ξn)}
0 9 −1.0000 1.0000 – 36.0783 5.9891 × 10−33

1 11 −0.9394 0.9393 0.0850 18.2583 2.3229 × 10−32

2 13 −0.7576 0.7576 0.0600 13.5945 3.6608 × 10−32

3 15 −0.4343 0.4343 0.0450 12.1599 4.3719 × 10−32

4 17 −0.0101 0.0101 0.0350 12.2229 4.8297 × 10−32

5 19 −1.0000 1.0000 0.0150 11.8755 5.0601 × 10−32

6 21 −0.9394 0.9394 0.0300 11.4372 5.5132 × 10−32

7 23 −0.7576 0.7576 0.0300 10.9836 5.8845 × 10−32

8 25 −0.4343 0.4343 0.0250 10.8837 6.1615 × 10−32

9 27 −0.0101 0.0101 0.0250 11.367 6.4253 × 10−32

10 29 −1.0000 1.0000 0.0150 11.0394 6.6025 × 10−32

11 31 −0.9394 0.9394 0.0250 10.6065 6.9292 × 10−32

12 33 −0.7576 0.7576 0.0200 10.6056 7.1533 × 10−32

13 35 −0.4343 0.4343 0.0200 10.4409 7.3845 × 10−32

14 37 −0.0101 0.0101 0.0200 10.287 7.5803 × 10−32

15 39 −1.0000 1.0000 0.0100 10.3500 7.6471 × 10−32

16 41 −0.9394 0.9394 0.0200 10.3887 7.8258 × 10−32

17 43 −0.7576 0.7576 0.0200 10.4031 8.0193 × 10−32

18 45 −0.4343 0.4343 0.0200 10.2798 8.2216 × 10−32

19 47 −0.0101 0.0101 0.0150 10.0935 8.3953 × 10−32

20 49 −1.0000 1.0000 0.0050 10.0026 8.4513 × 10−32

21 51 −0.9394 0.9394 0.0150 9.9243 8.5661 × 10−32

22 53 −0.7575 0.7575 0.0150 9.8433 8.6645 × 10−32

23 55 −0.0101 0.0101 0.0100 10.0296 8.7479 × 10−32

We recalculate (X′
9X9)

4 and det{(X′
9X9)

4}. The largest value of � is now 0.93290.
The value 0.93290 of � is still not close enough to zero, thus we continue the
algorithm. The complete steps are summarized in Table 2.

Considering the modified Wynn algorithm (Al Labadi and Zhen, 2010, Table 1),
it follows that the modified Fedorov’s exchange algorithm is the fastest algorithm
among the three modified algorithms, provided the same initial design. On the
other hand, the modified Fedorov algorithm performs better than the modified
Wynn algorithm in the first few iterations of applying the algorithm (the first 9
iterations in this example). When n gets large, then both algorithms behave simi-
larly.

9 Concluding remarks

In this paper, we have described some refinements of Fedorov’s sequential algo-
rithm and Fedorov’s exchange algorithm for constructing D-optimal designs. By
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Table 2 The modified Fedorov’s exchange algorithm for constructing D-optimal design for rational
regression

Iteration j ±xi ±x d̄(ξ
j
9 ) maxx∈χ det{(X′

9X9)j } �

1 – – 36.0783 2.3203 × 10−24 –
2 ±0.9848 ±1.0000 30.4722 8.1805 × 10−24 2.5256
3 ±0.8660 ±0.9192 20.642 1.7728 × 10−23 1.1671
4 ±0.6428 ±0.7374 13.0356 3.3457 × 10−23 0.9324
5 ±0.3420 ±0.4343 9.6633 4.7000 × 10−23 0.3720
6 ±0.9192 ±0.9394 9.5787 4.8998 × 10−23 0.0425
7 ±0.7374 ±0.7576 9.0198 5.1110 × 10−23 0.0431
8 – – 9.0198 5.111 × 10−23 0.0000

the modified algorithms, we are able to perform multiple additions or exchanges
simultaneously at each step. This will significantly reduce the computational time.
Similar extensions to other existing algorithms, such as the k-exchange algorithm
(Johnson and Nachtsheim, 1983), the kl-exchange algorithm (Atkinson and Donev,
1989), and the coordinate-exchange algorithm (Meyer and Nachtsheim, 1995),
could be developed.
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