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Abstract. Identifying genes differentially expressed between a treatment and
a control experimental condition is a common task for gene expression data
analysts. Standard existing methods are the two-sample t-test, the regularized
t-test (Cyber-T) and the Bayesian t-test. In this paper, we propose a Bayesian
approach to identify genes differentially expressed based on the posterior
probability of the difference calculated via the Bayes factor. In order to cal-
culate the Bayes factor, we use the predictive density that is constructed by
using the previously observed gene expression levels. We perform a simula-
tion study with small sample sizes, which is usual in gene expression data
analysis, to verify the performance of the proposed method and compare it
with the standard ones. The results revel a better performance of the pro-
posed methodology in identification of difference of means and/or variance.
The methodology is also illustrated on the Escherichia coli bacterium dataset.

1 Introduction

In the last decade, DNA array technology has become an important tool for ge-
nomic research due its capacity to measuring simultaneously the expression levels
of a great number of genes (or fragments of genes) under different experimental
conditions. A major goal for the gene expression data analysis is to identify genes
differentially expressed between a treatment and a control experimental condition.
The identification of these genes is important because it may allow biologists and
geneticists to study possible relationships among genes, among genes and pro-
teins, which genes may be involved in the origin and/or evolution of same disease
with genetic origin, or which genes react to a drug stimulus, and so on. For further
discussion and additional references on DNA array technology, see Schena et al.
(1995), DeRisi, Iyer and Brown (1997), Arfin et al. (2000), Lonnstedt and Speed
(2001), Wu (2001), Hatfield, Hung and Baldi (2003).

According to Baldi and Long (2001) gene expression data can be analyzed on at
least three levels of increasing complexity. In the first level, each gene is analyzed
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separately, where the objective is verify whether the observed expression in treat-
ment experimental condition is significantly different from observed expression in
control experimental condition. In the second level, clusters of genes are identified
and analyzed in terms of patterns, common functionalities and interactions. In the
third level, the objective is to infer and understand the relationship among genes
and proteins.

In this paper, we focus on the first level of analysis. Under this level of analy-
sis, one of the first approaches proposed to identify genes differentially expressed
was the fold-change approach (Schena et al., 1995; Allison et al., 1995). In this
approach, a gene is considered differentially expressed if the average of the loga-
rithm of the observed expression levels in treatment and control varies more than a
cutoff point, Rc, which is previously prefixed. This approach however is not ade-
quate to yield good results, once a cutoff value Rc may have different significance
for different observed expression levels. Besides, this approach does not consider
the variability of observed expression levels for each gene in each experimental
condition.

Other method commonly used for gene expression data analysis is the so
called two-sample t-test (TT) for the log transformed data (Baldi and Long, 2001;
Hatfield, Hung and Baldi, 2003). The advantage of the t-test in relation to fold-
change approach is that t-test consider the variability of measures from each exper-
imental condition in the process of identification of genes differentially expressed.
However, the problem with the application of t-test to this kind of data is the usual
small size of treatment and control samples, which may lead to underestimated
variances and small power of the test. To avoid such limitations some TT mod-
ifications were proposed, such as the Cyber-t (CT) proposed by Baldi and Long
(2001) and the Bayesian t-test (BTT) proposed by Fox and Dimmic (2006). Basi-
cally, the main idea is to consider modifications of the standard error estimate of
the two sample difference present in the denominator of the standard t statistics.
But, one can argue that an increasing in variance would difficult the detection the
changes in mean by the TT, CT and BTT because we may have a small statistic
value tg . In the other hand, if we have small variances we may have high statistics
values tg and the gene may be wrongly identified as differentially expressed.

In this paper, we propose a Bayesian approach to identify genes differentially
expressed based on the posterior probability of the difference which is calculated
using the Bayes factor. The advantage of using the Bayes factor is that it allows to
compare the observed expression levels from the treatment and the control as well
as the treatment and control distributions. In this way, a change in mean and/or
variance would help to detect the distribution changes and identify the cases dif-
ferentially expressed. In order to verify whether the observed data from a treatment
experimental condition is supported by a model fitted by an observed data from a
control experimental condition, we propose to calculate the Bayes factor via pre-
dictive density that is constructed using the previously observed gene expression
levels.
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A simulation study is performed to verify the performance of the proposed
method and compare it with the TT, CT and BTT. The simulation study revels
a better performance of the proposed method in identification of difference of
means and/or variance in small sized samples, usually present in gene expression
data analysis. Then, the main advantage of the proposed method is that it is easy
to use like fold-change and two-sample t-test but presents better performance in
situations with small sample size. We also apply the methods to a real data set,
extracted from the experiment carried through with Escherichia coli bacterium,
described in details by Arfin et al. (2000).

The paper is organized as follows. In Section 2, we model gene expression data
and review the methods TT, CT and BTT. In Section 3, we develop our Bayesian
approach calculating the posterior probability of difference via Bayes factor and
predictive density. The performance of methods is verified and compared using
artificial datasets and a real dataset in Section 4. In Section 5, we conclude the
paper with final remarks on the proposed method.

2 Models for gene expression data analysis

Consider a DNA array experiment with n genes and two experimental conditions
which we name by control (c) and treatment (t). Suppose that control and treat-
ment are replicated nc and nt times, respectively. Denote by xigh

the ith observed
expression level (or its logarithm) for gene g in experimental condition h, h ∈ {c, t}
and g = 1, . . . , n. Let xgh

= {x1gh
, . . . , xnhgh

} be realizations of independent ran-
dom variables Xgh

= {X1gh
, . . . ,Xnhgh

}, for g = 1, . . . , n and h ∈ {c, t}.
Assume that data have already been preprocessed with appropriate normaliza-

tion. As it is usual in gene expression data analysis, consider the logarithm of
the observed gene expression levels in control and treatment are generated from

normal distributions with mean μgh
and variance σ 2

gh
, Xigh

i.i.d.∼ N (μgh
, σ 2

gh
), for

i = 1, . . . , nh, h ∈ {c, t} and g = 1, . . . , n (Baldi and Long, 2001; Fox and Dim-
mic, 2006; Hatfield, Hung and Baldi, 2003; Medvedovic and Sivaganesan, 2002).
Denote parameters by θgh

= (μgh
, σ 2

gh
), for g = 1, . . . , n and h ∈ {c, t}.

The interest here is to verify whether gene g presents different gene expression
levels between treatment and control experimental conditions, that is, if θgt = θgc

or θgt �= θgc , for g = 1, . . . , n. More explicitly, the null hypothesis of interest is
H0 :μgc = μgt and σ 2

gc = σ 2
gt , with an overall size α. However, usually in the stan-

dard hypothesis tests, such the t-test describe below, we are testing H0 :μ1 = μ2
with equal or unequal variances. Here we are also testing the equality of variances.

2.1 t-test

Under normality assumption for the logarithm of observed gene expression levels
an usual statistic test used to identify genes differentially expressed is the two-
sample t-test (Arfin et al., 2000; Baldi and Long, 2001; Hatfield, Hung and Baldi,
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2003). The hypothesis test is based on the statistics,

tg = x̄gt − x̄gc√
s2
gt

/nt + s2
gc

/nc

, (2.1)

which follows a Student’s t distribution with df = [s2
gc

/nc + s2
gt

/nt ]2/

[(s2
gc

/nc)
2/(nc − 1) + (s2

gt
/nt )

2/(nt − 1)], degrees of freedom, where xgh
and s2

gh

are the sample mean and variance for gene g in experimental condition h = {c, t}.
Fixed a significance level α, if |tg| is greater than a threshold t1−α/2,df (quantile
1− α

2 of Student’s t distribution with df degrees of freedom) then the test conclude
for difference of expression levels.

A fundamental problem with the application of the t-test for gene expression
data analysis are the sample sizes nc and nt from control and treatment that are
often small, due to the realization of the experiment to be mostly expensive or
tedious to be repeated (Baldi and Long, 2001). These small sample sizes may lead
to underestimates of the variances and a small power of the hypothesis test.

2.2 Regularized t-test

Baldi and Long (2001) proposed a two-sample t-test replacing the denominator of
(2.1) by a pooled variance estimated via a Bayesian approach.

In order to develop the Bayesian approach Baldi and Long (2001) consider
for parameters of the experimental condition h ∈ {c, t}, (μgh

, σ 2
gh

), the conjugated
prior distributions

μgh
|σ 2

gh
,μ0, λ0 ∼ N

(
μ0,

σ 2
gh

λ0

)
and σ 2

gh
|ν0, σ

2
0 ∼ I G

(
ν0, σ

2
0
)
,

where I G(·) denotes the inverse gamma distribution with mean and variance given,
respectively, by σ 2

0 /(ν0 − 1) and σ 4
0 /(ν0 − 1)2(ν0 − 2); μ0, λ0, ν0 and σ 2

0 are
hyperparameters.

Using the Bayes theorem Baldi and Long (2001) obtain the posterior distribu-
tions

μgh
|xgh

, σ 2
gh

,μnh
∼ N

(
μnh

,
σ 2

gh

λ0 + ngh

)
and σ 2

gh
|xgh

, νnh
, σ 2

nh
∼ I G

(
νnh

, σ 2
nh

)
,

where μnh
= ngh

xgh

λ0+ngh
+ λ0μ0

λ0+ngh
, νnh

= ν0 +ngh
and νnh

σ 2
nh

= ν0σ
2
0 + (ngh

−1)s2
gh

+
λ0ngh

λ0+ngh
(xgh

− μ0)
2 for h ∈ {c, t} and g = 1, . . . , n.

Then, we may calculate the posterior mean estimate for the variance as σ̃ 2
gh

=
νnh

νnh
−2σ 2

nh
, h = {c, t}, and implement the Cyber-T software (CT), where the statistic

tg in (2.1) is replaced by the statistics

tg = x̄gt − x̄gc√
σ̃ 2

gt
/ngt + σ̃ 2

gc
/ngc

(2.2)
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and the degrees of freedom is given by df = ν0 + ngc + ngt − 2.

2.3 Bayesian t-test

Fox and Dimmic (2006) assume Xigc

i.i.d.∼ N (μgc, σ
2
g ) and Xigt

i.i.d.∼ N (μgc +
�μgc, σ

2
g ), for i = 1, . . . , nh, h ∈ {c, t} and g = 1, . . . , n.

Based on Baldi and Long (2001), the authors develop a Bayesian approach and
show that

�μ − �x

σn

√
1/ngt + 1/ngc

∣∣∣xgc ,xgt ∼ tνn, (2.3)

where �x = xgt − xgc , νn = ν0 + ngc + ngt − 2, νnσ
2
n = ν0σ

2
0 + (ngc − 1)s2

gc
+

(ngt − 1)s2
gt

and tνn represent the Student’s t distribution with νn degrees of free-
dom, for g = 1, . . . , n. As written in Fox and Dimmic (2006), “a hypothesis test
is performed by asserting a null hypothesis that the true difference in expression
levels is zero, that is, �μ = 0.” Thus, this procedure defines the Bayesian t-test
(BTT).

3 Predictive Bayes factor approach

Our predictive Bayes factor approach is given as follows. In order to represent
situations with and without difference between treatment and control for a gene g,
consider models M0 and M1, such that,

1. Under M0 there is no difference between treatment and control, that is,
θgt = θgc . For this situation, consider that (μgt , σ

2
gt

) = (μgc, σ
2
gc

) = (μg,

σ 2
g ) = θg . The likelihood function is

LM0(θg|xg) ∝ (
σ 2

g

)−ng/2 exp

{
− 1

2σ 2
g

ng∑
i=1

(xig − μg)
2

}
, (3.1)

where xg = {xgc ,xgt }, ng = ngc + ngt , xig = xigc for i = 1, . . . , nc, xig = xigt

for i > nc, i = 1, . . . , ng and g = 1, . . . , n;
2. Under M1 there is difference, that is, θgt �= θgc . For this model, the likelihood

function is

LM1(θgc , θgt |xgc ,xgt )

= Lc
M1

· Lt
M1

(3.2)

∝ ∏
h∈{c,t}

(
σ 2

gh

)−ngh
/2 exp

{
− 1

2σ 2
gh

ngh∑
i=1

(xigh
− μgh

)2

}

for g = 1, . . . , n.
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Now we can identify genes differentially expressed by choosing between mod-
els M0 and M1 which is the most supported by the data, which can be made by
considering the Bayes factor (Kass and Raftery, 1995; Aitkin, 1991; Beger and
Pericchi, 1996; Lavine and Schervish, 1999).

Available expert opinions may be expressed in terms of a prior distributions for
parameters, since the parameters of the models M0 and M1 have a direct interpre-
tation in the context of the gene expression data analysis. In order to explore the
fully conjugation, consider that joint prior distribution for parameters of model M0
is given by

π(θg) = π
(
μg,σ

2
g

) = π
(
μg|σ 2

g

)
π

(
σ 2

g

)
(3.3)

and the joint prior distribution for parameters of model M1 is given by

π(θgc , θgt ) = π(θgc)π(θgt )

= π
(
μgc, σ

2
gc

)
π

(
μgt , σ

2
gt

)
(3.4)

= π
(
μgc |σ 2

gc

)
π

(
σ 2

gc

)
π

(
μgt |σ 2

gt

)
π

(
σ 2

gt

)
in which π(μd |σ 2

d ) and π(σ 2
d ), for d = g under M0 and d = {gc, gt } under M1,

represent the density of the distributions

μd |σ 2
d ,μ0 ∼ N

(
μ0,

σ 2
d

λ

)
and σ 2

d |τ,β ∼ I G
(

τ

2
,
β

2

)
,

where μ0, λ, τ and β are known hyperparameters.
Updating the prior distributions in (3.3) and (3.4) via likelihood function in (3.1)

and (3.2), respectively, the joint posterior distribution is given by

μd,σ 2
d |xgc ,xgt ∼ N

(
μ∗

d,
σ 2

λ + nd

)
I G

(
τ + nd + 1

2
,
β∗

2

)
, (3.5)

where μ∗
d = 1

n+λ

∑nd

i=1 xid + λ
n+λ

μ0 and β∗
d = β + ∑nd

i=1 x2
id + λμ0 −

(
∑nd

i=1 xid−λμ0)
2

λ+n
, for d = g under M0 and d = {gc, gt} under M1, g = 1, . . . , n.

Fixing the prior probabilities for models π(M0) = π(M1) = 1
2 , the Bayes factor

for gene g, B10(g) = I1
I0

, can be analytically calculated, where

I1 =
∫ ∫

LM1(θgc , θgt |xgc ,xgc)π(θgcθgt ) dθgc dθgt

(3.6)

=
[∫

Lc
M1

(θgc |xgc)π(θgc) dθgc

]
·
[∫

Lt
M1

(θgc |xgc)π(θgt ) dθgt

]
and

I0 =
∫

LM0(θg|xg)π(θg) dθg (3.7)

for g = 1, . . . , n.
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3.1 Bayes factor via predictive distribution

In order to calculate the Bayes factor considering the observations from treatment
group as future observations in relation to model fitted by observed data from a
control experimental condition, we rewritten the integrals above in the follow way.
Note that (3.6) can be rewritten as

I1 = I c
1 · I t

1 (3.8)

in which

I c
1 =

[ngc∏
i=1

∫
f (xigc |θgc)π(θgc |x1gc , . . . , xi−1gc) dθgc

]

and

I t
1 =

[ngt∏
i=1

∫
f (xigt |θgt )π(θgt |x1gt , . . . , xi−1gt ) dθgt

]
,

where π(θgh
|x1gh

, . . . , xi−1gh
) is the posterior distribution for θgh

, h = {c, t}, given
the i − 1 first observed data from experimental condition h, h ∈ {c, t}.

Analogously to (3.8), we can rewrite (3.7) as

I0 = I c
0 · I t

0, (3.9)

where I c
0 = I c

1 and

I t
0 =

[ngt∏
i=1

∫
f (xigt |θgt )π

(
θgt |xgc ∪ {x1gt , . . . , xi−1gt }

)
dθgt

]
.

Considering (3.6), (3.7) and the results above, the Bayes factor B10(g) is given
by

B10(g) = I1

I0
= I c

1 · I t
1

I c
0 · I t

0
= I t

1

I t
0

(3.10)

=
∏ngt

i=1

∫
f (xigt |θgt )π(θgt |x1gt , . . . , xi−1gt ) dθgt∏ngt

i=1

∫
f (xigt |θgt )π(θgt |xgc ∪ {x1gt , . . . , xi−1gt }) dθgt

.

From (3.10), the integral of the numerator can be rewritten as∫
f (xigt |θgt )π(θgt |x1gt , . . . , xi−1gt ) dθgt =

∫
L(θgt |x1gt , . . . , xigt )π(θgt ) dθgt∫

L(θgt |x1gt , . . . , xi−1gt )π(θgt ) dθgt

= I t
1(xi )

I t
1(xi−1)
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in which, xa = (x1gt , . . . , xagt ) for a = {i, i − 1} and

I t
1(xa) =

[
1

βπ

]nxa /2[
λ

λ + nxa

]1/2 �((τ + nxa )/2)

�(τ/2)
(3.11)

×
[
1 +

∑
x x + λμ2

0

β
− (

∑
x x + λμ0)

2

β(λ + nxa )

]−(τ+nxa )/2

,

where nxa is the number of observations in xa . Note that
I t

1(xi )

I t
1(xi−1)

is the Bayes factor

of the model fitted using the observations xi−1 = (x1gt , . . . , xi−1gt ) augmented
with xigt , xi = (x1gt , . . . , xigt ), in relation to model fitted only using xi−1.

In a similar way, the integral of the denominator in (3.10) is given by∫
f (xigt |θgt )π

(
θgt |xgc ∪ {x1gt , . . . , xi−1gt }

)
dθgt = I t

1(xgc ∪ xi )

I t
1(xgc ∪ xi−1)

,

where I t
1(xa) is given in (3.11) for xa = {xgc ∪ xi ,xgc ∪ xi−1}.

The B10(g) in (3.10) is calculated using

B10(g) =
ngt∏
i=1

I t
1(xi )

I t
1(xi−1)

· I t
1(xgc ∪ xi−1)

I t
1(xgc ∪ xi )

. (3.12)

3.2 Posterior probabilities for the models

Using the Bayes theorem, the posterior probabilities for the models are given by

P(M0|yg) = 1

1 + B10
and P(M1|yg) = B10

1 + B10
. (3.13)

Thus, if P(M1|yg) > Pref, where Pref ∈ [0.5,1) is a cutoff value, we choose
M1 and the gene g presents evidence for difference between treatment and con-
trol. Otherwise, we choose M0 and the gene g have no evidence for difference,
g = 1, . . . , n. Adapting the decision rule discussed in Kass and Raftery (1995) to
choose between models using P(M1|yg), we consider as cutoff value Pref = 0.5,
which indicates positive evidence against M0. We denote the Bayes factor B10 cal-
culated by (3.12) as the predictive Bayes factor (PBF). One advantage of calculate
B10 as (3.12) is that we can verify the influence of each observation from treatment
group in decision on differentially (P(M1|·) > 0.5) or nondifferentially expressed
(P(M1|·) ≤ 0.5), as will be illustrated in Section 4.2.

4 Data analysis

In this section, the proposed PBF is applied to artificial data sets and a real data
set. The artificial data sets were generated as a mix of both differentially and non-
differentially expressed genes where the fraction of differentially expressed genes
is small.
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In order to evaluate the performance of the PBF and to compare with TT, CT
and BTT, we consider (i) the true positive rate (number of genes correctly found
differentially expressed in the analysis divided by the number of genes that are dif-
ferentially expressed in the underlying problem), (ii) the false positive rate (number
of genes incorrectly found differentially expressed in the analysis divided by the
number of genes that are nondifferentially expressed in the underlying problem)
and (iii) the true discovery rate (number of genes correctly found differentially
expressed divided by the number of genes found differentially expressed).

The real data set was extracted from the site www.jbc.org and refers to an exper-
iment realized with Escherichia coli bacterium using nylon membranes, described
in details by Arfin et al. (2000).

4.1 Artficial data sets

To generate the artificial data set, we fix μgc = −14 and σ 2
gc

= 0.8. These values
denote the average of the observed mean and variance of the expression levels (log
transformed) from control group of the Escherichia coli bacterium dataset. We fix
n = 1000 and the sample sizes ngc and ngt were fixed at 4 and 8.

To verify how the method behaves when θgt = (μgt , σ
2
gt

) moves away from
θgc = (μgc, σ

2
gc

), we simulate its values using μgt = μgc ± δσgc and σgt = γ σgc ,
for δ = {0.0,0.25,0.50,0.75,1, 1.25,1.50,1.75,2} and γ = {1,2,3,4}, where the
signal + and − in expression μgt represent the situation over and under expressed,
respectively.

The generation of the simulated data sets follow the steps:

(i) For g = 1, . . . , n generate xgc from N (μgc, σ
2
gc

), that is, x1gc , . . . , xncgc ∼
N (μgc, σ

2
gc

);
(ii) From index {1, . . . , n} choose randomly p% of these index to indicate the

cases generated with difference, p ∈ {5,10}. We use p = pover + punder, for
pover = {3,5} and punder = {2,5}, respectively. For example, p = 5 is com-
posite by pover = 3 plus punder = 2;

(iii) If the index g ∈ {1, . . . , n} is chosen, then consider an indicator variable
Ig = 1 and generate Xigt ∼ N (μgt , σ

2
gt

), for i = 1, . . . , nt ;
(iv) If the index g ∈ {1, . . . , n} is not chosen, then set up Ig = 0 and generate

Xigt ∼ N (μc, σ
2
c ), for i = 1, . . . , nt .

For PBF application the hyperparameters were fixed in order to obtain weakly
informative priors (see Appendix A). We then set up: (i) τ and β in a way that
E[σ 2

d ] = (β/2)/[(τ/2) − 1] = R, where R = max(xg) − min(xg) is the length of
the interval of variation of the observed data xg = {xgc ∪ xgt }, d ∈ {g,gc, gt } and
g = 1, . . . , n. Thus, we obtain β = (τ − 2)R; and we fix τ = 3; (ii) μ0 as being
the middle point of the interval of variation of xg , μ0 = [min(xg) + max(xg)]/2;
(iii) λ at 10−2, λ = 10−2.

http://www.jbc.org
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To record the cases identified with difference by PBF we consider a indicator
variable I

PBF
g = 1 for cases, so that, P(M1|yg) > 0.5. Otherwise, I

PBF
g = 0. Anal-

ogously, for TT, CT and BTT we consider I
method
g = 1 (method = {TT,CT,BTT})

for cases with p-valueg < 0.05 and I
method
g = 0 otherwise. So, we calculate the true

positive rate given by

TPRmethod =
∑n

g=1 Ig · I
method
g∑n

g=1 Ig

,

where method = {PA,TT,CT,BTT}.
For a pair (δ, γ ) and values p, n and ngc = ngt fixed, we generate L = 100

different artificial data sets according to steps (i) to (iv) described above and
we present the results using the mean of the true positive rate, that is given by

TPRmethod =
∑L

l=1 TPR(l)
method

L
, where TPR(l)

method is the true positive rate calculated
for lth generated dataset by method = {PA,TT,CT,BTT}.

Tables 1–4 present TPRmethod for p = {5,10} and ngc = ngt = 4 and ngc =
ngt = 8, respectively, for method = {PBF,TT,CT,BTT}. As we move from left
to right side of the tables, in each line we have the distances between control and
treatment means, which are increasing. As we move from top to down in columns
of the tables, we have the distance between the treatment and control variances,
which are increasing.

Table 1 True positive rate, ngc = ngt = 4 and p = 5% (pover = 3%, punder = 2%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.019 0.023 0.044 0.074 0.134 0.231 0.330 0.444 0.581
TT 0.040 0.049 0.073 0.115 0.185 0.294 0.394 0.492 0.612
CT 0.029 0.035 0.055 0.088 0.148 0.235 0.329 0.426 0.543

BTT 0.040 0.048 0.075 0.116 0.186 0.290 0.394 0.492 0.611

2 PBF 0.061 0.061 0.082 0.113 0.159 0.195 0.260 0.346 0.412
TT 0.050 0.049 0.063 0.086 0.113 0.142 0.183 0.245 0.286
CT 0.037 0.039 0.052 0.070 0.095 0.122 0.156 0.219 0.257

BTT 0.051 0.054 0.067 0.090 0.117 0.152 0.198 0.265 0.310

3 PBF 0.145 0.153 0.155 0.183 0.207 0.258 0.289 0.338 0.390
TT 0.052 0.056 0.065 0.069 0.082 0.105 0.120 0.140 0.173
CT 0.043 0.050 0.060 0.060 0.073 0.099 0.111 0.130 0.162

BTT 0.061 0.062 0.074 0.075 0.092 0.124 0.139 0.158 0.198

4 PBF 0.271 0.280 0.288 0.320 0.320 0.349 0.376 0.415 0.429
TT 0.054 0.059 0.056 0.067 0.068 0.083 0.090 0.109 0.118
CT 0.052 0.055 0.053 0.064 0.066 0.082 0.093 0.106 0.117

BTT 0.066 0.070 0.069 0.081 0.084 0.100 0.110 0.130 0.144
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Table 2 True positive rate, ngc = ngt = 4 and p = 10% (pover = 5%, punder = 5%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.016 0.026 0.041 0.083 0.138 0.229 0.334 0.453 0.578
TT 0.040 0.050 0.073 0.122 0.188 0.285 0.385 0.491 0.603
CT 0.030 0.037 0.056 0.099 0.152 0.232 0.324 0.429 0.533

BTT 0.039 0.049 0.073 0.123 0.191 0.288 0.388 0.499 0.612

2 PBF 0.058 0.066 0.076 0.112 0.148 0.200 0.263 0.337 0.415
TT 0.049 0.053 0.059 0.081 0.103 0.144 0.186 0.235 0.286
CT 0.037 0.041 0.046 0.067 0.086 0.121 0.161 0.207 0.256

BTT 0.051 0.055 0.062 0.086 0.111 0.152 0.198 0.250 0.308

3 PBF 0.143 0.138 0.159 0.185 0.204 0.240 0.293 0.337 0.395
TT 0.055 0.053 0.062 0.075 0.082 0.099 0.122 0.140 0.173
CT 0.047 0.047 0.055 0.067 0.074 0.090 0.113 0.133 0.163

BTT 0.062 0.062 0.070 0.084 0.095 0.112 0.142 0.162 0.199

4 PBF 0.262 0.281 0.285 0.293 0.323 0.340 0.382 0.417 0.454
TT 0.051 0.061 0.059 0.062 0.073 0.082 0.092 0.106 0.125
CT 0.047 0.057 0.056 0.058 0.070 0.079 0.092 0.103 0.127

BTT 0.063 0.073 0.073 0.073 0.088 0.097 0.112 0.129 0.154

Table 3 True positive rate, ngc = ngt = 8 and p = 5% (pover = 3%, punder = 2%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.013 0.024 0.047 0.116 0.241 0.415 0.584 0.744 0.873
TT 0.048 0.075 0.145 0.282 0.466 0.637 0.778 0.892 0.959
CT 0.039 0.061 0.122 0.243 0.415 0.588 0.743 0.868 0.947

BTT 0.048 0.074 0.144 0.282 0.467 0.636 0.777 0.891 0.959

2 PBF 0.094 0.112 0.142 0.190 0.282 0.381 0.480 0.576 0.687
TT 0.047 0.058 0.091 0.140 0.214 0.305 0.404 0.514 0.622
CT 0.039 0.049 0.081 0.125 0.194 0.284 0.379 0.490 0.596

BTT 0.050 0.062 0.099 0.146 0.223 0.319 0.422 0.533 0.639

3 PBF 0.441 0.457 0.472 0.507 0.544 0.593 0.658 0.713 0.754
TT 0.047 0.063 0.074 0.092 0.123 0.169 0.221 0.303 0.351
CT 0.044 0.059 0.069 0.088 0.117 0.160 0.214 0.297 0.347

BTT 0.053 0.071 0.084 0.104 0.140 0.192 0.245 0.327 0.382

4 PBF 0.755 0.755 0.764 0.776 0.787 0.820 0.828 0.845 0.876
TT 0.054 0.052 0.061 0.069 0.096 0.122 0.155 0.171 0.232
CT 0.053 0.051 0.059 0.069 0.094 0.120 0.155 0.172 0.232

BTT 0.062 0.061 0.071 0.084 0.115 0.142 0.174 0.198 0.261
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Table 4 True positive rate, ngc = ngt = 8 and p = 10% (pover = 5%, punder = 5%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.010 0.020 0.053 0.116 0.241 0.395 0.591 0.747 0.868
TT 0.049 0.072 0.155 0.272 0.454 0.627 0.799 0.894 0.952
CT 0.037 0.058 0.129 0.235 0.410 0.581 0.765 0.871 0.941

BTT 0.049 0.072 0.154 0.270 0.454 0.626 0.798 0.894 0.953

2 PBF 0.093 0.103 0.140 0.203 0.282 0.377 0.474 0.588 0.695
TT 0.052 0.058 0.091 0.138 0.215 0.308 0.400 0.511 0.622
CT 0.043 0.050 0.079 0.123 0.197 0.281 0.373 0.490 0.598

BTT 0.055 0.061 0.095 0.147 0.228 0.321 0.417 0.529 0.642

3 PBF 0.443 0.442 0.467 0.509 0.543 0.596 0.646 0.705 0.759
TT 0.054 0.057 0.069 0.099 0.131 0.169 0.228 0.286 0.361
CT 0.051 0.053 0.064 0.094 0.125 0.163 0.220 0.277 0.350

BTT 0.061 0.064 0.078 0.112 0.146 0.188 0.254 0.317 0.391

4 PBF 0.763 0.756 0.759 0.779 0.784 0.806 0.829 0.848 0.873
TT 0.055 0.053 0.060 0.072 0.094 0.119 0.148 0.193 0.243
CT 0.053 0.052 0.057 0.072 0.093 0.120 0.147 0.193 0.242

BTT 0.063 0.062 0.072 0.087 0.111 0.138 0.170 0.222 0.272

The PBF present better performance than other methods, except, for γ = 1 fixed
where t-tests present greater TPR. For the four methods the TPR increases as the
value of δ increases, that is, when the mean of the treatment distribution moves
away from the mean of the control distribution. Increasing the variance of the
treatment (γ = {2,3,4}) the PBF present higher TPR than TT, CT and BTT for
all cases simulated. Besides that, we can note that among the t-tests (TT, CT and
BTT), the BTT present better performance.

Tables 5–8 in Appendix B show the mean of the false positive rates by method.
Tables 9–12 in Appendix C show the mean of the true discovery rates by method.
For cases simulated, the PBF present smaller false positive rate and greater true
discovery rate than t-tests.

These results show a better performance of the PBF in relation to t-tests in
identification of difference of means and variance. From the biological practical
point of view, the PBF may identify gene differences which are not identified by
TT, CT and BTT, specially, genes with differences in means and variances.

4.2 Escherichia coli bacterium data set

In this section, consider the gene expression data set on Escherichia coli bacterium,
composed by n = 4290 genes (Arfin et al., 2000). Each gene g have four measure
from the control and four measure from the treatment. Figure 1 shows the treatment
and control observed means and variances for all genes of this dataset.
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(a) Observed means (b) Observed variances

Figure 1 Treatment and control observed means and variances.

Results for the four methods are presented in Figures 2 and 3, respectively. In
the figures, the signal “+” indicate genes identified with evidence for difference.
Figure 2 show the observed treatment and control means of genes identified with
evidence for difference by PBF, TT, CT and BTT, respectively. Figure 3 shows
the results in relation to the observed treatment and control variances. The PBF
identifies 236 genes with evidences for difference, while TT identifies 287, CT
131 and BTT 217 genes.

Genes with means well apart are identified by the four methods, as can be noted
in Figure 2. An example is the gene 10 (hdeB) that is highlighted in Figures 2(a)
and 3(a). But, cases with mean and variances well apart are not identified by TT,
CT and BTT and are identified by PBF, as can be noted in Figure 3. Examples
are genes 943 (b0562 (f143)), 2766 (b1326 (f262)) and 3254 (dbpA) that are high-
lighted in Figures 2(a) and 3(a). One possible reason is the low performance of TT,
CT and BTT in situations with differences in means and variances, as observed in
the artificial data sets. Besides, it show us that PBF is capable of identify differ-
entially expressed genes which are not identified by TT, CT and BTT, specially,
genes with differences in means and/or variances.

However, from probability P(M1|y) the PBF does not differentiate among the
situations differing only in means, only in variances, and in both parameters. For
example, for gene 943 (see Figure 2(a)), we have P(M1|y943) = 0.9446 and the
conclusion is that this gene present evidences for difference. But, we can not say
if this difference is in relation to mean, variance or both parameters only using
P(M1|y943) = 0.9446. It happens because PBF is a method developed to identify
genes with different expression based on changes in distribution, not only with
different means or variances of the expression in separately. Nevertheless, from
observed mean and variance and Figures 2(a) and 3(a) we can see that gene 943
present mean and variance higher in treatment in relation to control.
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(a) Genes identified by BF (b) Genes identified by TT

(c) Genes identified by CT (d) Genes identified by BTT

Figure 2 Treatment and control observed means and genes identified with evidence for difference.

The proposed PBF is a method to identify genes with evidences for difference
of gene expression levels in relation to mean and/or variances. The identification
of genes differentially expressed is a first step to Biologist/Geneticist to study
the genes identified in more details and answer some questions. Thus, for gene
943 cited, the PBF method concludes that this gene present evidences for dif-
ference because P(M1|y943) = 0.9446. Identified the evidence for difference the
biologist/geneticist will study this gene in details and so answer questions like:
if the variation in expression measurements is due more sources of variation or
whether is due the treatment condition, or if gene reacted to a drug stimulus and
so on.

To illustrate the influence of each observation from treatment group in the value
of P(M1|·) given the value of B10 calculated as in (3.12), we present the Fig-
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(a) Genes identified by BF (b) Genes identified by TT

(c) Genes identified by CT (d) Genes identified by BTT

Figure 3 Treatment and control observed variances and genes identified with evidence for differ-
ence.

ure 4. This figure shows the value of P(M1|·) for B10 calculated according to PBF
(equation (3.12)), for genes 05, 80 and 156. In this figure, each “•” (from left
to right) represent the value of P(M1|·) given the set xi = {x1gt , . . . , xntgt }, for
i = 1,2,3,4. For instance, the second “•” is the value of P(M1|·) given the set
x2 = {x1gt , x2gt }. The hatched line represent the value Pref = 0.5.

The gene 05 (Figure 4(a)) is considered differentially expressed by PBF give
the 4 observations, P(M1|·) = 0.53. Excluding the fourth observation the gene
would be considered nondifferentially, P(M1|·) = 0.41. For genes 80 and 156 the
PBF always indicate the situation differentially and nondifferentially expressed,
respectively.
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(a) PBF for gene 05 (b) PBF for gene 80

(c) PBF for gene 156

Figure 4 PBF for genes 05, 80 and 156.

5 Discussion

We propose a Bayesian approach to identify differentially expressed genes based
on posterior probability of the difference which is calculated via Bayes factor. In
order to calculate the Bayes factor considering the model fitted by observed data
from the control experimental condition, we use the predictive density.

The performance of the proposed PBF method as well as its comparison with
the TT, CT and BTT was verified on an artificial and a real datasets. Results from
the artificial and the real data sets show a better performance of PBF in relation to
TT, CT and BTT in identification of difference, mainly, in situations with variance
difference.
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Results also suggest a possible complementarity among the methods, where,
cases with difference of means and similar variances are easily identified by the
t-tests, while cases with changes in variance with or without expressive changes in
mean are adequately identified by PBF. The advantage of the PBF method is that it
can identify genes which are not identified by the usual approaches. The biological
interest in this fact is that PBF may bring to light genes that are not identified
when using only t-test or modified t-test ones. Moreover, the PBF methods can be
easily implemented in usual softwares such as the software R (the Comprehensive
R Archive Network, http://cran.r-project.org). The source code used in data set
analysis can be obtained by email the authors.

Although we have considered Pref = 0.5 as the cutoff value to choose between
models using P(M1|yg), other values of Pref up to 1 may be considered. The PBF
reduces the number of identification, but continues identifying genes with means
well apart that are not identified by the others methods.

In this paper, we consider such first level of analysis, as also made by Bald
and Long (2001) and Fox and Dimmic (2006), making a comparison gene by
gene. However, considering that a challenge in gene expression data analysis is
to deal with the multiple testing problem, a further development is to the proposed
a method to control the false discovery rate when thousands of hypotheses are re-
alized simultaneously. Besides, to extend the proposed method to second level of
analysis in order to identify clusters of genes.

Appendix A: Some issues on hyperparameter specification

As discussed by Sinharay and Stern (2002) and Kass and Raftery (1995), the Bayes
factor is sensible to choice of prior hyperparameters. Thus, as done by Baldi and
Long (2001) and Fox and Dimmic (2006), we opt to describe a procedure to specify
the hiperparameters than realize a sensibility analysis.

Following the scheme used by Richardson and Green (1997) and Stephens
(2000) to fix hyperparameters in the context of mixture models, we use the
range of the data to define the hyperparameters of the prior distribution on σ 2.
We then set up τ and β in a way that E[σ 2

d ] = (β/2)/[(τ/2) − 1] = R, where
R = max(xg) − min(xg) is the length of the interval of variation of the ob-
served data xg = {xgc ∪ xgt }, d ∈ {g,gc, gt} and g = 1, . . . , n. Thus, we obtain
β = (τ − 2)R; and we fix τ = 3. Then, the prior distribution on σ 2 is

σ 2|τ,β ∼ I G
(

3

2
,
R

2

)
.

For example, for gene 943 that present P(M1|y943) = 0.9446, we have R =
−15.5120 + 26.9905 = 11.4785. Using the software R (fixing set.seed(10)), we

http://cran.r-project.org
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generate 1000 values of the distribution I G(1.5,5.73925) and we obtain an
average of 10.7918 and a variance of 857.4616. For gene 928 that presents
P(M1|y943) = 0.1085, we have R = −14.0489 + 17.7174 = 3.6685. Generating
1000 values of the distribution I G(1.5,1.8344), we obtain an average of 3.4490
and a variance of 87.5842.

To define the hyperparameters of the prior distribution on μ we set up:
(i) μ0 as being the middle point of the interval of variation of xg , μ0 =
[min(xg) + max(xg)]/2; (ii) λ at 10−2, λ = 10−2. Thus, the prior distribution on
μ is

μ|λ,σ 2 ∼ N(μ0,100 · R).

Considering σ 2 = E[σ 2] = R, so for gene 943, we have μ|λ,σ 2 ∼ N (−21.2512,

1147.843). For gene 928, μ|λ,σ 2 ∼ N (−15.8832,366.8518). The same scenario
remains for the others genes of the dataset.

From examples above, we consider this procedure as a good way to define the
hyperparameters due the prior distributions obtained be weakly informative, that
is, with large variance.

Appendix B: False positive rate

The false positive rate is given by

FPRmethod =
∑n

g=1(1 − Ig) · I
method
g

n − ∑n
g=1 Ig

,

where method = {PBF,TT,CT,BTT}. See Tables 5–8.

Appendix C: True discovery rate

The true discovery rate is given by

TDRmethod =
∑n

g=1 Ig · I
method
g∑n

g=1 Imethod
g

,

where method = {PBF,TT,CT,BTT}. See Tables 9–12.
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Table 5 False positive rate, ngc = ngt = 4 and p = 5% (pover = 3%, punder = 2%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.017
TT 0.041 0.041 0.041 0.042 0.042 0.041 0.041 0.041 0.041
CT 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.029

BTT 0.040 0.041 0.041 0.041 0.042 0.041 0.040 0.041 0.041

2 PBF 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
TT 0.040 0.042 0.041 0.041 0.041 0.041 0.042 0.042 0.041
CT 0.029 0.031 0.030 0.030 0.030 0.030 0.030 0.030 0.030

BTT 0.040 0.042 0.041 0.040 0.041 0.041 0.042 0.041 0.041

3 PBF 0.018 0.017 0.017 0.018 0.018 0.017 0.018 0.018 0.017
TT 0.042 0.040 0.041 0.041 0.041 0.041 0.042 0.042 0.040
CT 0.031 0.029 0.029 0.030 0.030 0.030 0.030 0.030 0.030

BTT 0.042 0.040 0.041 0.041 0.041 0.042 0.042 0.041 0.041

4 PBF 0.017 0.017 0.018 0.017 0.017 0.018 0.018 0.017 0.018
TT 0.040 0.041 0.042 0.040 0.041 0.041 0.042 0.040 0.041
CT 0.029 0.029 0.030 0.029 0.029 0.029 0.030 0.029 0.030

BTT 0.040 0.041 0.042 0.040 0.041 0.041 0.042 0.040 0.041

Table 6 False positive rate, ngc = ngt = 4 and p = 10% (pover = 5%, punder = 5%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.018 0.018 0.018 0.019 0.017 0.018 0.017 0.018 0.018
TT 0.041 0.041 0.042 0.042 0.040 0.040 0.040 0.040 0.041
CT 0.030 0.029 0.030 0.031 0.029 0.030 0.029 0.029 0.030

BTT 0.041 0.041 0.042 0.043 0.040 0.041 0.040 0.040 0.041

2 PBF 0.018 0.018 0.017 0.018 0.018 0.018 0.017 0.018 0.018
TT 0.041 0.041 0.041 0.041 0.042 0.041 0.041 0.041 0.042
CT 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030

BTT 0.041 0.041 0.041 0.041 0.042 0.041 0.041 0.041 0.042

3 PBF 0.018 0.017 0.018 0.018 0.018 0.018 0.018 0.017 0.018
TT 0.041 0.040 0.042 0.041 0.041 0.041 0.042 0.041 0.041
CT 0.030 0.030 0.031 0.030 0.030 0.030 0.031 0.029 0.030

BTT 0.041 0.041 0.042 0.041 0.041 0.041 0.042 0.040 0.042

4 PBF 0.018 0.017 0.018 0.018 0.017 0.018 0.017 0.019 0.017
TT 0.040 0.041 0.040 0.041 0.040 0.042 0.040 0.042 0.041
CT 0.029 0.030 0.030 0.030 0.028 0.030 0.029 0.031 0.030

BTT 0.041 0.040 0.040 0.041 0.040 0.042 0.040 0.042 0.041
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Table 7 False positive rate, ngc = ngt = 8 and p = 5% (pover = 3%, punder = 2%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011
TT 0.047 0.047 0.047 0.049 0.047 0.048 0.048 0.048 0.048
CT 0.037 0.037 0.037 0.038 0.037 0.038 0.038 0.038 0.038

BTT 0.047 0.047 0.047 0.049 0.047 0.048 0.048 0.048 0.048

2 PBF 0.011 0.010 0.011 0.010 0.011 0.011 0.010 0.010 0.010
TT 0.047 0.048 0.048 0.049 0.048 0.048 0.049 0.048 0.047
CT 0.037 0.037 0.038 0.038 0.038 0.038 0.038 0.038 0.037

BTT 0.047 0.047 0.048 0.048 0.048 0.048 0.049 0.048 0.047

3 PBF 0.011 0.010 0.010 0.011 0.010 0.010 0.010 0.011 0.011
TT 0.047 0.048 0.048 0.049 0.047 0.047 0.048 0.048 0.049
CT 0.037 0.038 0.037 0.038 0.037 0.037 0.038 0.038 0.038

BTT 0.047 0.048 0.048 0.048 0.047 0.047 0.048 0.048 0.048

4 PBF 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
TT 0.048 0.047 0.048 0.048 0.048 0.046 0.048 0.047 0.047
CT 0.037 0.036 0.037 0.038 0.037 0.036 0.037 0.037 0.037

BTT 0.048 0.047 0.048 0.048 0.048 0.046 0.048 0.047 0.047

Table 8 False positive rate, ngc = ngt = 8 and p = 10% (pover = 5%, punder = 5%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.010 0.011 0.010 0.011 0.010 0.011 0.011 0.010 0.011
TT 0.048 0.047 0.047 0.048 0.048 0.050 0.049 0.047 0.048
CT 0.037 0.037 0.037 0.038 0.038 0.039 0.038 0.036 0.037

BTT 0.047 0.047 0.047 0.048 0.048 0.049 0.048 0.047 0.048

2 PBF 0.011 0.011 0.011 0.010 0.010 0.011 0.010 0.010 0.010
TT 0.049 0.048 0.047 0.047 0.048 0.050 0.048 0.047 0.048
CT 0.038 0.038 0.037 0.037 0.037 0.039 0.038 0.037 0.038

BTT 0.049 0.047 0.047 0.047 0.048 0.049 0.048 0.047 0.047

3 PBF 0.010 0.011 0.011 0.010 0.010 0.011 0.011 0.010 0.010
TT 0.048 0.048 0.048 0.048 0.047 0.049 0.047 0.049 0.048
CT 0.037 0.038 0.038 0.037 0.037 0.039 0.037 0.038 0.037

BTT 0.048 0.048 0.048 0.048 0.047 0.049 0.047 0.049 0.047

4 PBF 0.011 0.011 0.010 0.011 0.019 0.010 0.010 0.019 0.010
TT 0.048 0.048 0.048 0.048 0.048 0.048 0.047 0.048 0.047
CT 0.038 0.038 0.037 0.038 0.037 0.037 0.037 0.037 0.037

BTT 0.048 0.048 0.048 0.048 0.047 0.047 0.047 0.048 0.047
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Table 9 True discovery rate, ngc = ngt = 4 and p = 5% (pover = 3%, punder = 2%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.052 0.066 0.114 0.184 0.290 0.409 0.499 0.566 0.641
TT 0.049 0.060 0.086 0.128 0.191 0.275 0.340 0.389 0.440
CT 0.049 0.058 0.089 0.132 0.210 0.291 0.369 0.432 0.495

BTT 0.050 0.057 0.087 0.129 0.193 0.271 0.342 0.390 0.443

2 PBF 0.157 0.149 0.197 0.249 0.322 0.363 0.427 0.503 0.552
TT 0.061 0.059 0.074 0.100 0.126 0.152 0.189 0.238 0.269
CT 0.062 0.064 0.082 0.110 0.142 0.175 0.213 0.282 0.312

BTT 0.063 0.064 0.079 0.105 0.130 0.161 0.202 0.253 0.285

3 PBF 0.296 0.320 0.321 0.353 0.381 0.442 0.455 0.502 0.544
TT 0.061 0.069 0.078 0.082 0.095 0.117 0.133 0.150 0.185
CT 0.068 0.083 0.099 0.097 0.114 0.148 0.163 0.186 0.225

BTT 0.070 0.076 0.088 0.088 0.106 0.135 0.150 0.169 0.204

4 PBF 0.462 0.466 0.466 0.505 0.497 0.517 0.523 0.565 0.561
TT 0.066 0.071 0.065 0.081 0.081 0.096 0.102 0.123 0.132
CT 0.085 0.090 0.084 0.103 0.105 0.128 0.139 0.158 0.171

BTT 0.079 0.081 0.079 0.097 0.097 0.112 0.121 0.143 0.156

Table 10 True discovery rate, ngc = ngt = 4 and p = 10% (pover = 5%, punder = 5%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.090 0.141 0.203 0.330 0.469 0.583 0.692 0.740 0.784
TT 0.097 0.120 0.162 0.244 0.341 0.440 0.517 0.577 0.622
CT 0.098 0.122 0.169 0.263 0.368 0.462 0.557 0.620 0.667

BTT 0.095 0.118 0.162 0.244 0.345 0.439 0.519 0.581 0.625

2 PBF 0.267 0.292 0.329 0.413 0.471 0.548 0.632 0.678 0.721
TT 0.116 0.127 0.138 0.180 0.215 0.279 0.337 0.392 0.432
CT 0.120 0.132 0.149 0.201 0.239 0.310 0.378 0.437 0.484

BTT 0.119 0.129 0.145 0.191 0.227 0.290 0.350 0.403 0.449

3 PBF 0.473 0.469 0.498 0.532 0.560 0.596 0.640 0.684 0.710
TT 0.128 0.128 0.140 0.169 0.183 0.212 0.244 0.276 0.318
CT 0.148 0.151 0.163 0.202 0.216 0.250 0.291 0.334 0.379

BTT 0.143 0.144 0.156 0.186 0.206 0.235 0.271 0.308 0.349

4 PBF 0.623 0.643 0.646 0.640 0.687 0.683 0.711 0.714 0.749
TT 0.122 0.143 0.142 0.143 0.172 0.179 0.203 0.220 0.252
CT 0.149 0.178 0.177 0.177 0.216 0.223 0.260 0.269 0.321

BTT 0.146 0.167 0.171 0.164 0.199 0.206 0.237 0.257 0.294
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Table 11 True discovery rate, ngc = ngt = 8 and p = 5% (pover = 3%, punder = 2%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.055 0.113 0.185 0.363 0.549 0.662 0.740 0.791 0.814
TT 0.051 0.076 0.138 0.233 0.341 0.412 0.460 0.498 0.515
CT 0.052 0.081 0.148 0.250 0.370 0.451 0.508 0.552 0.572

BTT 0.051 0.077 0.137 0.235 0.343 0.414 0.461 0.499 0.516

2 PBF 0.321 0.361 0.420 0.493 0.581 0.660 0.726 0.749 0.778
TT 0.051 0.059 0.092 0.132 0.192 0.252 0.303 0.362 0.411
CT 0.054 0.065 0.102 0.148 0.215 0.286 0.348 0.408 0.460

BTT 0.053 0.064 0.099 0.138 0.198 0.261 0.313 0.371 0.418

3 PBF 0.690 0.701 0.708 0.714 0.742 0.757 0.774 0.785 0.786
TT 0.050 0.064 0.074 0.091 0.121 0.160 0.195 0.248 0.277
CT 0.059 0.075 0.089 0.109 0.142 0.186 0.232 0.291 0.326

BTT 0.057 0.073 0.084 0.102 0.136 0.179 0.214 0.263 0.297

4 PBF 0.795 0.795 0.805 0.801 0.803 0.811 0.812 0.812 0.822
TT 0.056 0.056 0.063 0.070 0.095 0.121 0.145 0.160 0.206
CT 0.070 0.069 0.077 0.086 0.118 0.149 0.183 0.196 0.248

BTT 0.064 0.065 0.072 0.084 0.112 0.139 0.161 0.181 0.227

Table 12 True discovery rate, ngc = ngt = 8 and p = 10% (pover = 5%, punder = 5%)

δ

γ Method 0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1 PBF 0.095 0.172 0.358 0.547 0.723 0.803 0.860 0.891 0.902
TT 0.102 0.143 0.266 0.387 0.512 0.586 0.646 0.679 0.689
CT 0.099 0.146 0.278 0.409 0.547 0.625 0.694 0.728 0.738

BTT 0.103 0.144 0.266 0.385 0.513 0.587 0.648 0.682 0.691

2 PBF 0.500 0.511 0.596 0.682 0.757 0.799 0.835 0.867 0.887
TT 0.106 0.118 0.175 0.244 0.334 0.410 0.482 0.547 0.593
CT 0.111 0.127 0.193 0.267 0.372 0.447 0.525 0.598 0.640

BTT 0.112 0.124 0.184 0.256 0.347 0.421 0.494 0.557 0.602

3 PBF 0.826 0.825 0.829 0.850 0.860 0.860 0.874 0.883 0.894
TT 0.110 0.116 0.136 0.189 0.238 0.278 0.349 0.393 0.457
CT 0.130 0.134 0.157 0.219 0.277 0.317 0.398 0.446 0.513

BTT 0.123 0.129 0.151 0.208 0.258 0.299 0.373 0.419 0.479

4 PBF 0.891 0.890 0.893 0.892 0.897 0.900 0.903 0.905 0.909
TT 0.113 0.108 0.122 0.144 0.182 0.218 0.260 0.311 0.366
CT 0.137 0.131 0.145 0.175 0.217 0.267 0.308 0.368 0.422

BTT 0.128 0.125 0.144 0.168 0.208 0.246 0.289 0.342 0.393
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