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BSDE with jumps and non-Lipschitz coefficients:
Application to large deviations

Ahmadou Bamba Sow

Université Gaston Berger

Abstract. In this work, we deal with a backward stochastic differential equa-
tion with respect to a Brownian motion and a Poisson random measure.
We first establish existence and uniqueness of solution in the case of non-
Lipschitz drift. In the second part, we prove a Large Deviation Principle for a
family of solutions.

1 Introduction

It is well known that backward stochastic differential equation (BSDE in short)
provided stochastic representation of solution some classes of partial differential
equations (PDEs in short) of second order. With the help of BSDEs with respect to
a Brownian motion and a Poisson random measure (BSDEP in short), some authors
generalized this result to integro-partial differential equations. The pioneer result
on BSDEs, established by Pardoux and Peng (1990) require Lipschitz condition on
the drift of the equation. Several authors interested in weakening this assumption.
See among others Kobylanski (2000), Mao (1995) and Wang and Wang (2003).
Recently Wang and Huang (2009), improve Wang and Wang’s result by weakening
the continuity required. Our aim in the first part of the present work is to extend
Wang and Huang’s result to BSDEs with jumps with a generator satisfying weaker
conditions.

Large deviation Principle (LDP) for stochastic processes was first discuss by
Freidlin and Wentzell (1984). Later some authors investigate successfully a fam-
ily of stochastic differential equation (see among others Baldi (1991), Baxendale
and Stroock (1988), Makhno (1995)). Baldi (1991) considered a family of peri-
odic diffusion processes with homogenization and a small parameter multiplying
the diffusion coefficient. He established a large deviations principle and as an ap-
plication, he derived an iterated logarithm law for periodic diffusions. Freidlin and
Sowers (1999) studied the combined effects of homogenization and large devia-
tions in a stochastic differential equation. The authors show some large deviations
type estimates, and then apply these results to study wavefronts in both a sin-
gle reaction—diffusion equation and in a system of reaction—diffusion equations.
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Many researchers interested in extending these results to solution weakly coupled
forward and backward stochastic differential equations. Essaky (2008) proved that
the solution of a BSDE, which involves a subdifferential operator and associated to
a family of reflecting diffusion processes, converges to the solution of a determin-
istic backward equation and satisfies a large deviation principle. Rainero (2006)
prove a LDP for a family of solutions of BSDEs with Lipschitzian drift. The key
point is a suitable estimate on the solution of BSDE.

Inspired by the works of Barles et al. (1996), and applying our results in the
first part, we interested in the second part in this paper in extending the result
established in Rainero (2006) to BSDEs with jumps. The paper is organized as
follows. We introduce some preliminaries and prove existence and uniqueness of
solutions of BSDEP in Section 2. In Section 3, we prove a large deviations prin-
ciple for a family of solutions of BSDEP under weaker conditions than those in
Essaky (2008) and Rainero (2006).

2 BSDE with jumps

2.1 Definitions and notations

Let (2, F, (F)o<i<1,P), T > 0, be a stochastic basis such that Fy contains all
P-null sets of F and F; = (s~ Fr+s = F: and suppose that the filtration is gen-
erated by two mutually independent processes: a d-dimensional Brownian motion
(Br)o<t<r and a Poisson random measure p on E x R;.. The space E = R — {0}
is equipped with its Borel field £ with compensator v(dt, de) = dti(de) such
that {£L([0, ] x A) = (u — v)[0, ] x A} is a martingale for any A € £ satisfying
M(A) < 00. A is a o -finite measure on £ and satisfies

/ (1 A le[*)r(de) < o0.
E

Given £ a Fr-measurable R* valued random variable and f:Qx[0,T] x RF x
RK*d  RF — RK, we are interested in the BSDEP

T T
=g+ [ f0%. 2. Updr— [ z,a8,
; ! 2.1)
- [ [ v@ndrae,  o<i=T.
t JE
For Q € N*, | - | and (-) stand for the euclidian norm and the inner product in R€.
We consider the following sets:

° S%O’T](RQ) the space of F; adapted cadlag processes

W:[0,T] x Q —> R?, ||\1:||§=E( sup |\D,|2)<oo.

0<t<T
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° H[%j](RQ) the space of F; progressively measurable processes
T
W:[0,T] x Q@ — R?, ||\IJ||2=E/ W, | dt < oo.
0

° L[ZovT](ﬁ,RQ) the space of mappings U:Q x [0,T] X E — R which are
P ® £-measurable s.t.

T
IUI>=E fo fE U, (e)2h(de) dt < oo,

where P ® £ denotes the o -algebra of predictable sets of 2 x [0, T'].
Notice that the space S[ZO’T](RQ) X H[%,T](RQ) X L%O’T](ﬁ, R9) is a Banach space.
Definition 2.1. A triplet of processes (Y;, Z;, U;)o<;<7 is called a solution to

gi; if (Y;,Z,Up) € Sy R x H 7R 5 LE 7 (7, RY) and satisfies

We say that the coefficient f: Q2 x [0, T'] x RF x R¥*4 x R¥ — R* of the BSDEP
satisfies assumption (H1) if the following hold:

(H1.1) Forall (y,z,u) € R* x RO x RE, f(-y, z,u) € H 71 (R).
(H1.2) Thereexists K > I s.t.forO<t < T, (y,y) € (RY?2, (z,7) € (RF*?)2,
(u,u') € (R")?,
2
|f@ y,zou)— f(t,y. 2 u)|" <p(t,

where p(z,v):[0, T] x R4 — Ry satisfies

y=YP)+ K (2 =2+ Ju—u'),

e For fixed ¢t € [0, T], p(z,-) is a continuous, concave and nondecreasing s.t.
p(,0)=0.
e The ordinary differential equation

vV =—p(t,v), v(T) =0, (2.2)

has a unique solution v(¢) =0,0<¢r <T.
e There exists a(t) > 0, b(t) > 0 s.t. p(t,v) < a(t) + b(t)v and fOT[a(t) +
b(t)]dt < 0.

Let us mention that assumptions (H1) are weaker than Lipschitz conditions re-
quired on the coefficients in Barles et al. (1996). Some examples satisfying these
conditions (H1) are given in Wang and Huang (2009).

2.2 Existence and uniqueness of a solution

Our strategy in the proof of existence is to use the Picard approximate sequence.
To this end, we recall the following result given in Tang and Li (1994, Lemma 2.4).
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Proposition 2.2. Assume that € € L>(2, Fr,P) and f is T'-Lipschitz for some
constant I' > 0 and f(¢,-,-,) € H[%’T](Rk). Then (2.1) has a unique solution
Yz, Zy, Ut)OStST-

We consider now the sequence (Y/", Z}', U['),>0 given by
Yt0 =0;
r 1

Ytn:g+_/ Fls, Y"1 zn Uy ds 23

: .

T T

—f Z{ dB; —/ / Ul (e)ii(ds, de), n>1.
t t E

Thanks to Proposition 2.2, this sequence is well defined since the function (z, u)
f(s,Y s”_l, z,u) is K-Lipschitz. In what follows, we establish two results which
will be useful in the sequel.

Lemma 2.3. Assume that & € LZ(Q, Fr,P) and (H1) holds. Then for n,m > 1
we have

1 T
E|Ytn+m — Ytn}z < EeK(T_I)/ p(s’E|st+m—1 _ st—1|2) ds, 0 <t< T.
t

Proof. Using It6’s formula for discontinuous processes, we have for n, m > 1 and
0<t=<T,

2 T 2
E|y/ " — v} +E/ |zitm — z " ds
t
T 2
+E f / |UM ™ (e) — Ul (e)|"A(de) ds (2.4)
t E

T
= 2E/ (yrtm —yn Afm(s)) ds,
t

where AfU™ (s) = f(s, Yrtm=l zntm yrtmy _ f(s, ¥*=1 z" UM). Using
standard estimates and assumption (H1.2), we have

1
AV — Y AFTM (5)) < 2K Y — Y 4 ﬁ|Af(n,m)(s)’2

<2K|Y! -y + yrm=l— yntP) s

S,

ﬁp(
1 1
I A R UK
Plugging this last inequality in (2.4), we deduce from Gronwall’s lemma

1 T
E}Y;H_m _ Ytn|2 < ReQK(T—t)/I ,O(S,E}st"_m_l . st—l |2) ds,

(2.5)
0<t<T. O
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Lemma 2.4. Assume that & € L>(, Fr,P) and (H1) holds. Then there exists
0 < Ty < T not depending on & and a constant M > 0 such that

E}Y[’!sz, Ti<t<T.
Proof. Using again It6’s formula, we deduce that for n > 1,
n 2 T n 2 T n 2
EYY"+E | |zi[ds+E | | [UF @[ A(de)ds
t t
L
§E|§|2+2KEf \Y"|* ds
t
r 2
+2KE/ |f(s, Yo"t z0 UM ds, 0<t<T.
t
Assumption (H1.2) and standard estimates imply
n|2 2 T n|2 1 T 2
E|y"] <El¢] +21<E/ v ds-l—EE/ £ (s,0,0,0)[2ds
t t
1 T _1 2
+?/t p(s, E|Y]! ') ds.
Applying Gronwall’s lemma, we deduce that
2 2KT-0[me2 s La [T 2
E|Y/| <e B§P + E [ |£(5,0.0,0f ds
K Ji
| . (2.6)
+ _ezK(Tft)/ ,O(S,E|YS”71}2)ds.
K t
Putting 71 = (T — 1;‘—11{() v 0, we deduce from (2.6)
2 2 T 2
E|Y]'|” < KEI§| +E/ |f(5,0,0,0)|"ds
t
T 5 _
+/ o(s, E|Y 1) ds, T,<t<T.
t

Let M =2KE|£|?> +2KE fOT | £(s,0,0,0)|%>ds + fOT a(s)ds, it remains to use the
argument developed in Wang and Huang (2009), to complete the proof. (|

Thanks to these two previous results, we have the following theorem.

Theorem 2.5. Let £ € L*(Q2, Fr,P). Under (H1), (2.1) has a unique solution
Yz, Zs, Ut)OstsT-
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Proof. Let us consider the sequence (¢,),>1 given by

T
v0(1) =ft p(s, M) ds,

T
<pn+1(t)=/ p(s, ¢n(s))ds, n>0,T <t<T.
t

Using the argument developed in Wang and Huang (2009, Theorem 1), we shall
prove that the sequence (Y,'),>1 is a Cauchy sequence in S[2T1,T] (RY), (Zn>1
is a Cauchy sequence in H[le’T](Rk) and (U/"),>1 is a Cauchy sequence in

L%TI,T](,ZI, Rk), where Tj is given by Lemma 2.4. Letting n — oo in (2.3), we
obtain

T T
Yf=s+f f(s,Ys,zs,Uods—/ Z,dB,
! ! 2.7)

T
—f /Us(e)ﬁ(ds,de), Ty <t<T.
t E

Hence, the limiting process (Y;, Z;, U;) satisfies (2.1) on [T}, T]. Moreover by
virtue of (H1), we have (Z;, Uy) € Hpy 7y(R*9) x L. 7(ii, R¥). As a conse-
quence, by assumption (H1) and Doob’s inequality, we deduce that
T 5 t 2
E/ | f(s,Ys, Zs, Uy)| ds+E< sup Z,d By )
t

T <t<TWJT

/Ti _/;E Us(e)ii(de, ds) 2) < 00.

This implies essentially that E(supy, ;<7 |¥: |?) < 0o. Thus, the triplet (¥z, Z;, Uy)
solves (2.1) on [T, T']. Using once again Lemma 2.4, one can deduce existence of
solution on [7>, T1], with 0 < T> < T7. Hence by iteration, we prove existence of
solution on [0, T].

Let us prove uniqueness. Let (Y;, Z;, U;) and (ﬁ, Z, ﬁ,) two solutions of (2.1)
and define for W e (Y, Z, U}, W =W, — W, and Af(s) = f(s, Yy, Zy, Us) —
f(s, Y, Zs, Ug).

It6’s formula yields

+E( sup

T <t<T

_ T _ T o T
E|Y,|2+E/t |Zs|2ds+E/t /E|Us(e){2k(de)ds=2E/t (Y5, Af(s))ds.

Using assumption (H1.2) and standard estimates, the right-hand side is less than

T 1 T _
21<Ef |YS|2ds—|——/ p(s, E|Y[%)ds
t 2K J;

+ —E/ |Zs|"ds + —E/ / |Us(e)| Mde)ds.
2 Ji 2 Jt JE
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Putting pieces together, we deduce that

—n 1 (T 1T — 5
E[Y,| +§E/ A ds—i——E/ /|Us(e)| A(de) ds
t

(2.8)
§2KE/ |Y|ds+—/ sE|Y|
t
Applying Gronwall’s lemma, we obtain
v 2_ 1 ooxaon [T v 2
BIV/P <5 e / p(s EIT,P)ds, O0<ti<T. (29
t

Let § = (2[()*1 In2K > 0 and m = [T /8] + 1. If (¢;)o<j<m denotes the uniform
subdivision of [0, T'] given by To =0,7; =T — (m — j)é, j > 1, we have

_ T _
BV, < [ p(sEVP)ds,  Tyi<t=T.
t

This implies from the comparison theorem of ordinary differential equation,
E|Y;|> < r(t) where r(r) is the maximum of solution of (2.2). As a con-
sequence, we have Y; = 17,, Tym—1 <t <T. From (2.8), we deduce Z; = Z
and U; = l7,, Tnmn—1 <t <T. Using the same scheme, we prove uniqueness on
[Tj,Tj+1], j =0,...,m — 2. This completes the proof. O

3 BSDE with jumps and large deviations

Assume given B:RY - R%, 0 :R? - R? x R? and f:Q x [0, T] x R? x R x
Rk*d % R¥ — R¥. For x e R? and 0 < s < T, we are interested in the equation

Y;,',S,x: €Sx +/ reSS)C r
(3.1
—/ Z>%* dB, —/ / UZ**(e)pi(dr, de),
t t E
where (X;*");<s<7, is the solution of the stochastic differential equation
t N t N
Xt =xt [ poxeydrve [ o (X as,,

' ' (3.2)

O0<s<t<T,e>0

and Qf,s,x — (Xf,s,x’ Yrs,s,x’ Zf,s,x’ Ure,s,)c)’ r<r< T.
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We assume that 8, o, g and f satisfy assumption (H2) below

(H2.1) There exists K > 1 s.t. for0 <7 < T, (x,x") € (RY)Z, (y,y) € (R¥)2,
(z,7)) € R*N2 and (u, u’) € (R¥)?,

1B(x) — B()| + |o(x) — o (x')] + |g(x) — g(x')]
<K|x — x|
\ft.x y.zou)— £ty 2 )

y= YD)+ K (x =P [z =2 o u =)

<pl(t,
(H2.2) a=0and b:R; — Ry is continuous.
Let us recall the following result due to Freidlin and Wentzell (1984).
Theorem 3.1. The solution (X f’x)0§t§]‘ of (3.2) satisfies whenever ¢ — 0 a Large

Deviation Principle in C([0, T1, R¥) associated to rate function I, defined by ¢ €
C([0, T1, R¥):

1 T
L (¢) :=inf{—/ |0, >dt,v e H'([0, T],RY):
2.Jo
t t (3.3)
o=x+ [ Bds+ [ o<<ps>z>sds,05zsr}.

In view of Theorem 3.1, X{**** e>9 ¢; in probability where ¢*** is the solution

of the deterministic equation
o =Bw), O0<s<1=<T,g=ux, (3.4)

and satisfies a large deviation principle.

Our aim is to study the asymptotic behavior of (Y;**, Z;**, U/*")e>¢ so-
lution of (3.1) whenever ¢ — 0. To this end, we consider the triplet (y°*, 0, 0)
where 1/** solves the deterministic equation

Ul =—f(t, 00" ¥:,0,0), O0<s<t<T,yr=g(¢y"). (3.5

By uniqueness, the triplet (°, 0, 0) is the unique solution of the BSDEP

T T
Yr=8(<ﬂir’x)+f £, wi”‘,Yr,Zr)dr—/ Z,dB,
t ' (3.6)

T
—/ /Ur(e)ﬁ(dr,de), 0<s=<t=<T,
t E

where ¥** given by (3.5). We have the following proposition.
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Proposition 3.2. Let 0 <e <1, (s5,x) € [0,T] x K where K is a compact set
of R, There exists a constant C35 > 0 depending only on T and K such that

£,8,X 5,x 12 T £,8,x|2 T £,8,X 2
E| sup |Y/" =y |7+ | |22 dr + |US>* (e)|"M(de) dr
s<t<T K s E

3.7)

< C3.6>.
Proof. Applying [t6’s formula, we have for s <t < T,

£,8,x 5,X |2 T £,8,x |2 r £,8,x 2

Yot =y Nz P || URt @ aderdr
t t

2

A

le(X7"%) — g(o7")]

T
=2 [ =S = g 0,0)]dr ()
T
=2 [ =g, Zeo as)
t

T
+2/t /E((Yr;’ — ), USSE (@) i(de, dr)).

Using assumption (H2.1) and standard estimates, there exist y(K) > 0 and
y/(K) > 0 (which may change from line to line) s.t.

£,8,x 5,12 T £,8,x |2 T £,8,x 2
Y™ =y [ +E | |Z0[ar+E || U@ adeydr
t t
<y (K)E sup |X;** —<pf’x|2

s<t<T

Ypst =y )] dr

T
F7OE [l =y P ol

1 T £,5,x|2 £,5,x|2
+§E , (|Zr | +|Ur | )dl”.
Hence since b is bounded on [¢, T'], by assumption (H2.2) we deduce that

£,8,x 5,x12 1 d £,8,x |2 1 d £,8,X 2
Y™ =y [T+ 3E | |Z0dr+3E || [UPYN @ rdeydr
(3.9)

T
<Y(KE sup X5 — o 4 y(K)E /t yess — s Par,

s<t<T

Then by Gronwall’s lemma, there exists y(x,7) > 0 which may change from line
to line s.t.
E|Y, " =y P < ynE sup X700 — g

s<t<T
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Keeping in mind that Esup,, 7 |X{""" — ¢ |?

(3.9,

< cg?, ¢ > 0, we deduce from

E|Ys,s,x 5,x (2 T £,5,x|2 r £,8,X 2
SN — YT+ E | |Z2%F [ dr +E E|U, (e)|*1(de) dr
t t

) (3.10)
=YK, TE -
Futhermore using (3.8), we obtain,
E( sup ’Yts,s,x _‘/fts,xIZ)
s<t<T
2
<Elg(X7™") — gler”)]
T
+2E sup ([ (rsr = up)
s<t<T \J1t
3.11)

X [£( 055%) = f(r, g8, Y55, 0, 0)])

T
+2E sup | [{(r ). 200 a)
s<t<
T
+2E sup / /E<<Yff’x—wf’f),Uf’We)ﬁ(de,dr))-
s<t<

Applying Burkholder—Davis—Gundy inequality, there exists y > 0 such that

2E sup

s<t<T

T
| s =) z5 aB)

1 £,8,Xx 5,x12 T g.5.x12
<-E sup [¥55F — o] —i—yE/ ze5 Par,
t

s<t<T

2E sup

s<t<T

T
| e =) v e, dn)

1 T
<-E sup |V — ¢S P+ yE / /E \UE5* ()| *A(de) dr.
t

s<t<T

Furthermore using (H2), the second term of the right-hand side of (3.11) is less
than

T
c(K)E/ Y — g P dr +E sup [XPF — Pt
t

s<t<T

T 2 r 2
+E/ |Z55] dr—i—E/ / |USS* (e)|"A(de) dr,
t t JE
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where c(K) > 0. Hence combining these inequalities with (3.10), we deduce from
(3.11)

E( sup [¥/"" =y ) < yke’.

s<t<T
Using once again (3.10), we get the desired result. U

Let us consider the infinitesimal generator of (X;***);<;<r defined by (where
a=oc0%)

2k k
&
ij=1 i—1

and the system of parabolic PDE
Qul (t, x) + LO*ub (t, x) + fi(t, x,u®(t,x), (d,ufo)(t,x)) =0;
(t,x)€[0, T xR¥, 1 <i <k, (3.12)
ui (T, x) = gi(x).
Thanks to Barles et al. (1996, Theorem 3.4),
ut (s, x) = Y&5, 0<s<T,xecRF (3.13)
is continuous and it is a viscosity solution of (3.12). Moreover, Y;"*" = u®(t,
X5y, s<t<T.
Definition 3.3. For s € [0, T] and & > 0, we define the map ®°:C([s, T], Rk) —
C(ls, T1, R*) by
D () == [t > u(t, ¢1)], tels, T1,¢ €C(Is, T1,R¥),
where u® given by (3.13).
Thus, Y75 = &F(X5%¥)(r),s <t < T and ¢ > 0. We denote u = u° and

P = O,
We claim the following theorem.

Theorem 3.4. The process Y& satisfies in C([0, T1,R¥) a Large Deviation
Principle associated to the function rate I, defined by

IL(y) =inf{I,(p):¢ € H([0, T], R") |y = ()}, ¥ € C([0, T], R¥).

Proof. By the contraction principle (see Varadhan (1984)), it suffices to prove
that ®°, ¢ > 0 is continuous and ®* converge uniformly to & on compacts of
C([0, T1, R¥) whenever ¢ — 0. Using the method developed in Rainero (2006,
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Theorem 2.3), we establish continuity of ®¢, ¢ > 0. Applying Proposition 3.2, we
have for any compact K of C([0, T], R¥),

2
sup |@F(p) — @(9) |~ < vk, 1>
pekl
which is enough to get the desired result. U

Remark 3.5. If a is uniformly elliptic, then (3.3) reads to

1 (T ) .
L@ =3 fo Q (¢ — Blo)dr  if  @eH'([0,TL,RY) and go=x,
I () = +00, otherwise

with Q¥ (v) = (v, a~ ' (u)v), (4, v) € R* x R¥,
This implies that the function rate /() is given by

1 T
1) = inf{5 [ ;.- pgn)ar:

¢ e H'([0, T]st),¢o=x,wt=u0(t,<oz),0§t§T}.
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