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A Bayesian analysis of the Bingham distribution

Stephen G. Walker
University of Kent

Abstract. This paper provides a means, using latent variables, to undertake
a Bayesian analysis for the Bingham distribution. To date, this has been prob-
lematic due to a nonclosed form for the normalizing constant. Previous ap-
proaches have relied on approximating the constant; something which is un-
necessary in the method adopted here.

1 Introduction

The Bingham distribution (Bingham, 1993; Mardia and Jupp, 2000) is obtained
as a multivariate normal vector x = (x1, . . . , xp) constrained to lie on the unit
sphere Sp = {x :x2

1 + · · · + x2
p = 1}. The density function is hence given, for some

symmetric matrix A = A′, by

f (x|A) = exp(−x′Ax)1(x ∈ Sp)

c(A)
,

where c(A) is the normalizing constant and given by

c(A) =
∫
Sp

exp
(−x′Ax

)
m(dx),

and m(dx) represents surface area on the unit sphere.
It is the normalizing constant which presents problems when endeavoring to

undertake statistical inference involving the Bingham distribution. As is well
known, see, for example, Kent (1987), it is sufficient to consider A as a di-
agonal matrix (following rotation to principal axes) and therefore we will take
A = diag(λ1, . . . , λp). Now, for identifiability, we can arbitrarily take λp as the
smallest value and indeed can set it to 0. See Kent (1987), for example. Hence, this
results in each λl ≥ 0. Throughout the remainder of the paper, we will now use �

to denote the diagonal matrix with elements λ = (λl). Thus, we have

f (x|�) ∝ exp

(
−

p−1∑
l=1

λlx
2
l

)
,
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a density with respect to the normalized measure

ω(dx) = cp dx1 · · · dxp−1
(
1 − x2

1 − · · · − x2
p−1

)−1/2

on S̃p = {(x1, . . . , xp−1) :x2
1 + · · · + x2

p−1 ≤ 1}. Hence,

c−1
p =

∫
S̃p

dx1 · · · dxp−1
(
1 − x2

1 − · · · − x2
p−1

)−1/2
.

Now writing the density in full, complete with normalizing constant, we have

f (x|�) = exp(−∑p−1
l=1 λlx

2
l )∫

S̃p
exp(−∑p−1

l=1 λlx
2
l )ω(x)dx1 · · · dxp−1

,

where we now write ω(x) = cp(1 − x2
1 − · · · − x2

p−1)
−1/2.

The likelihood function, based on a sample(
xi = (xi,1, . . . , xi,p−1)

)n
i=1,

is given by

Ln(λ) = exp(−n
∑p−1

l=1 λlτl)

c(�)n
,

where

τl = n−1
n∑

i=1

x2
i,l .

Hence, the data can be represented as (n, τ1, . . . , τp−1). From this, it is clear that
the maximum likelihood estimator can be achieved by maximizing

L(λ) = exp(−∑p−1
l=1 λlτl)

c(�)

and so the normalizing constant c(�) plays a crucial role. In fact, the maximum
likelihood estimator can be derived by iterative techniques once one has good ap-
proximations to the c(�) and its derivatives. See Kent (1987), Kume and Wood
(2005, 2007). Note that for the case p = 3, Mardia and Zemroch (1977) provide
maximum likelihood estimators for (λ1, λ2) based on various choices of (τ1, τ2).
On the other hand, Dryden (2005) describes maximum likelihood when both p and
n are large and based on asymptotic approximations.

The aim in the present paper is to demonstrate that Bayesian posterior infer-
ence can be implemented using latent variable techniques (Besag and Green, 1993;
Damien et al., 1999) and which do not consequently require any numerical approx-
imations. The normalizing constant can be replaced by a density function defined
up to a constant of proportionality; the normalizing constant of which is the recip-
rocal of c(�). Hence, if y denotes the latent variable, we consider a joint density
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p(x, y) = g(x)h(y) where g(x) = exp(−∑p−1
l=1 λlx

2
l ) and

∫
h(y)dy = 1/c(�).

The idea then is that h(y) is tractable and there is in particular easy access to �.
The approach described in the present paper can also be used to perform

Bayesian analysis for the Fisher–Bingham distribution (Mardia, 1975). This has
density function given up to proportionality by

f (x|A,μ) ∝ exp
(−x′Ax + μ′x

)
1
(
x′x = 1

)
,

where μ = (μ1, . . . ,μp). It is a more complicated latent model to describe for this
family and hence we concentrate on the Bingham family of distributions.

There has been limited, if any, Bayesian analysis of data assumed to arise from
the Bingham distribution. This would be due to the normalizing constant not hav-
ing a closed from expression. The present paper represents an application of an al-
gorithm, dealing with uncomputable normalizing constants, to be found in Walker
(2011). Full details of the general algorithm are presented in Walker (2011), which
includes a description of alternative techniques for dealing with incomputable nor-
malizing constants. However, none of these alternatives explicitly make use of a
latent model.

Describing the layout of the paper: In Section 2, we describe the function h(·)
which when integrated yields [c(�)]−1. Posterior inference via MCMC is pre-
sented in Section 3 and Section 4 contains a numerical illustration.

2 The latent model

For a sample of size n from the Bingham distribution, say (x1, . . . , xn), where
each xi = (xi,1, . . . , xi,p−1), we wish to estimate �. For a Bayesian, the task is to
construct a posterior distribution for �.

The latent variable introduced for the Bingham distribution to account for the
normalizing constant is based on the ideas presented in Walker (2011). The basic
idea is to take an intractable normalizing constant of the type(

1∫
g(s)m(ds)

)n

for some bounded (by 1) function g and a probability density m. The key to dealing
with this is to use the fact that

∞∑
k=0

(
n + k − 1

k

)[∫
m(ds)

(
1 − g(s)

)]k

=
(

1∫
g(s)m(ds)

)n

.

We can then consider [∫
m(ds)

(
1 − g(s)

)]k
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as the density of a latent model

k∏
l=1

[
1 − g(sl)

]
,

where the sl are independent and identically distributed from m. So the intractable
normalizing constant is removed and taking expectations returns the required term.
The specific details are now presented.

We define a joint density on {0,1,2, . . .}⊗ S̃∞
p ⊗[0,1]∞ which will be the joint

density of all the required latent variables. So if we integrate and sum this joint
density over this space, the normalizing constant will be the reciprocal of what it
is for the un-normalized Bingham distribution. Hence, the normalizing constant
disappears when the latent model is placed next to the un-normalized Bingham
distribution. The latent density is given as follows:

hn(k, s1, s2, . . . , u1, u2, . . .)

∝
(

n + k − 1
k

)

×
k∏

j=1

1

{
uj < 1 − exp

(
−

p−1∑
l=1

λls
2
j l

)}
ω∞(s) × pk(u|s),

where ω∞(s) = ∏∞
j=1 ω(sj ), and each ω(sj ) is proportional to the function, with

each sj of the type sj = (sj1, . . . , sjp−1),

ω(sj ) ∝ (
1 − s2

j1 − · · · − s2
jp−1

)−1/2

on S̃p , and

pk(u|s) =
∞∏

j=k+1

Un

[
uj

∣∣∣0,1 − exp

(
−

p−1∑
l=1

λls
2
j l

)]
.

Here Un[uj |a, b] is the density of the uniform distribution on the interval [a, b],
evaluated at uj .

If we now integrate out the u, we obtain

h(k, s1, s2, . . .) ∝
(

n + k − 1
k

) k∏
j=1

{
1 − exp

(
−

p−1∑
l=1

λls
2
j l

)}
ω∞(s).

If we now integrate out the s, we obtain

h(k) ∝
(

n + k − 1
k

){
1 −

∫
S̃p

exp

(
−

p−1∑
l=1

λls
2
l

)
ω(s)ds

}k

.



Bingham distribution 65

We now use the result that for any 0 < q < 1 it is that

∞∑
k=0

(
n + k − 1

k

)
(1 − q)k = q−n.

Therefore, summing over k, we obtain

∞∑
k=0

h(k) ∝
{∫

S̃p

exp

(
−

p−1∑
l=1

λls
2
l

)
ω(s)ds

}−n

.

Consequently, if we consider the joint density

f (x, k, s, u|λ) ∝ exp

(
−

p−1∑
l=1

λl

n∑
i=1

x2
i,l

)(
n + k − 1

k

)

×
k∏

j=1

1

{
uj < 1 − exp

(
−

p−1∑
l=1

λls
2
j l

)}
ω∞(s) × pk(u|s)

we note two points. The first is that the normalizing constant for this joint density
does not depend on the λ = (λl) and, second, the marginal density of x is precisely
as we want it.

We should mention that the infinite dimensional (s, u) is not strictly neces-
sary; we actually only need (s1, . . . , sk, u1, . . . , uk) to define an appropriate latent
model. We do introduce the full infinite dimensional model here as it assists with
the Markov Chain Monte Carlo (MCMC) algorithm described in the next section;
this avoids a reversible jump algorithm as there is no dimension change when we
move k. More details and references are provided in the next section, but we men-
tion here that the formulation of the infinite latent model is described in Godsill
(2001).

Also note a phenomenon slightly unusual with latent models which is that x

and (k, s, u) are independent, given λ. Indeed, it is λ that connects the two parts;
effectively the numerator and the denominator.

3 Sampling the posterior

We will use a MCMC (Smith and Roberts, 1993) approach to sampling the full
joint density. This will involve setting up a Markov chain which samples values
(k, s, u,λ). Before proceeding, we briefly discuss the infinite dimensions of s and u

since this might suggest we are unable to sample the correct posterior distribution.
In fact, we do not need to sample all the variables in order to construct a MCMC
algorithm with the correct stationary density. All the variables we do not sample
(i.e., (sk+1, uk+1), . . .) are taken from parts of the joint density which have no
effect on the sampling of λ. Hence, we ensure the λ samples are coming from
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the correct stationary density. To complete the Bayesian model, we assign a prior
distribution π(λ) for λ. This will be of the form π(λ) = ∏p−1

l=1 π(λl).
Suppose at a particular iteration of the Markov chain we are currently at the state

k and have s1, . . . , sk and λ. Then we sample uj from the uniform distribution on(
0,1 − exp

(
−

p−1∑
l=1

λls
2
j l

))
,

independently for j = 1, . . . , k.
Once this has been done, we can sample sj , which comes from the density

proportional to ω(sj ) on S̃p , subject to the constraint

p−1∑
l=1

λls
2
j l > − log(1 − uj ),

again, independently for j = 1, . . . , k. This is best done componentwise; so each
sjl is coming from the density given by

p(sjl| · · ·) ∝
(

1 − s2
j l − ∑

m	=l

s2
jm

)−1/2

× 1
(
s2
j l > λ−1

l

(
− log(1 − uj ) − ∑

m	=l

λms2
jm

))
.

This is easy to sample, as it is equivalent to sampling a truncated beta distribution.
Each λl , for l = 1, . . . , p − 1, would then be sampled from the density function

π(λl| · · ·) ∝ π(λl) exp

(
−λl

n∑
i=1

x2
i,l

)
1(λl ∈ Al),

where

Al =
{
λl :λl > max

j=1,...,k
ψjl

}
and

ψjl = − log(1 − uj ) − ∑
m	=l λms2

jm

s2
j l

.

This is not a difficult density to sample, particularly if the choice of π(λl) is an ex-
ponential distribution, in which case the density becomes a truncated exponential.

Finally, we need to sample from the full conditional for k. This can be done
with a Metropolis–Hastings step. At k, and assume for now that k 	= 0 or 1, then
a proposal is made to either k − 1 or k + 1, with a probability of 1/2 each. If the
move to k + 1 is proposed then we would need to sample, while in state k, from
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pk(uk+1, sk+1), which would be sampling sk+1 from ω(sk+1) on S̃p and then uk+1

given sk+1 as uniform from the interval(
0,1 − exp

(
−

p−1∑
l=1

λls
2
k+1l

))
.

The move from k to k + 1 is accepted with probability

min
{

1,
(n + k)(1 − g(sk+1, λ))

k + 1

}
,

where

g(s, λ) = exp

(
−

p−1∑
l=1

λls
2
l

)
.

On the other hand, if the proposal is made to go to state k − 1, then this move is
accepted with probability

min
{

1,
k

(n + k − 1)(1 − g(sk, λ))

}
.

The alterations to these probabilities when k = 1 or k = 0 are obvious bearing in
mind that a proposal from k = 0 to k = 1 must happen with probability 1. The k

moves described here and the joint latent model are basically the Godsill (2001)
formulation of reversible jump MCMC (Green, 1995).

An interesting scenario arises when we take n = 1. For here we have, after
integrating out the (s, u),

h(k|λ) ∝
{

1 −
∫
S̃p

exp

(
−

p−1∑
l=1

λls
2
l

)
ω(s)ds

}k

.

Hence, k + 1 given λ is a geometric distribution and as is well known then the
mean of k + 1 is given by

1∫
S̃p

exp(−∑p−1
l=1 λls

2
l )ω(s)ds

which is the normalizing constant. Thus, by running an MCMC algorithm with λ

fixed and with n = 1, then an estimate of the normalizing constant is available.
However, there seems no purpose in estimating this constant and the interesting
aspect of the approach used in this paper is that the normalizing constant is not
needed to be estimated at all.
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4 Numerical illustrations

We start off by doing a comparison with the maximum likelihood estimators pre-
sented in Mardia and Zemroch (1977) based on p = 3. We choose the point
(τ1, τ2) = (0.30,0.32) and in order to allow a good comparison we will need to
take n large in the Bayesian approach so that the Bayes estimate, which is always
taken to be the posterior mean, and maximum likelihood can coincide. From the
tables in Mardia and Zemroch (1977), we obtain (̂λ1, λ̂2) = (0.588,0.421).

The Markov chain described in Section 3 was run with 10,000 iterations, keep-
ing every 10th sample for estimation purposes, so that the Bayes estimates are
based on 1000 samples. No burn-in was used. The prior for each λl is taken
to be exponential with parameter 0.01. In this case, the Bayes estimates are
(0.580,0.366). Thinning chains is by no means widely used and for a mathe-
matical treatment of this practice see MacEachern and Berliner (1994). However,
I prefer working with reduced autocorrelated chains and perhaps running the chain
longer as a consequence. There are many authors who also employ thinned chains;
see, for example, Meyer et al. (2003).

Next, we take (n, τ1, τ2) = (20,0.20,0.25). This time the Markov chain de-
scribed in Section 3 was run for 100,000 iterations. Every 100th value was col-
lected for estimating λ. Even though the autocorrelation of the un-thinned chain
is high, taking every 100th value leads to much reduced autocorrelation. This is
evident in Figure 1 where the satisfactory nature of the autocorrelation functions
is evident.

Posterior estimation therefore was possible and the estimate of λ1 was 2.04 and
the estimate of λ2 was 1.51. In Figure 2, we show the trace of the running averages
of the output of the chain for the two series λ1 and λ2, which are seen converging
to the parameter estimates.

We now look at the full posterior distributions. We take (n, τ1, τ2) = (10,

0.20,0.25). Figure 3 contains the following items: The marginal posterior dis-
tributions for λ1 and λ2 are presented. These are based on a chain run for 100,000
iterations with every 100th sample used for constructing the distributions. For this
example, and using the same output, we plot the joint samples. The samples appear
uncorrelated and indeed the estimated correlation is 0.1. The samples of k which
are generated at each iteration over the entire 100,000 iterations are also plotted.
The mean value is approximately 30 which means the average number of latent
variables at each iteration is 60. This is not necessarily a particularly high number.
Modern computing capabilities should be able to handle such an array of latent
variables and thinning the chain is the natural idea. In fact, running the chain over
100,000 iterations takes a matter of minutes on a laptop, with the algorithm coded
in Scilab (http://www.scilab.org/).

The length of time of run of the chain will depend on k, since a large k involves
the simulation of more variables within each iteration. The value of k will be large

http://www.scilab.org/
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Figure 1 Autocorrelation function for series λ1 and λ2 taking every 100th sample from the Markov
chain.

Figure 2 Trace of running averages for λ1 and λ2 using every 100th sample from the Markov
chain.
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Figure 3 For the data (n, τ1, τ2) = (20,0.20,0.25). Histogram estimates of the marginal posterior
densities for λ1 and λ2 with the joint posterior samples obtained from the MCMC output. Alongside
are the output of the k samples.

when the denominator is small; see Section 3 for an explanation of this. The de-
nominator will be small when the λ are large and consequently another run of the
chain was made taking n = 20 with (τ1, τ2) = (0.02,0.04). These yield large val-
ues of λ, the Bayes estimate of λ1 is 23.7 and the Bayes estimate of λ2 is 12.3. The
chain now took just over 1/2 hour to complete, that is, for the 100,000 iterations
of the chain to finish. A plot of the posterior distributions of λ1 and λ2 are given in
Figure 4, their marginal and joint. More interesting here, though not illustrated, is
the value of k reached; the value increases steadily throughout the run of the chain
and the value of k stabilizes at about 650 after about 50,000 iterations.

5 Discussion

The paper represents an application of a new approach for dealing with intractable
normalizing constants. The aim is to use two sets of latent variables. First, to put
the normalizing constant into a position whereby it can be written as an expec-
tation, and second to remove the expectation so a full latent model materializes.
The latent model avoids the problems of having to approximate the normalizing
constant and also of being forced to find specific Metropolis samplers which re-
move the normalizing constant in the accept/reject ratios. Note for the method
demonstrated here, the normalizing constant is dealt with before any sampler is
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Figure 4 For the data (n, τ1, τ2) = (20,0.02,0.04). Histogram estimates of the marginal posterior
densities for λ1 and λ2 with the joint posterior samples obtained from the MCMC output.

even thought about or needed. In fact, an alternative Gibbs sampler could also be
employed but would probably work out inferior to the Metropolis step of the type
discussed by Godsill (2001).

Issues with the chain taking a long time to run, though the experience is that this
is never excessive, amounted to a matter of at most 1 hour to complete 100,000
iterations. This case arises when the (τl) are small, leading to large λl , and hence
leading to a large k. A large k means more latent variables have to be sampled at
each iteration. For moderate τl the chain runs very fast, taking a matter of minutes
for 100,000 iterations, which by MCMC standards is quite reasonable.
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