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Weighted approximations for Studentized U -statistics

Masoud M. Nasari
Carleton University

Abstract. In this article, we employ the jackknife method of estimation and
the concept of Studentized U -statistics to derive a new weak convergence re-
sult for nondegenerate U -statistics on the space D[0,1]. We drop the classical
condition that the second moment of the kernel of the underlying U -statistic
exists and derive a weighted weak convergence result for these Studentized
statistics. This weak convergence is concluded from a weighted approxima-
tion in sup-norm ‖/q‖, in probability, of Studentized U -statistics by partial
sums of i.i.d. projections, where q is in an appropriate class of positive weight
functions.

1 Introduction

Let X1,X2, . . . , be a sequence of nondegenerate real-valued independent and iden-
tically distributed (i.i.d.) random variables with distribution F . Consider the pa-
rameter (parametric function) θ = θ(F ) for which there is an unbiased estimator
in terms of a Borel-measurable real-valued function h = h(x1, . . . , xm), which is
symmetric in its arguments. That is to say, given a random sample X1, . . . ,Xn of
size n ≥ m on F , we have

θ = θ(F ) := E
(
h(X1, . . . ,Xm)

) =
∫

Rm
h(x1, . . . , xm)dF (x1) · · · dF(xm) < ∞.

The corresponding U -statistic (cf. Serfling (1980) or Hoeffding (1948)) is

Un = U(X1, . . . ,Xn) =
(

n

m

)−1 ∑
1≤i1<···<im≤n

h(Xi1, . . . ,Xim)

(1.1)
= [n]−m

∑
1≤i1 �=···�=im≤n

h(Xi1, . . . ,Xim),

where [n]−m := (n−m)!
n! . For further use throughout, we define the projection of h

as follows.

h̃1(x) = E
(
h(X1, . . . ,Xm) − θ |X1 = x

)
.
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A large number of well-known statistics are U -statistics. Statistics such as the
sample variance, deleted jackknife variance estimator, Fisher’s k-statistic for es-
timation of cumulants, Kendal’s τ , Gini’s mean difference are few examples of
U -statistics.

The first central limit theorem for nondegenerate U -statistics, that is, when
Var(h̃1(X)) > 0, was proved by Hoeffding (1948) when the kernel h is square
integrable. Under the same moment conditions, Miller and Sen (1972) established
a weak convergence result for this class of U -statistics on the space C[0,1]. Ko-
rolyuk and Borovskikh (1988) showed that the central limit theorem for nonde-
generate U -statistics continues to hold true when E|h(X1, . . . ,Xm)|4/3 < ∞ and
0 < Var(h̃1(X)) < ∞. The common feature of all of these contributions is that
they rely on the unknown parameter Var(h̃1(X)). Bentkus et al. (2009) obtained
a Berry–Esseen type bound for nondegenerate U -statistics of order 2. Also, by
estimating Var(h̃1(X)) using the jackknife estimation, they proved a central limit
theorem for the resulting Studentized U -statistics of order 2. Another example
of the use of jackknife method of estimation for U -statistics is the paper Jing et
al. (2009) in which the authors establish the validity of jackknife empirical likeli-
hood for U -statistics when the kernel of the underlying U -statistic is assumed to
be square integrable and Var(h̃1(X)) > 0. U -statistics of order 2 were also con-
sidered by Csörgő et al. (2008b) when they studied the weak convergence of the
Studentized version of Csörgő-Horváth test statistic for detecting change in distri-
bution (cf. Csörgő and Horváth (1997) and references therein) when the variance
of the underlying kernel h(·, ·) is not necessarily finite. Inspired by this work of
Csörgő et al. (2008b), in this exposition we establish a new weak convergence re-
sult for nondegenerate U -statistics on the space D[0,1], when the second moment
of the kernel h is not necessarily finite (cf. Theorem 1). An application of the main
result of this exposition, that is, Theorem 1, to constructing asymptotic confidence
interval for the parameter θ = Eh(X1, . . . ,Xm) is presented. Theorem 1 gener-
alizes all of the above mentioned contributions to weak convergence and central
limit theorems of U -statistics.

The material in this paper is organized as follows. In Section 2, we present our
main results, Theorem 1 and Theorem 2 and outline their proofs via the auxiliary
Theorem 3 and Theorem 4 whose proofs will be given in Section 4. Applications
of Theorem 1, the main result, are given in Section 3. Finally, in Section 4, we state
some required results on weighted weak convergence of partial sums in the domain
of attraction of the normal law which are crucial in establishing our results and
also present some technical tools, followed by the proofs of our auxiliary results
Theorems 3 and 4 of Section 2.
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2 Main results

For i = 1, . . . , n, let Ui
n−1 be the jackknifed version of Un based on X1, . . . ,Xi−1,

Xi+1, . . . ,Xn, defined as follows

Ui
n−1 := 1(n−1

m

) ∑
1≤j1<···<jm≤n

j1,...,jm �=i

h(Xj1, . . . ,Xjm).

Also define the Studentized U -statistic process, U stu[nt], as follows.

U stu[nt] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ t <
m

n
,

[nt](U[nt] − θ)√
n(n − 1)

∑n
i=1(U

i
n−1 − Un)2

,
m

n
≤ t ≤ 1.

(2.1)

In the following Theorem 1, which is the main result in this article, we drop the
classical assumption of having finite variance of the kernel h of the underlying U -
statistic Un. Consequently, the variance of the projections h̃1(·) is not necessarily
finite. Hence, we may and will assume that h̃1(·) ∈ DAN, where DAN stands for
the domain of attraction of the normal law (cf. Section 4). Moreover, we present
our weak convergence results for Studentized U -statistics, in presence of weight
functions. We now define the class of weights that will be used in our results.

Throughout this article, we let Q be the class of functions q(t), which are pos-
itive on (0,1], that is, infδ≤t≤1 q(t) > 0 for 0 < δ < 1, and nondecreasing in a
neighborhood of zero (cf. the below Lemmas 1 and 2 for characterization of Q).
Moreover, we define the integral I (q, c) as follows that is also used to characterize
the class Q (cf. Section 4).

I (q, c) :=
∫ 1

0+
t−1 exp

(−cq2(t)/t
)
dt, 0 < c < ∞.

The next result establishes a weak convergence result for Studentized U -statistics
processes via weighted weak approximations as follows.

Theorem 1. Let q ∈ Q. If

(a) E|h(X1, . . . ,Xm)|5/3 < ∞ and h̃1(X1) ∈ DAN,

then, as n → ∞, we have

(b) U stu[nt] ⇒ W(t) on (D,D,‖/q‖) if and only if I (q, c) < ∞ for all c > 0,
where {W(t),0 ≤ t ≤ 1} is a standard Wiener process and ‖/q‖ is the weighted
sup-norm metric for functions in D[0,1];

(c) On an appropriate probability space for X1,X2, . . . , we can construct a
standard Wiener process {W(t),0 ≤ t < ∞} such that

sup
0<t≤1

∣∣∣∣U stu[nt] − W(nt)

n1/2

∣∣∣∣/q(t) = oP (1),
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if and only if I (q, c) < ∞.

Remark 1. The notation of ⇒ in part (b) of the preceding theorem is as it was
defined in Remark 7 below.

Remark 2. Note that taking q(t) = 1 results in finiteness of I (q, c) for all c > 0,
that is, Theorem 1 remains valid for nonweighted Studentized U -statistic pro-
cesses. Moreover, in this case, ‖/q‖-metric will coincide with the usual sup-norm
metric and the notion ⇒ of part (b) of Theorem 1, as it is defined above, will
coincide with the convergence in distribution of functionals definition of weak
convergence on D[0,1] with respect to the sup-norm metric.

Theorem 2. Let {W(t),0 ≤ t < ∞} be a standard Wiener process, E|h(X1, . . . ,

Xm)|5/3 < ∞ and h̃1(X1) ∈ DAN. If q ∈ Q and q(t) is nondecreasing on (0,1],
then as n → ∞,

sup
0<t≤1

∣∣U stu[nt]
∣∣/q(t) −→d sup

0<t≤1

∣∣W(t)
∣∣/q(t)

if and only if I (q, c) < ∞ for some c > 0. Consequently as n → ∞, we have

sup
0<t≤1

∣∣U stu[nt]
∣∣/(

t log log
(

1

t

))1/2

−→d sup
0<t≤1

∣∣W(t)
∣∣/(

t log log
(

1

t

))1/2

.

The preceding Theorem 2 is a U -statistic version of the below Lemma 4.
It can be readily seen that in Theorem 1, (c) implies (b). By virtue of Lemma 3

(cf. Section 4), with h̃1(X) instead of X, and in presence of the below conclu-
sion (4.1), it becomes clear that to prove Theorem 1 it suffices to prove the follow-
ing two results namely Theorems 3 and 4. Moreover, as it will be seen in the proof
of Theorem 3, we only require that the weight function q ∈ Q satisfy the condition
that limt↓0

t1/2

q(t)
= 0. In view of Lemma 1 (cf. Section 4), the latter relation holds

whenever I (q, c) < ∞ for some c > 0. Hence, in view of Lemma 4 in Section 4,
Theorem 2 will also follow from the following Theorems 3 and 4.

Theorem 3. Let q ∈ Q and I (q, c) < ∞ for some c > 0. Assume

E
(∣∣h(X1, . . . ,Xm)

∣∣4/3 log
∣∣h(X1, . . . ,Xm)

∣∣) < ∞
and that h̃1(X1) ∈ DAN. Then, as n → ∞ we have

sup
0<t≤1

∣∣∣∣ [nt]
m�(n)

√
n
(U[nt] − θ) −

∑[nt]
i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q(t) = oP (1).

Theorem 4. If E|h(X1, . . . ,Xm)|5/3 < ∞ and h̃1(X1) ∈ DAN, then, as n → ∞,∣∣∣∣∣ (n − 1)

m2�2(n)

n∑
i=1

(
Ui

n−1 − Un

)2 − 1

n�2(n)

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣ = oP (1).
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Consequently, the preceding approximation combined with (4.1) of Section 4,
the conclusion of Raikov’s theorem, yields a Raikov type result for the distribu-
tion free jackknifed version of U -statistics which is of interest on its own (cf.
Remark 3), and it reads as follows.

Corollary 1. If E|h(X1, . . . ,Xm)|5/3 < ∞ and h̃1(X1) ∈ DAN, then, as n → ∞,

(n − 1)

m2�2(n)

n∑
i=1

(
Ui

n−1 − Un

)2 −→P 1.

Remark 3. When Eh2(X1, . . . ,Xm) < ∞, which in turn implies that Eh̃2
1(X1) <

∞, then �2(n) = Eh̃2
1(X1) > 0 and, as n → ∞, Corollary 1 implies that

(n − 1)

m2

n∑
i=1

(
Ui

n−1 − Un

)2 −→P Eh̃2
1(X1).

The latter version of Corollary 1 coincides with one of the results obtained
by Arvesen (1969) who extended the idea of the so-called (by Tukey) pseudo-
values to U -statistics and studied the asymptotic distribution of nondegenerate
U -statistics via jackknifing.

The condition that E|h(X1, . . . ,Xm)|5/3 < ∞ in Theorem 1 is assumed to
guarantee the nearness of the (n−1)

m2

∑n
i=1(U

i
n−1 − Un)

2 and 1
n

∑n
i=1 h̃2

1(Xi). The
method of truncations is used to establish the latter nearness. Having tried sev-
eral different truncations the author have found the sequence an = n3m/5, cf. the
proof of Theorem 4, to be an equilibrium point for the truncation I (|h| ≤ an) and
its tail I (|h| > an). Any other truncation results in requiring a moment higher
than 5/3. The truncation I (|h| ≤ n3m/5) is associated with the moment condition
E|h(X1, . . . ,Xm)|5/3 < ∞. Hence this condition seems to be minimal.

Remark 4. When m = 1, the projection h̃1(X1) will coincide with h(X1) − θ ,
and Theorem 1, correspond to Corollary 5 of Csörgő et al. (2008a) on taking the
weight function q = 1 for the therein studied Studentized process Tn,t (X − μ),
that is, when m = 1, the studentized U -process U stu[nt] coincides with Tn,t (X − μ).
Hence, in this exposition, we shall state our proofs for nondegenerate U -statistics
with order m ≥ 2. Also, when m = 2, the two conditions in (a) of Theorem 1 as
well as the idea of its proof by truncation, coincide with the corresponding ones of
Theorem 2 of Csörgő et al. (2008b).

3 Application of Theorem 1 to confidence intervals

In view of Theorem 1, for a function g :D[0,1] → R as in Remark 7, one can
use the pivot g(U stu[n·]/q(·)) to establish an asymptotic confidence interval for the
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parameter of interest θ . More precisely, in this section, we take q(t) = 1 and we
derive an asymptotic confidence interval of level 1 − α, 0 < α < 1 for θ using the
pivot sup0≤t≤1 U stu[nt]. This can be done since from Theorem 1, with q(t) = 1, we
have

sup
0≤t≤1

U stu[nt] −→d sup
0≤t≤1

∣∣W(t)
∣∣.

By virtue of the last relation and by defining wα to be P(sup0≤t≤1 |W(t)| >

wα) = α, we establish the following (1 − α)% asymptotic confidence interval for
θ as follows.

n⋂
k=1

[
Uk − wα

k
√

n
σ̂ ,Uk + wα

k
√

n
σ̂

]
, (3.1)

where σ̂ =
√

(n − 1)
∑n

i=1(U
i
n−1 − Un)2.

The distribution of sup0≤t≤1 |W(t)| was tabulated by Csörgő and Horváth
(1984). Confidence intervals of the form (3.1) which are shorter than those ob-
tained from the central limit theorem, were also derived by Martsynyuk (2009),
where she established functional asymptotic confidence intervals for a common
mean of independent random variables.

One can use Theorem 1 to construct the confidence interval (3.1) for the pa-
rameter θ associated with a U -statistic that is built on a random sample whose
variance is +∞. Obviously, this can not be derived neither by classical weak con-
vergence results for U -statistics such as Miller and Sen (1972), nor from the cen-
tral limit theorem of Korolyuk and Borovskikh (1988) in which the variance of the
U -statistic need not be finite, however, h̃1 should have a finite positive variance.
Moreover, this result can not be derived from Bentkus et al. (2009) either as the
latter requires that the variance of 0 < Var(h̃1(X1)) < ∞.

To demonstrate this application of Theorem 1, we let X1,X2, . . . , be a sequence
of i.i.d. random variables with the density function

f (x) =
{

2a2x−3, x ≥ a,
0, elsewhere,

where a > 0. Consider the parameter θ = Em(X1) = 2mam, where m ≥ 1 is a pos-
itive integer, and the kernel h(X1, . . . ,Xm) = ∏m

i=1 Xi . Then with m,n satisfying
n ≥ m, the corresponding U -statistic is

Un =
(

n

m

)−1 ∑
1≤i1<···<im≤n

m∏
j=1

Xij .

Simple calculations show that h̃1(X1) = X12m−1am−1 − 2mam.
It is easy to check that E|h(X1, . . . ,Xm)|5/3 < ∞ and that h̃1(X1) ∈ DAN (cf.

Gut (2005)).
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The asymptotic (1 − α)% confidence interval (3.1) for the parameter θ = 2mam

is of the form:

n⋂
k=1

[(
k

m

)−1 ∑
1≤i1<···<im≤k

m∏
j=1

Xij − wα

k
√

n
σ̂ ,

(
k

m

)−1 ∑
1≤i1<···<im≤k

m∏
j=1

Xij + wα

k
√

n
σ̂

]
,

where, by (4.18) of Section 4 we have

σ̂ 2 = (n − 1)

n∑
i=1

(
Ui

n−1 − Un

)2

= m2(n − 1)

(n − m)2

{
n∑

i=1

X2
i

[(
n − 1

m − 1

)−1 ∑
1≤i2<···<im≤n

i2,...,im �=i

m∏
j=2

Xij

]2

(3.2)

− n

[(
n

m

)−1 ∑
C(n,m)

m∏
j=1

Xij

]2}
.

In addition to the above application to confidence intervals, for the Studentized
U -process here, which is defined as

U stu[nt] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ t <
m

n
,

[nt](([nt]
m

)−1 ∑
1≤i1<···<im≤[nt]

∏m
j=1 Xij − θ)

σ̂
√

n
,

m

n
≤ t ≤ 1,

where σ̂ is defined by (3.2), Theorem 1 with q(t) = 1, for example, implies that

U stu[nt] ⇒ W(t) on
(
D[0,1], ρ),

where ρ is the sup-norm for functions in D[0,1] and {W(t),0 ≤ t ≤ 1} is a stan-
dard Wiener process. Also, applying Theorem 2, as n → ∞, we conclude the fol-
lowing central limit theorem:

sup
0<t≤1

U stu[nt]
/(

t log log
(

1

t

))
−→d sup

0<t≤1

∣∣W(t)
∣∣/(

t log log
(

1

t

))
.

Remark 5. It is noteworthy to note that on replacing the parameter θ by Un, the
Studentized U -statistic U stu[n·], which is defined in (2.1), is a desirable candidate in
studying convergence in distribution of bootstrapped U -statistics.
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4 Tools and proofs

The following is the formal definition of the concept of DAN.

Definition 1. A sequence X,X1,X2, . . . , of i.i.d. random variables is said to be in
the domain of attraction of the normal law (X ∈ DAN) if there exist sequences of
constants An and Bn > 0 such that, as n → ∞,∑n

i=1 Xi − An

Bn

−→d N(0,1).

Remark 6. Further to this definition of DAN, it is known that An can be taken
as nE(X) and Bn = n1/2�X(n), where �X(n) is a slowly varying function at in-
finity (i.e., limn→∞ �X(nk)

�X(n)
= 1 for any k > 0), defined by the distribution of X.

Moreover, �X(n) = √
Var(X) > 0, if Var(X) < ∞, and �X(n) → ∞, as n → ∞,

if Var(X) = ∞. Also X has all moments less than 2, and the variance of X is
positive, but need not be finite.

Thus, in view of Remark 6, if X ∈ DAN, then as n → ∞, with the numeric
sequence n1/2�(n) we have∑n

i=1(Xi − E(X1))√
n�(n)

−→d N(0,1),

and ∑n
i=1(Xi − E(X1))

2

n�2(n)
−→P 1. (4.1)

The result (4.1) is known as Raikov’s theorem (cf. Giné et al. (1997), who also
give a nice proof in this formulation).

The following two lemmas, which characterize the class Q, are due to Csörgő
et al. (1986) (cf. also Lemmas 2 and 3 in Csörgő et al. (2008a)).

Lemma 1. Let q ∈ Q. If I (q, c) < ∞ for some c > 0, then

lim
t↓0

t1/2

q(t)
= 0.

Lemma 2. Let {W(t),0 ≤ t < ∞} be a standard Wiener process and q ∈ Q.
Then,

(a) I (q, c) < ∞ for all c > 0 if and only if

lim sup
t↓0

|W(t)|
q(t)

= 0 a.s.
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(b) I (q, c) < ∞ for some c > 0 if and only if

lim sup
t↓0

|W(t)|
q(t)

< ∞ a.s.

The presence of the weight function q requires a definition of a proper metric on
D[0,1] by which weak convergence is defined. This definition is given as follows.

Definition 2. For the functions x, y on [0,1] and q ∈ Q, define the weighted sup-
norm metric ∥∥(x − y)/q

∥∥ = sup
0<t≤1

∣∣x(t) − y(t)
∣∣/q(t),

whenever it is well defined, that is, lim supt↓0 |x(t) − y(t)|/q(t) < ∞. A short
hand notation for this metric will be ‖/q‖.

For more on the subject of weight functions we refer the interested reader to
Csörgő et al. (1986) and Csörgő and Horváth (1993). Another good source for
literature in this regard is Szyszkowicz (1992).

The next two results, namely Lemmas 3 and 4 are weak convergence results
for partial sums of i.i.d. random variables in DAN in presence of weight functions
q ∈ Q. We shall state and later on use these results in order to establish U -statistics
versions of them in Theorems 1 and 2. The following Lemma 3 coincides with
Corollary 1 of Csörgő et al. (2008a) that is a direct consequence of their Theorem 1
(cf. also Proposition 3.1 of Csörgő et al. (2004)).

Lemma 3. Let q ∈ Q. As n → ∞, the following statements are equivalent:

(a) X1 ∈ DAN and EX1 = μ;
(b)

∑[nt]
i=1(Xi−μ)√

n�(n)
⇒ W(t) on (D,D,‖/q‖) if and only if I (q, c) < ∞ for all

c > 0, where {W(t),0 ≤ t ≤ 1} is a standard Wiener process;
(c) On an appropriate probability space for X1,X2, . . . , a standard Wiener

process {W(t),0 ≤ t ≤ ∞} can be constructed in such a way that as n → ∞,

sup
0<t≤1

∣∣∣∣
∑[nt]

i=1(Xi − μ)√
n�(n)

− W(nt)√
n

∣∣∣∣/q(t) = oP (1)

if and only if I (q, c) < ∞ for all c > 0.

Remark 7. The statement (b) of Lemma 3 stands for the following functional
central limit theorem on (D,D,‖/q‖), where D is the σ -field of subsets of
D = D[0,1] generated by its finite-dimensional subsets, and ‖/q‖ stands for the
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weighted sup-norm metric in D = D[0,1] with q ∈ Q. With −→d standing for
convergence in distribution as n → ∞, we have

g

(∑[n·]
i=1 Xi − μ

Vnq(·)
)

→d g

(
W(·)
q(·)

)

for all q ∈ Q and g : D = D[0,1] → R that are (D,D) measurable and ‖/q‖-
continuous or ‖/q‖-continuous except at points forming a set of Wiener measure
zero on (D,D), generated by a standard Wiener process W(·) on the unit interval
[0,1].

For a larger class of weight functions that imply the finiteness of I (q, c) and
characterized by Lemma 1 and part (b) of Lemma 2, the next lemma coincides
with (b) of Corollary 2 of Csörgő et al. (2008a) and it is a consequence of their
Theorem 1 therein. We note in passing that the following Lemma 4 does not follow
from Lemma 3. Moreover, it can not be obtained via classical method of weak
convergence (cf. page 311 of Csörgő et al. (2008a)).

Lemma 4. Let E(X1) = μ. If q ∈ Q and q(t) is nondecreasing on (0,1], then, as
n → ∞

1√
n�(n)

sup
0<t≤1

∣∣∣∣∣
[nt]∑
i=1

(Xi − μ)

∣∣∣∣∣
/

q(t) −→d sup
0<t≤1

∣∣W(t)
∣∣/q(t)

if and only if I (q, c) < ∞ for some c > 0. Consequently, as n → ∞, we have

1√
n�(n)

sup
0<t≤1

∣∣∣∣∣
[nt]∑
i=1

(Xi − μ)

∣∣∣∣∣
/(

t log log
(

1

t

))1/2

−→d sup
0<t≤1

∣∣W(t)
∣∣/(

t log log
(

1

t

))1/2

,

where log(x) = log(max{x, e}).
The concept of complete degeneracy is essential in our proofs. Below is our

definition of this concept.

Definition 3. The Borel-measurable function L(x1, . . . , xm) : Rm → R, m ≥ 2,
with mean μ = EL(X1, . . . ,Xm), is said to be complete degenerate if for every
proper subset {α1, . . . , αj } of {1, . . . ,m}, j = 1, . . . ,m − 1, we have

E
(
L(X1, . . . ,Xm) − μ|Xα1, . . . ,Xαj

) = 0 a.s.

Remark 8. When a summand is complete degenerate, we shall call the associated
sum a complete degenerate one. In other words, complete degeneracy is inherited
by the sum from the summand.
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We note in passing that if L were symmetric in its arguments, then the associated
U -statistic with such a kernel would be a complete degenerate one. Hence our
terminology for L in this definition.

Remark 9. Concerning complete degenerate U -statistics, it is known that, with re-
spect to the filtration σ(X1, . . . ,Xn), they are martingales (cf., e.g., Serfling (1980)
or Borovskikh (1996)). This property will be used in our proofs. We note in pass-
ing that it can also be shown that the martingale property remains valid for multiple
sums with not necessarily symmetric summands.

Along the lines of our proofs we shall use of the followings technical Proposi-
tions 1 and 2 which deal with approximation of the second moment of complete
degenerate sums.

Proposition 1. If L : Rm → R, m ≥ 2, is complete degenerate with mean μ =
EL(X1, . . . ,Xm) and EL2(X1, . . . ,Xm) < ∞, then,

E

(
[n]−m

∑
1≤i1 �=···�=im≤n

(
L(Xi1, . . . ,Xim) − μ

))2

≤ [n]−mE
(
L(X1, . . . ,Xm) − μ

)2
.

A companion of Proposition 1 when the summand L is symmetric and depends
on the index im, where 1 ≤ i1 < · · · < im ≤ n, reads as follows.

Proposition 2. If Lim : Rm → R, m ≥ 2, is symmetric, centered and complete de-
generate such that EL2

im
(Xi1, . . . ,Xim) < ∞, then

E

( ∑
1≤i1<···<im≤n

Lim(Xi1, . . . ,Xim)

)2
≤

n∑
im=m

(
im

m − 1

)
E
(
L2

im
(X1, . . . ,Xm)

)
.

Proof of Proposition 1. Let L̂1,...,m := 1
m!

∑
Cm

Lσ1,...,σm , where Lσ1,...,σm :=
L(Xσ1, . . . ,Xσm) and Cm denotes the set of all permutations σ1, . . . , σm of
1, . . . ,m. It is clear that∑

1≤i1 �=···�=im≤n

(L̂i1,...,im − μ) = ∑
1≤i1 �=···�=im≤n

(Li1,...,im − μ).

Now write

E

(
[n]−m

∑
1≤i1 �=···�=im≤n

(L̂i1,...,im − μ)

)2

= ([n]−m)2 ∑
1≤i1 �=···�=im≤n

E(L̂i1,...,im − μ)2
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+ ([n]−m)2
m−1∑
j=1

∑
1≤i1 �=···�=i2m−j≤n

E
[
(L̂i1,...,ij ,ij+1,...,im − μ)

× (L̂i1,...,ij ,im+1,...,i2m−j
− μ)

]
+ ([n]−m)2 ∑

1≤i1 �=···�=i2m≤n

E
(
(L̂i1,...,im − μ)(L̂im+1,...,i2m

− μ)
)

= [n]−mE(L̂1,...,m − μ)2

+ ([n]−m)2
m−1∑
j=1

∑
1≤i1 �=···�=i2m−j≤n

E
{
E[L̂i1,...,ij ,ij+1,...,im − μ|Xi1, . . . ,Xij ]

× E[L̂i1,...,ij ,im+1,...,i2m−j
− μ|

Xi1, . . . ,Xij ]
}

+ ([n]−m)2 ∑
1≤i1 �=···�=i2m≤n

E(L̂i1,...,im − μ)E(L̂im+1,...,i2m
− μ)

= [n]−mE(L̂1,...,m − μ)2

≤ [n]−m m!
(m!)2

∑
Cm

E(Lσ(1),...,σ (m) − μ)2

= [n]−mE(L1,...,m − μ)2.

The last equality above is true provided that EL2
σ1,...,σm

= EL2
1,...,m. �

It is easy to observe that when L is symmetric in its arguments, the inequality
in Proposition 1 becomes equality.

Proof of Proposition 2. First, let

n∑
im=m

im−1∑
im−1=m−1

· · ·
i2−1∑
i1=1

Lim(Xi1, . . . ,Xim) :=
n∑

im=m

Yim,

and for im �= i′m write

E

(
n∑

im=m

Yim

)2

=
n∑

im=m

E(Yim)2 +
n∑

im=m

n∑
i′m=m

E(YimYi′m). (4.2)

We now show that E(YimYi′m) = 0. To do so, assume that im < i′m and write

E(YimYi′m) = E
[
E(YimYi′m)|X1, . . . ,Xim

]
(4.3)

= E
[
YimE(Yi′m |X1, . . . ,Xim)

]
.
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To deal with the conditional expectation E(Yi′m |X1, . . . ,Xim) in the latter relation,
first recall that

Yi′m =
i′m∑

i′m−1=m−1

· · ·
i′2−1∑
i′1=1

Li′m(Xi′1, . . . ,Xi′m−1
,Xi′m).

Now consider the case when i′m − im < m − 1, then {i′1, . . . , i′m−1} ∩ {i1, . . . ,
im} �= φ. Hence, the complete degeneracy of Li′m implies that

E
(
Li′m(Xi′1, . . . ,Xi′m)|X1, . . . ,Xim

) = 0 a.s.,

and this implies that

E(Yi′m |X1, . . . ,Xim) = 0.

The other case is when i ′m − im ≥ m − 1. In this case Yi′m can be written as

Yi′m = ∑
I1

Li′m(Xi′1, . . . ,Xi′m) + ∑
I2

Li′m(Xi′1, . . . ,Xi′m),

where I1 = {i ′m−1, . . . , i
′
1} ⊂ {i1, . . . , im} and I2 = {i ′m−1, . . . , i

′
1} ⊂ {im+1, . . . , i

′
m}.

The same argument as that of the previous case implies that on I1 we have

E
(
Li′m(Xi′1, . . . ,Xi′m)|X1, . . . ,Xim

) = 0 a.s.

Observe that on I2, {i′1, . . . , i′m−1} ∩ {i1, . . . , im} = φ. Therefore,

E
(
Li′m(Xi′1, . . . ,Xi′m)|X1, . . . ,Xim

) = E
(
Li′m(Xi′1, . . . ,Xi′m)

) = 0.

The last relation is true since Li′m is centered. Thus,

E(Yi′m |X1, . . . ,Xim) = 0.

The last relation together with (4.3) and (4.2) implies that

E

( ∑
1≤i1<···<im≤n

Lim(Xi1, . . . ,Xim)

)2

=
n∑

im=m

E

( ∑
1≤i1<···<im−1

im−1<im

Lim(Xi1, . . . ,Xim)

)2

.

We now proceed via a similar argument as in the proof of Proposition 1, for
estimating

E

( ∑
1≤i1<···<im−1

im−1<im

Lim(Xi1, . . . ,Xim−1,Xim)

)2
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as follows.

E

( ∑
1≤i1<···<im−1

im−1<im

Lim(Xi1, . . . ,Xim−1,Xim)

)2

= ∑
1≤i1<···<im−1

im−1<im

E
(
L2

im
(Xi1, . . . ,Xim−1,Xim)

)

+
m−2∑
j=1

∑
1≤i1<···<i2m−j≤n

E
[
Lim(Xi1, . . . ,Xij ,Xij+1, . . . ,Xim−1,Xim)|

Xi1, . . . ,Xij ,Xim

]
× E

[
Lim(Xi1, . . . ,Xij ,Xim+1, . . . ,Xi2m−j

,Xim)|
Xi1, . . . ,Xij ,Xim

]
+ ∑

1≤i1<···<i2m−2≤n

E
[
Lim(Xi1, . . . ,Xim−1,Xim)|Xim

]

× E
[
Lim(Xim+1, . . . ,Xi2m−2,Xim)|Xim

]
= ∑

1≤i1<···<im−1
im−1<im

E
(
L2

im
(Xi1, . . . ,Xim)

) ≤
(

im

m − 1

)
E
(
L2

im
(X1, . . . ,Xm)

)
.

Now the proof of Proposition 2 is complete. �

Proof of Theorem 3. To establish Theorem 3, we first observe that

sup
0<t≤1

∣∣∣∣ [nt]
m�(n)

√
n
(U[nt] − θ) −

∑[nt]
i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q(t)

≤ sup
0<t≤m/n

∣∣∣∣ [nt]
m�(n)

√
n
(U[nt] − θ) −

∑[nt]
i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q(t) (4.4)

+ sup
m/n<t≤1

∣∣∣∣ [nt]
m�(n)

√
n
(U[nt] − θ) −

∑[nt]
i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q(t).

But as n → ∞, definition of U stu[nt] together with Lemma 4 imply that

sup
0<t≤m/n

∣∣∣∣ [nt]
�(n)

√
n
(U[nt] − θ) −

∑[nt]
i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q(t)

≤ sup
0<t<m/n

∣∣∣∣
∑[nt]

i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q(t)
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+
∣∣∣∣ m

m�(n)
√

n

(
h(X1, . . . ,Xm) − θ

) −
∑m

i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q

(
m

n

)

= oP (1).

Therefore, according to the latter relation and (4.4), in order to prove Theorem 3,
we need to show that

sup
m/n<t≤1

∣∣∣∣ [nt]
m�(n)

√
n
(U[nt] − θ) −

∑[nt]
i=1 h̃1(Xi)

�(n)
√

n

∣∣∣∣/q(t) = oP (1). (4.5)

Due to the fact that

∑
1≤i1<···<im≤[nt]

(
h̃1(Xi1) + · · · + h̃1(Xim)

) = m

[nt]
([nt]

m

) [nt]∑
i=1

h̃1(Xi),

it becomes clear that in order to establish (4.5), it will be enough to prove the
following Proposition 3.

Proposition 3. Let q ∈ Q. If

E
(∣∣h(X1, . . . ,Xm)

∣∣4/3 log
∣∣h(X1, . . . ,Xm)

∣∣) < ∞.

Then, as n → ∞
n−1/2

�(n)
sup

m/n<t≤1

∣∣∣∣ [nt]([nt]
m

) ∑
1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim) − θ

− h̃1(Xi1) − · · · − h̃1(Xim)
)∣∣∣∣/q(t)

= oP (1).

Proof. Without loss of generality, assume that θ = 0. On taking n large enough,
let δ ∈ (m

n
,1] be small enough so that q(t) is nondecreasing on (0, δ). Observe

that

n−1/2

�(n)
sup

m/n<t≤1

∣∣∣∣ [nt]([nt]
m

) ∑
1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim)

− h̃1(Xi1) − · · · − h̃1(Xim)
)∣∣∣∣/q(t)

≤ n−1/2

�(n)
sup

m/n<t<δ

∣∣∣∣ [nt]([nt]
m

) ∑
1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim) − h̃1(Xi1)

− · · · − h̃1(Xim)
)∣∣∣∣/q(t) (4.6)
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+ n−1/2

�(n)
sup

δ≤t≤1

∣∣∣∣ [nt]([nt]
m

) ∑
1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim)

− h̃1(Xi1) − · · · − h̃1(Xim)
)∣∣∣∣/q(t)

:= I1(n, t) + I2(n, t).

To prove Proposition 3, it will be enough to show asymptotic negligibility of both
I1(n, t) and I2(n, t) in probability.

To deal with I1(n, t) write

I1(n, t) ≤ sup
m/n≤t≤1

[nt]1/2([nt]
m

)
�(n)

∣∣∣∣ ∑
1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim)

− h̃1(Xi1) − · · · − h̃1(Xim)
)∣∣∣∣

× sup
m/n<t<δ

t1/2

q(t)
.

The last relation suggests that by virtue of Lemma 1 and from the fact that �(n) is
a slowly varying function at infinity, for large n, we have that �(n)

√
n ≥ √

n. To
prove I1(n, t) = oP (1) it suffices to show that

sup
m/n≤t≤1

[nt]1/2([nt]
m

)
∣∣∣∣ ∑

1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim)

− h̃1(Xi1) − · · · − h̃1(Xim)
)∣∣∣∣ (4.7)

= OP (1).

To establish (4.7), for i1 < · · · < im, consider the following truncation setup:

Htr
im

(Xi1, . . . ,Xim) := h(Xi1, . . . ,Xim)1
(|h|≤i

3/2
m )

− E
(
h(Xi1, . . . ,Xim)1

(|h|≤i
3/2
m )

)
,

H ta
im

(Xi1, . . . ,Xim) := h(Xi1, . . . ,Xim)1
(|h|>i

3/2
m )

− E
(
h(Xi1, . . . ,Xim)1

(|h|>i
3/2
m )

)
,

gtr
im

(Xi1, . . . ,Xim) := Htr
im

(Xi1, . . . ,Xim) − E
(
Htr

im
(Xi1, . . . ,Xim)|Xi1

)
(4.8)

− · · · − E
(
Htr

im
(Xi1, . . . ,Xim)|Xim

)
,

gta
im

(Xi1, . . . ,Xim) := Hta
im

(Xi1, . . . ,Xim) − E
(
Hta

im
(Xi1, . . . ,Xim)|Xi1

)
− · · · − E

(
Hta

im
(Xi1, . . . ,Xim)|Xim

)
.

Having the above setup, to prove (4.7), we proceed by stating and proving the
following Proposition 4.
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Proposition 4. If E|h(X1, . . . ,Xm)|4/3 < ∞, then, as n → ∞, we have

max
m≤K≤n

K1/2(K
m

)
∣∣∣∣ ∑

1≤i1<···<im≤K

gta
im

(Xi1, . . . ,Xim)

∣∣∣∣ = OP (1) (4.9)

and

max
m≤K≤n

K1/2(K
m

)
∣∣∣∣ ∑

1≤i1<···<im≤K

gtr
im

(Xi1, . . . ,Xim)

∣∣∣∣ = OP (1). (4.10)

Proof. For throughout, use let A be a positive constant which may be different as
each stage. To prove (4.9), we first represent the statistic

∑
1≤i1<···<im≤K gta

im
(Xi1,

. . . ,Xim) in terms of 2m − m − 1 sums which their summand posses the property
of complete degeneracy as follows.∑

1≤i1<···<im≤K

gta
im

(Xi1, . . . ,Xim)

= ∑
1≤i1<···<im≤K

{
m∑

d=2

(−1)m−d
∑

1≤j1<···<jd≤m

E
(
gta

im
(Xi1, . . . ,Xim)|

Xij1
, . . . ,Xijd

)

+
m−1∑
c=2

∑
1≤k1<···<kc≤m

c∑
d=2

(−1)c−d
∑

1≤j1<···<jd≤c

E
(
gta

im
(Xi1, . . . ,Xim)|

Xikj1
, . . . ,Xikjd

)}

:= ∑
1≤i1<···<im≤K

V ta
im

(Xi1, . . . ,Xim)

+
m−1∑
c=2

∑
1≤k1<···<kc≤m

∑
1≤i1<···<im≤K

V ta
im

(Xik1
, . . . ,Xikc

).

In view of the latter setup to prove (4.9), we need to show that

max
m≤K≤n

K1/2(K
m

)
∣∣∣∣ ∑

1≤i1<···<im≤K

V ta
im

(Xi1, . . . ,Xim)

∣∣∣∣ = OP (1) (4.11)

and for, m ≥ 3, c = 2, . . . ,m − 1 and 1 ≤ k1 < · · · < kc ≤ m,

max
m≤K≤n

K1/2(K
m

)
∣∣∣∣ ∑

1≤i1<···<im≤K

V ta
im

(Xik1
, . . . ,Xikc

)

∣∣∣∣ = OP (1). (4.12)

Due to similarity, we shall only give the proof of (4.11).
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Noting that K1/2

(K
m)

is decreasing in K , for M > 0, we write,

P

(
max

m≤K≤n

K1/2(K
m

)
∣∣∣∣ ∑

1≤i1<···<im≤K

V ta
im

(Xi1, . . . ,Xim)

∣∣∣∣ > M

)

≤ P

(
max

m≤K≤n

K∑
im=m

i
1/2
m(im
m

)
∣∣∣∣ ∑

1≤i1<···<im−1<im

V ta
im

(Xi1, . . . ,Xim)

∣∣∣∣ > M

)

≤ M−1E

( ∞∑
im=m

i
1/2
m(im
m

)
∣∣∣∣ ∑

1≤i1<···<im−1<im

V ta
im

(Xi1, . . . ,Xim)

∣∣∣∣
)

≤ AM−1
∞∑

im=m

i−1/2
m E

(∣∣h(Xi1, . . . ,Xim)
∣∣1

(|h|>i
3/2
m )

)

≤ AM−1
∞∑

j=m

E
(∣∣h(X1, . . . ,Xm)

∣∣1(j3/2<|h|≤(j+1)3/2)

) j∑
im=m

i−1/2
m

≤ AM−1E
∣∣h(X1, . . . ,Xm)

∣∣4/3
< ∞.

This completes the proof of (4.11) and that of (4.9).
Now we give the proof of (4.10). Similarly to what we had in the proof of (4.9),

we write∑
1≤i1<···<im≤K

gtr
im

(Xi1, . . . ,Xim)

= ∑
1≤i1<···<im≤K

{
m∑

d=2

(−1)m−d

× ∑
1≤j1<···<jd≤m

E
(
gtr

im
(Xi1, . . . ,Xim)|Xij1

, . . . ,Xijd

)

+
m−1∑
c=2

∑
1≤k1<···<kc≤m

c∑
d=2

(−1)c−d
∑

1≤j1<···<jd≤c

E
(
gtr

im
(Xi1, . . . ,Xim)|

Xikj1
, . . . ,Xikjd

)}

:= ∑
1≤i1<···<im≤K

V tr
im

(Xi1, . . . ,Xim)

+
m−1∑
c=2

∑
1≤k1<···<kc≤m

∑
1≤i1<···<im≤K

V tr
im

(Xik1
, . . . ,Xikc

).
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Therefore, to establish (4.10) we need to show that

max
m≤K≤n

K1/2(K
m

) ∑
1≤i1<···<im≤K

V tr
im

(Xi1, . . . ,Xim) = OP (1) (4.13)

and for, m ≥ 3, c = 2, . . . ,m − 1 and 1 ≤ k1 < · · · < kc ≤ m,

max
m≤K≤n

K1/2(K
m

) ∑
1≤i1<···<im≤K

V tr
im

(Xik1
, . . . ,Xikc

) = OP (1). (4.14)

To prove (4.13), having the martingale property (cf. Remark 9), we apply Chow’s
maximal inequality for martingales (cf. Chow (1960)) and Proposition 2, for
M > 0 we write

P

(
max

m≤K≤n

K1/2(K
m

)
∣∣∣∣ ∑

1≤i1<···<im≤K

V tr
im

(Xi1, . . . ,Xim)

∣∣∣∣ > M

)

≤ M−2 n(n
m

)2 E

( ∑
1≤i1<···<im≤n

V tr
im

(Xi1, . . . ,Xim)

)2

+ M−2
n−1∑
K=m

(
K(K
m

)2 − K + 1(K+1
m

)2

)
E

( ∑
1≤i1<···<im≤K

V tr
im

(Xi1, . . . ,Xim)

)2

≤ AM−2 n(n
m

)2

n∑
im=m

(
im

m − 1

)
E
(
h2(X1, . . . ,Xm−1,Xim)1

(|h|≤i
3/2
m )

)

+ AM−2
n−1∑
K=m

2m(K
m

)2

K∑
im=m

(
im

m − 1

)
E
(
h2(X1, . . . ,Xm−1,Xim)1

(|h|≤i
3/2
m )

)

≤ AM−2
∞∑

K=m

K−2E
(
h2(X1, . . . ,Xm−1,Xim)1(|h|≤K3/2)

)

≤ AM−2
∞∑
i=1

i−1E
(
h2(X1, . . . ,Xm)1((i−1)3/2<|h|≤i3/2)

)

≤ AM−2E
∣∣h(X1, . . . ,Xm)

∣∣4/3
< ∞.

Now the proof of (4.13) is complete.
Due to similarity, to establish (4.14), we shall only state the proof for k1 =

1, . . . , kc = c, where c = 2, . . . ,m − 1 and m ≥ 3. But first observe that∑
1≤i1<···<im≤K

V tr
im

(Xi1, . . . ,Xic)

=
(
K − m + c

m − c − 1

)
K∑

im=m

∑
1≤i1<···<ic<im

V tr
im

(Xi1, . . . ,Xic)
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≤
(

K

m − c − 1

)
K∑

im=m

∑
1≤i1<···<ic<im

V tr
im

(Xi1, . . . ,Xic).

Once again an application of Chow’s maximal inequality followed by an applica-
tion of Proposition 2, yield

P

(
max

m≤K≤n

K1/2(K
m

)
∣∣∣∣ ∑

1≤i1<···<im≤K

V tr
im

(Xi1, . . . ,Xic)

∣∣∣∣ > M

)

≤ M−2

{
n(n
m

)2 E

((
n

m − c − 1

)
n∑

im=m

∑
1≤i1<···<ic<im

V tr
im

(Xi1, . . . ,Xic)

)2

+
n−1∑
K=m

(
K(K
m

)2 − K + 1(K+1
m

)2

)

× E

(
K∑

im=m

∑
1≤i1<···<ic<im

(
K

m − c − 1

)
V tr

im
(Xi1, . . . ,Xic)

)2}

≤ AM−2E
∣∣h(X1, . . . ,Xm)

∣∣4/3
< ∞.

The latter relation completes the proof of (4.14) and that of Proposition 4. Hence,
I1(n, t) = oP (1).

By virtue of our notion of I1(n, t) and I2(n, t), so far, we have shown that
I1(n, t) = oP (1). To complete the proof of Proposition 3, we need to show that
I2(n, t) = oP (1). But observe that for I2(n, t) we can write

I2(n, t) ≤ n−1/2

�(n)
sup

δ≤t≤1

[nt]([nt]
m

)
∣∣∣∣ ∑

1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim) − θ

− h̃1(Xi1) − · · · − h̃1(Xim)
)∣∣∣∣

× sup
δ≤t≤1

1

q(t)
.

And since supδ≤t≤1
1

q(t)
= O(1), in order to show that I2(n, t) = oP (1), we only

need to show that

n−1/2

�(n)
sup

m/n≤t≤1

∣∣∣∣ [nt]([nt]
m

) ∑
1≤i1<···<im≤[nt]

(
h(Xi1, . . . ,Xim)

− h̃1(Xi1) − · · · − h̃1(Xim)
)∣∣∣∣ (4.15)

= oP (1).
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The proof of the preceding is similar to that of (4) of Nasari (2009). Hence, the
detailed proof is omitted. Now the proof of Theorem 3 is complete. �

Proof of Theorem 4. To prove Theorem 4, it suffices to show that as n → ∞,∣∣∣∣∣(n − 1)

n∑
i=1

(
Ui

n−1 − Un

)2 − m2

n

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣ = oP (1). (4.16)

Before giving the proof of (4.16), we do some simplifications as follows.

(n − 1)

n∑
i=1

(
Ui

n−1 − Un

)2

= (n − 1)

n∑
i=1

( (n
m

)
(n−1

m

)Un

− 1(n−1
m

) ∑
1≤j1<···<jm−1≤n

j1,...,jm−1 �=i

h(Xi,Xj1, . . . ,Xjm−1) − Un

)2

= m2(n − 1)

(n − m)2

n∑
i1=1

(
1(n−1

m−1

) ∑
1≤i2<···<im≤n

i2,...,im �=i1

h(Xi1,Xi2, . . . ,Xim) − Un

)2

(4.17)

= m2(n − 1)

(n − m)2

n∑
i1=1

(
1(n−1

m−1

) ∑
1≤i2<···<im≤n

i2,...,im �=i1

h(Xi1,Xi2, . . . ,Xim)

)2

(4.18)

− m2n(n − 1)

(n − m)2 U2
n .

Remark 10. In view of (4.17) in what will follow without loss of generality, we
may and shall assume that Eh(X1, . . . ,Xm) = θ = 0.

By virtue of (4.18) to prove (4.16), it will be enough to prove the following two
propositions.

Proposition 5. If E|h(X1, . . . ,Xm)|5/3 < ∞, then, as n → ∞,

U2
n −→ 0 a.s.

Proof. The proof of this proposition follows from the SLLN for U -statistics (cf.,
e.g., Serfling (1980)). �



Weighted approximations for Studentized U -statistics 45

Proposition 6. If E|h(X1, . . . ,Xm)|5/3 < ∞ and h̃1(X1) ∈ DAN, then, as
n → ∞,

∣∣∣∣∣ (n − 1)

(n − m)2

n∑
i1=1

(
1(n−1

m−1

) ∑
1≤i2<···<im≤n

i2,...,im �=i1

h(Xi1,Xi2, . . . ,Xim)

)2
− 1

n

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣
= oP (1).

Let an ∼ bn stand for the asymptotic equivalency of the numerical sequences
(an)n and (bn)n, that is, as n → ∞, an

bn
→ 1.

To prove Proposition 6, observe that

(n − 1)

(n − m)2

n∑
i1=1

(
1(n−1

m−1

) ∑
1≤i2<···<im≤n

i2,...,im �=i1

h(Xi1,Xi2, . . . ,Xim)

)2

= (n − 1)

(n − m)2

n∑
i1=1

(
[n − 1]−m+1

∑
1≤i2 �=···�=im≤n

i2,...,im �=i1

h(Xi1,Xi2, . . . ,Xim)

)2

∼ [n]−2m+1
n∑

i1=1

( ∑
1≤i2 �=···�=im≤n

i2,...,im �=i1

h(Xi1,Xi2, . . . ,Xim)

)2

= [n]−2m+1
∑

1≤i1 �=···�=im≤n

h2(Xi1, . . . ,Xim)

+ [n]−2m+1
m−1∑
j=2

∑
1≤i1 �=···�=i2m−j≤n

h(Xi1, . . . ,Xij ,Xij+1, . . . ,Xim)

× h(Xi1, . . . ,Xij ,Xim+1, . . . ,Xi2m−j
)

+ [n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

h(Xi1,Xi2, . . . ,Xim)

× h(Xi1,Xim+1, . . . ,Xi2m−1).

The first term and the second one, which obviously does not appear when m = 2,
in the latter equality will be seen to be negligible in probability (cf. Propositions 7
and 8), thus the third term becomes the main term that will play the main role in
establishing Proposition 6.

To complete the proof of Proposition 6, we shall state and prove the next three
results, namely Propositions 7, 8 and Theorem 5.
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Proposition 7. If E|h(X1, . . . ,Xm)|5/3 < ∞, then, as n → ∞,

[n]−2m+1
∑

1≤i1 �=···�=im≤n

h2(Xi1, . . . ,Xim) → 0 a.s.

From the fact that for m ≥ 2, 2m
2m−1 < 5

3 , it follows that

E
∣∣h2(X1, . . . ,Xm)

∣∣m/(2m−1) = E
∣∣h(X1, . . . ,Xm)

∣∣2m/(2m−1)
< ∞.

By this the proof of Proposition 7 follows from Theorem 1 of Giné and Zinn
(1992).

Proposition 8. For m ≥ 3, If E|h(X1, . . . ,Xm)|5/3 < ∞, then, as n → ∞,

[n]−2m+1
m−1∑
j=2

∑
1≤i1 �=···�=i2m−j≤n

h(Xi1, . . . ,Xij ,Xij+1, . . . ,Xim)

× h(Xi1, . . . ,Xij ,Xim+1, . . . ,Xi2m−j
) = oP (1).

Proof. In order to prove Proposition 8, it suffices to show that as n → ∞, for
j = 2, . . . ,m − 1, we have

[n]−2m+1
∑

1≤i1 �=···�=i2m−j≤n

h(Xi1, . . . ,Xij ,Xij+1, . . . ,Xim)

× h(Xi1, . . . ,Xij ,Xim+1, . . . ,Xi2m−j
) = oP (1).

Since the proof of the latter relation can be done by modifying, mutatis mutandis,
that of the next theorem, that is, Theorem 5, hence the detailed proof is omit-
ted. �

Theorem 5. If E|h(X1, . . . ,Xm)|5/3 < ∞ and h̃1(X1) ∈ DAN, then, as n → ∞,∣∣∣∣∣[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

h(Xi1,Xi2, . . . ,Xim)h(Xi1,Xim+1, . . . ,Xi2m−1)

− 1

n

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣ = oP (1).

Proof. Here we make use of the property of complete degeneracy of functions
(summands) even though, here they will not be symmetric.

For further use in this proof, we consider the following truncation setup:

h1,...,m := h(X1, . . . ,Xm),

h
(m)
1,...,m := h1,...,m1(|h|≤n3m/5),
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h∗
12,...,2m−1 := h

(m)
12,...,mh

(m)
1m+1,...,2m−1,

h̃
(m)
1 (x) := E

(
h

(m)
1,...,m|X1 = x

)
,

h
(j)
1,...,m := h

(m)
1,...,m1(|h(m)|≤n3j/5), j = 1, . . . ,m − 1,

h
(0)
1,...,m := h

(m)
1,...,m1(|h(m)|≤log(n)),

h
(�)
1,...,m := h

(m)
1,...,m1

(|h̃(m)
1 (x)|≤n1/2�(n))

,

where, again, 1A denotes the indicator function of the set A and �(·) is a slowly
varying function at infinity associated to h̃1(X1).

In view of the above set up, observe that as n → ∞
P

( ∑
1≤i1 �=···�=i2m−1≤n

hi1i2,...,imhi1im+1,...,i2m−1 �= ∑
1≤i1 �=···�=i2m−1≤n

h∗
i1,...,i2m−1

)

≤ nmP
(|h1,...,m| > n3m/5) ≤ E

[|h1,...,m|5/31(|h1,...,m|>n3m/5)

] −→ 0.

Hence, the asymptotic equivalency of
∑

1≤i1 �=···�=i2m−1≤n hi1i2,...,imhi1im+1,...,i2m−1

and its truncated version, that is,
∑

1≤i1 �=···�=i2m−1≤n h∗
i1,...,i2m−1

in probability.
Having the asymptotic equivalency of the original statistic and its truncated ver-

sion, to prove Theorem 5, we shall proceed by working with the truncated ver-
sion. Noting that due to lack of symmetry, the statistic of our interest, that is,∑

1≤i1 �=···�=i2m−1≤n h∗
i1,...,i2m−1

, is not a U -statistic, once again here, we extend the
idea of Hoeffding procedure to represent U -statistics in terms of complete de-
generate ones in our context. This extension shall be done by creating complete
degenerate sums by adding and subtracting required terms. Then by employing
proper new truncations and applying Proposition 1 we conclude the asymptotic
negligibility of all of these complete degenerate sums in probability (cf. Proposi-
tions 9, 10 and 11) except for the last group of them which are of the form of sums
of i.i.d. random variables. Among those the latter mentioned just one (cf. part (b)
of Proposition 12) will asymptotically in probability coincide with 1

n

∑n
i=1 h̃2

1(Xi)

and that will complete the proof of Theorem 5.
Now as it was already mentioned, by adding and subtracting required terms we

write ∑
1≤i1 �=···�=i2m−1≤n

h∗
i1,...,i2m−1

= ∑
1≤i1 �=···�=i2m−1≤n

{2m−1∑
d=1

(−1)2m−1−d

× ∑
1≤j1<···<jd≤2m−1

E
(
h∗

i1,...,i2m−1
− E

(
h∗

i1,...,i2m−1

)|
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Xij1
, . . . ,Xijd

)

+
2m−2∑
c=1

∑
1≤k1<···<kc≤2m−1

c∑
d=1

(−1)c−d

× ∑
1≤j1<···<jd≤c

E
(
h∗

i1,...,i2m−1
− E

(
h∗

i1,...,i2m−1

)|
Xikj1

, . . . ,Xikjd

)

+ E
(
h∗

i1,...,i2m−1

)}

:= ∑
1≤i1 �=···�=i2m−1≤n

V (i1, . . . , i2m−1)

+
2m−2∑
c=1

∑
1≤k1<···<kc≤2m−1

∑
1≤i1 �=···�=i2m−1≤n

V (ik1, . . . , ikc)

+ ∑
1≤i1 �=···�=i2m−1≤n

E
(
h∗

i1,...,i2m−1

)
.

Proposition 9. If E|h1,...,m|5/3 < ∞, then, as n → ∞,

[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V (i1, . . . , i2m−1) = oP (1).

Proof. Since V (i1, . . . , i2m−1) posses the property of complete degeneracy, we
can apply Proposition 1 for the associated statistics and write, for ε > 0,

P

(∣∣∣∣[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V (i1, . . . , i2m−1)

∣∣∣∣ > ε

)

≤ ε−2E

[
[n]−2m+1

∑
1≤i1 �=···�=i2m−1≤n

V (i1, . . . , i2m−1)

]2

≤ ε−2[n]−2m+1E
[
V (1, . . . ,2m − 1)

]2

≤ Aε−2[n]−2m+1n2m−1n−2m+1E
[
h

(m)
12,...,mh

(m)
1m+1,...,2m−1

]2

≤ Aε−2[n]−2m+1n7m/5E|h12,...,m|5/3

−→ 0, as n → ∞.

The estimation for m ≥ 3 that occurs in our next proposition does not appear,
and hence not needed, when m = 2. �
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Proposition 10. For m ≥ 3, if E|h12,...,m|5/3 < ∞, then, as n → ∞
[n]−2m+1

∑
1≤i1 �=···�=i2m−1≤n

V (ik1, . . . , ikc) = oP (1),

where c = 3, . . . ,2m − 2 and 1 ≤ k1 < · · · < kc ≤ 2m − 1.

Proof. Based on the way ik1, . . . , ikc are distributed between h
(m)
i1i2,...,im

and

h
(m)
i1im+1,...,i2m−1

in two different cases when k1 = 1 and k1 �= 1, the proof is stated as
follows.

Case k1 = 1. Let s and t be respectively, the number of elements of the sets

{ik1, . . . , ikc} ∩ {i1, i2, . . . , im} and {ik1, . . . , ikc} ∩ {i1, im+1, . . . , i2m−1}.
It is clear that in this case, that is, k1 = 1, we have that s, t ≥ 1 and s + t = c + 1.
Now define

V T (ik1, . . . , ikc ) =
c∑

d=1

(−1)c−d
∑

1≤j1<···<jd≤c

E
(
h∗T

i1,...,i2m−1
− E

(
h∗T

i1,...,i2m−1

)|
(4.19)

Xikj1
, . . . ,Xikjd

)
,

V T ′
(ik1, . . . , ikc ) =

c∑
d=1

(−1)c−d
∑

1≤j1<···<jd≤c

E
(
h∗T ′

i1,...,i2m−1
− E

(
h∗T ′

i1,...,i2m−1

)|
(4.20)

Xikj1
, . . . ,Xikjd

)
,

where h∗T

i1,...,i2m−1
= h

(s)
i1i2,...,im

h
(m)
i1im+1,...,i2m−1

and h∗T ′
i1,...,i2m−1

= h
(s)
i1i2,...,im

×
h

(t)
i1im+1,...,i2m−1

.
Now observe that as, n → ∞,

P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, . . . , ikc) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, . . . , ikc)

)

≤ P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, . . . , ikc) �= ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, . . . , ikc)

)

+ P

( ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, . . . , ikc)

�= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, . . . , ikc)

)

≤ nsP
(∣∣h(m)

12,...,m

∣∣ > n3s/5) + ntP
(∣∣h(m)

1m+1,...,2m−1

∣∣ > n3t/5)
≤ E

[|h12,...,m|5/31(|h|>n3s/5)

] + E
[|h1m+1,...,2m−1|5/31(|h|>n3t/5)

] −→ 0.
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The latter relation suggests that∑
1≤i1 �=···�=i2m−1≤n

V (ik1, . . . , ikc) and
∑

1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, . . . , ikc)

are asymptotically equivalent in probability.
Since V T ′

(ik1, . . . , ikc) is complete degenerate, Markov’s inequality followed
by an application of Proposition 1 yields,

P

(∣∣∣∣[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, . . . , ikc)

∣∣∣∣ > ε

)

≤ ε−2E

(
[n]−2m+1

∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, . . . , ikc)

)2

≤ Aε−2[n − (2m − 1 − c)
]−c

E
(
h

(s)
12,...,mh

(t)
1m+1,...,2m−1

)2

≤ Aε−2[n − (2m − 1 − c)
]−c

ncn−cn7(t+s)/10E|h12,...,m|5/3

−→ 0, as n → ∞.

The latter relation is true since when c ≥ 3, we have −c + 7(t+s)
10 < 0.

Case k1 �= 1. Similarly to the previous case let s and t be, respectively, the
number of elements of the sets {ik1, . . . , ikc} ∩ {i1, i2, . . . , im} and {ik1, . . . , ikc} ∩
{i1, im+1, . . . , i2m−1}. Clearly here we have s, t ≥ 0 and s + t = c. It is obvious
that in this case s, t can be zero but not simultaneously. More specifically, either
(s = c, t = 0) or (s = 0, t = c) can happen and due to their similarity we shall only
treat (s = c, t = 0).

Let V T (ik1, . . . , ikc ) and V T ′
(ik1, . . . , ikc) be of the forms respectively, (4.19)

and (4.20), where

h∗T

i1,...,i2m−1
= h

(s)
i1i2,...,im

h
(m)
i1im+1,...,i2m−1

and

h∗T ′
i1,...,i2m−1

= h
(s)
i1i2,...,im

h
(t)
i1im+1,...,i2m−1

.

Observe that as n → ∞,

P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, . . . , ikc ) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, . . . , ikc)

)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nsP
(∣∣h(m)

12,...,m

∣∣ > n3s/5) + ntP
(∣∣h(m)

1m+1,...,2m−1

∣∣ > n3t/5),
s, t > 0, s + t = c,

ncP
(∣∣h(m)

12,...,m

∣∣ > n3c/5) + P
(∣∣h(m)

1m+1,...,2m−1

∣∣ > log(n)
)
,

s = c, t = 0
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≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E
(|h12,...,m|5/31(|h|>n3s/5)

) + E
(|h1m+1,...,2m−1|5/31(|h|>n3t/5)

)
,

s, t > 0, s + t = c,

E
[|h12,...,m|5/31(|h|>n3c/5)

] + P
(∣∣h(m)

1m+1,...,2m−1

∣∣ > log(n)
)
,

s = c, t = 0

−→ 0.

Applying Markov’s inequality followed by an application of Proposition 1 once
again yields,

P

(∣∣∣∣[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, . . . , ikc)

∣∣∣∣ > ε

)

≤ Aε−2[n − (2m − 1 − c)
]−c

ncn−cE
(
h

(s)
12,...,mh

(t)
1m+1,...,2m−1

)2

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aε−2[n − (2m − 1 − c)
]−c

n7c/10E|h12,...,m|5/3,

s, t > 0, s + t = c,

Aε−2[n − (2m − 1 − c)
]−c

n7c/10 log7/6(n)E|h12,...,m|5/3,

s = c, t = 0

−→ 0, as n → ∞.

This completes the proof of Proposition 10. �

Proposition 11. If E|h12,...,m|5/3 < ∞ and h̃1(X1) ∈ DAN, then, as n → ∞,

[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V (ik1, ik2) = oP (1),

where, 1 ≤ k1 < k2 ≤ 2m − 1.

Proof. As it was the case in the proof of the last proposition, we shall state the
proof for two cases k1 = 1 and k1 �= 1 separately.

Case k1 = 1. Again let s and t be respectively the number of elements of the
sets {ik1, ik2} ∩ {i1, i2, . . . , im} and {ik1, ik2} ∩ {i1, im+1, . . . , i2m−1}. It is clear that
in this case we either have (s = 2, t = 1) or (s = 1, t = 2) which due to their
similarity only (s = 2, t = 1) will be treated as follows.

Define

V T (ik1, ik2) =
2∑

d=1

(−1)2−d
∑

1≤j1<···<jd≤2

E
(
h∗T

i1,...,i2m−1
− E

(
h∗T

i1,...,i2m−1

)|
Xikj1

, . . . ,Xikjd

)
,

V T ′
(ik1, ik2) =

2∑
d=1

(−1)2−d
∑

1≤j1<···<jd≤2

E
(
h∗T ′

i1,...,i2m−1
− E

(
h∗T ′

i1,...,i2m−1

)|
Xikj1

, . . . ,Xikjd

)
,
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where h∗T

i1,...,i2m−1
= h

(2)
i1i2,...,im

h
(m)
i1im+1,...,i2m−1

and h∗T ′
i1,...,i2m−1

= h
(2)
i1i2,...,im

×
h

(�)
i1im+1,...,i2m−1

.
Having the above setup, as n → ∞, we have

P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, ik2)

)

≤ P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, ik2)

)

+ P

( ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, ik2)

)

≤ n2P
(|h(m)

12,...,m| > n6/5) + nP
(|h̃(m)

1 (X1)| > n1/2�(n)
)

≤ E
(|h12,...,m|5/31(|h|>n6/5)

) + nP
(|h̃(m)

1 (X1)| > n1/2�(n)
)

:= I1(n) + I2(n).

It can be easily seen that as n tends to infinity I1(n) → 0.
To deal with I2(n), we write

nP
(∣∣h̃(m)

1 (X1)
∣∣ > n1/2�(n)

)
≤ nP

(∣∣h̃1(X1)
∣∣ > n1/2�(n)

2

)

+ nP

(∣∣E(h1m+1,...,2m−11(|h|>n3m/5)|X1)
∣∣ > n1/2�(n)

2

)

≤ nP

(∣∣h̃1(X1)
∣∣ > n1/2�(n)

2

)

+ 2n1/2�−1(n)E
(|h1m+1,...,2m−1|1(|h|>n3m/5)

)
≤ nP

(∣∣h̃1(X1)
∣∣ > n1/2�(n)

2

)

+ 2n1/2n−2m/5�−1(n)E|h1m+1,...,2m−1|5/3

−→ 0, as n → ∞.

The latter relation is true since h̃1(X1) ∈ DAN and m ≥ 2, and it means that
I2(n) = o(1). Hence the asymptotic equivalency of

∑
1≤i1 �=···�=i2m−1≤n V (ik1, ik2)

and
∑

1≤i1 �=···�=i2m−1≤n V T ′
(ik1, ik2) in probability.

Before applying Proposition 1 for [n]−2m+1 ∑
1≤i1 �=···�=i2m−1≤n V T ′

(ik1, ik2),
since we know that k1 = 1 and s = 2, due to symmetry of hi1i2,...,im , without loss
of generality we assume that k2 = 2.
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Now for ε > 0, Markov’s inequality and Proposition 1 lead to

P

(∣∣∣∣[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V T ′
(i1, i2)

∣∣∣∣ > ε

)

≤ Aε−2[n − (2m − 3)
]−2

× E
(
E
(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1 − E

(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1

)|X1,X2
))2

+ Aε−2[n − (2m − 3)
]−2

× E
(
E
(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1 − E

(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1

)|X1
))2

+ Aε−2[n − (2m − 3)
]−2

× E
(
E
(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1 − E

(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1

)|X2
))2

:= Aε−2[n − (2m − 3)
]−2

n2J1(n)

+ Aε−2[n − (2m − 3)
]−2

n2J2(n)

+ Aε−2[n − (2m − 3)
]−2

n2J3(n).

Considering that as n → ∞, [n − (2m − 3)]−2n2 → 1, we will show that

J1(n), J2(n), J3(n) = o(1).

To deal with J1(n) write

J1(n) ≤ n−2E
(
E
(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1|X1,X2

))2

= n−2E
(
E2(h(2)

12,...,m|X1,X2
)
E2(h(�)

1m+1,...,2m−1|X1
))

= n−2E
(
E2(h(2)

12,...,m|X1,X2
)
E2(h(m)

1m+1,...,2m−1|X1
)
1
(|h̃(m)

1 (X1)|≤n1/2�(n))

)
≤ n−1�2(n)E

(
h

(2)
12,...,m

)2

≤ n−3/5�2(n)E|h12,...,m|5/3

−→ 0, as n → ∞,

that is, J1(n) = o(1). A similar argument yields, J2(n) = o(1), hence the details
are omitted.

As for J3(n) we write

J3(n) ≤ n−2E
(
E
(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1|X2

))2

= n−2E
{
E
(
E
(
h

(2)
12,...,mh

(�)
1m+1,...,2m−1|X1, . . . ,Xm

)|X2
)}2

= n−2E
{
E
(
h

(2)
12,...,m|X2

)
E
(
h

(�)
1m+1,...,2m−1|X1

)}2



54 M. M. Nasari

≤ n−3/5�2(n)E|h12,...,m|5/3

−→ 0, as n → ∞.

The latter relation means that J3(n) = o(1). By this the proof of Proposition 11,
when k1 = 1, is complete.

At this stage, we state the proof of Proposition 11, when k1 �= 1.
Case k1 �= 1. Once again let s and t be respectively, the number of elements of

the sets {ik1, ik2}∩{i1, i2, . . . , im} and {ik1, ik2}∩{i1, im+1, . . . , i2m−1}. It is obvious
that in this case the possibilities are s = t = 1 and when m ≥ 3, (s = 2, t = 0) or
(s = 0, t = 2). We shall treat the cases s = t = 1 and when m ≥ 3, (s = 2, t = 0),
separately as follows.

Case k1 �= 1: s = t = 1. We note that here we have k1 ∈ {2, . . . ,m} and k2 ∈
{m + 1, . . . ,2m − 1}.

Now define

V T (ik1, ik2) =
2∑

d=1

(−1)2−d

× ∑
1≤j1<···<jd≤2

E
(
h∗T

i1,...,i2m−1
− E

(
h∗T

i1,...,i2m−1

)|Xikj1
, . . . ,Xikjd

)
,

V T ′
(ik1, ik2) =

2∑
d=1

(−1)2−d

× ∑
1≤j1<···<jd≤2

E
(
h∗T ′

i1,...,i2m−1
− E

(
h∗T ′

i1,...,i2m−1

)|Xikj1
, . . . ,Xikjd

)
,

where h∗T

i1,...,i2m−1
= h

(1)
i1i2,...,im

h
(m)
i1im+1,...,i2m−1

and h∗T ′
i1,...,i2m−1

= h
(1)
i1i2,...,im

×
h

(1)
i1im+1,...,i2m−1

. Now observe that as n → ∞, we have

P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, ik2)

)

≤ P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, ik2)

)

+ P

( ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, ik2)

)

≤ 2nP
(∣∣h(m)

12,...,m

∣∣ > n3/5)
≤ 2E

[|h12,...,m|5/31(|h|>n3/5)

]
−→ 0.
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In view of the latter relation, we apply Proposition 1 to the sum

[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, ik2)

and we get

P

(
[n]−2m+1

∑
1≤i1 �=···�=i2m−1≤n

∣∣V T ′
(ik1, ik2)

∣∣ > ε

)

≤ Aε−2[n − (2m − 3)
]−2

n2n−2E
(
h

(1)
12,...,mh

(1)
1m+1,...,2m−1

)2

≤ Aε−2[n − (2m − 3)
]−2

n2n−2n7/5E|h12,...,m|5/3

−→ 0, as n → ∞.

This completes the proof of Proposition 11 for the Case k1 �= 1 when s = t = 1.
Case k1 �= 1: (m ≥ 3) s = 2, t = 0. In this case, we first note that k1, k2 ∈

{2, . . . ,m}. Now define

V T (ik1, ik2) =
2∑

d=1

(−1)2−d

× ∑
1≤j1<···<jd≤2

E
(
h∗T

i1,...,i2m−1
− E

(
h∗T

i1,...,i2m−1

)|Xikj1
, . . . ,Xikjd

)
,

V T ′
(ik1, ik2) =

2∑
d=1

(−1)2−d

× ∑
1≤j1<···<jd≤2

E
(
h∗T ′

i1,...,i2m−1
− E

(
h∗T ′

i1,...,i2m−1

)|Xikj1
, . . . ,Xikjd

)
,

where h∗T

i1,...,i2m−1
= h

(2)
i1i2,...,im

h
(m)
i1im+1,...,i2m−1

and h∗T ′
i1,...,i2m−1

= h
(2)
i1i2,...,im

×
h

(0)
i1im+1,...,i2m−1

. Now observe that as n → ∞

P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, ik2)

)

≤ P

( ∑
1≤i1 �=···�=i2m−1≤n

V (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, ik2)

)

+ P

( ∑
1≤i1 �=···�=i2m−1≤n

V T (ik1, ik2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(ik1, ik2)

)

≤ n2P
(∣∣h(m)

12,...,m

∣∣ > n6/5) + P
(∣∣h(m)

1m+1,...,2m−1

∣∣ > log(n)
)
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≤ E
(|h12,...,m|5/31(|h|>n6/5)

) + P
(|h1m+1,...,2m−1| > log(n)

)
−→ 0.

The latter relation together with degeneracy of V T ′
(ik1, ik2) enable us to use Propo-

sition 1 once again and arrive at

P

(
[n]−2m+1

∑
1≤i1 �=···�=i2m−1≤n

∣∣V T ′
(ik1, ik2)

∣∣ > ε

)

≤ Aε−2[n − (2m − 3)
]−2

n2n−2E
(
h

(2)
12,...,mh

(0)
1m+1,...,2m−1

)2

≤ Aε−2[n − (2m − 3)
]−2

n2n−3/5 log7/6(n)E|h12,...,m|5/3

−→ 0, as n → ∞.

Now the proof of Proposition 11 is complete. �

Remark 11. Before stating our next result, we note in passing that when k1 = 1
then, [n]−2m+1 ∑

1≤i1 �=···�=i2m−1≤n V (ik1) is of the form

[
n − (2m − 2)

]−1
n∑

i1∈{1,...,n}/{2,...,2m−1}
E
(
h∗

i12,...,2m−1 − E
(
h∗

i12,...,2m−1
)|Xi1

)
,

otherwise, that is, when, for example, k1 = 2 it has the following form

[
n − (2m − 2)

]−1
n∑

i2∈{1,...,n}/{1,3,...,2m−1}
E
(
h∗

1i23,...,2m−1 − E
(
h∗

1i23,...,2m−1
)|Xi2

)
,

and so on for k1 ∈ {2, . . . ,2m − 1}.
Proposition 12. If E|h1,...,m|5/3 < ∞ and h̃1(X1) ∈ DAN, then, as n → ∞

(a) [n]−2m+1
∑

1≤�=i1 �=···�=i2m−1≤n

V (ik1) = oP (1) for k1 ∈ {2, . . . ,2m − 1},

(b)

∣∣∣∣∣[n − (2m − 2)
]−1

n∑
i∈{1,...,n}/{2,...,2m−1}

E
(
h∗

i2,...,2m−1 − E
(
h∗

i2,...,2m−1
)|Xi

)

+ E
(
h∗

12,...,2m−1
) − 1

n

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣ = oP (1).

Proof. First we give the proof of part (a). Due to similarities, we state the proof
only for k1 = 2.

Define

V T (i2) = E
(
h∗T

i1i2,...,i2m−1
− E

(
h∗T

i1i2,...,i2m−1

)|Xi2

)
,

V T ′
(i2) = E

(
h∗T ′

i1i2,...,i2m−1
− E

(
h∗T ′

i1i2,...,i2m−1

)|Xi2

)
,
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where h∗T

i1i2,...,i2m−1
= h

(1)
i1i2,...,im

h
(m)
i1im+1,...,i2m−1

and h∗T ′
i1i2,...,i2m−1

= h
(1)
i1i2,...,im

×
h

(0)
i1im+1,...,i2m−1

. Again observe that as n → ∞,

P

( ∑
1≤i1 �=···�=i2m−1≤n

V (i2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(i2)

)

≤ P

( ∑
1≤i1 �=···�=i2m−1≤n

V (i2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T (i2)

)

+ P

( ∑
1≤i1 �=···�=i2m−1≤n

V T (i2) �= ∑
1≤i1 �=···�=i2m−1≤n

V T ′
(i2)

)

≤ nP
(∣∣h(m)

12,...,m

∣∣ > n3/5) + P
(∣∣h(m)

1m+1,...,2m−1

∣∣ > log(n)
)

≤ E
(|h12,...,m|5/31(|h|>n3/5)

) + P
(|h1m+1,...,2m−1| > log(n)

)
−→ 0.

An application of Markov’s inequality yields

P

(∣∣∣∣[n]−2m+1
∑

1≤i1 �=···�=i2m−1≤n

V T ′
(i2)

∣∣∣∣ > ε

)

≤ Aε−2[n − (2m − 2)
]−1

nn−1E
(
h

(1)
12,...,mh

(0)
1m+1,...,2m−1

)2

≤ Aε−2[n − (2m − 2)
]−1

nn−3/10 log7/6(n)E|h12,...,m|5/3

−→ 0, as n → ∞.

This complete the proof of part (a).
In the final stage of our proofs, to prove part (b) first define

h̃∗(x) = E(h12,...,m1(|h|>n3m/5)|X1 = x)

and write∣∣∣∣∣ 1

n − 2m + 2

n∑
i∈{1,...,n}/{2,...,2m−1}

E
(
h∗

i2,...,2m−1 − E
(
h∗

i2,...,2m−1
)|Xi

)

+ E
(
h∗

12,...,2m−1
) − 1

n

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣
=

∣∣∣∣∣ 1

n − 2m + 2

n∑
i∈{1,...,n}/{2,...,2m−1}

E
(
h∗

i2,...,2m−1|Xi

) − 1

n

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

n − 2m + 2

n∑
i∈{1,...,n}/{2,...,2m−1}

E
(
h∗

i2,...,2m−1|Xi

)
(4.21)
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− 1

n − 2m + 2

n∑
i=1

h̃2
1(Xi)

∣∣∣∣∣ + 2m − 2

n(n − 2m + 2)

n∑
i=1

h̃2
1(Xi)

≤
∣∣∣∣∣ 1

n − 2m + 2

n∑
i∈{1,...,n}/{2,...,2m−1}

E
(
h∗

i2,...,2m−1|Xi

)

− 1

n − 2m + 2

∑
i∈{1,...,n}/{2,...,2m−1}

h̃2
1(Xi)

∣∣∣∣∣
+ 1

n − 2m + 2

2m−1∑
i=2

h̃2
1(Xi) + 2m − 2

n(n − 2m + 2)

n∑
i=1

h̃2
1(Xi)

= 1

n − 2m + 2

∣∣∣∣ ∑
i∈{1,...,n}/{2,...,2m−1}

(−h̃∗(Xi)
)(

2h̃
(m)
1 (Xi) + h̃∗(Xi)

)∣∣∣∣

+ 1

n − 2m + 2

2m−1∑
i=2

h̃2
1(Xi) + 2m − 2

n(n − 2m + 2)

n∑
i=1

h̃2
1(Xi)

≤ 1

n − 2m + 2

( ∑
i∈{1,...,n}/{2,...,2m−1}

h̃2
1(Xi)

)1/2

×
( ∑

i∈{1,...,n}/{2,...,2m−1}
h̃∗2(Xi)

)1/2

+ 1

n − 2m + 2

∑
i∈{1,...,n}/{2,...,2m−1}

h̃∗2(Xi) + 1

n − 2m + 2

2m−1∑
i=2

h̃2
1(Xi)

+ 2m − 2

n(n − 2m + 2)

n∑
i=1

h̃2
1(Xi).

It is easy to see that as n → ∞, we have 1
n−2m+2

∑2m−1
i=2 h̃2

1(Xi) = oP (1). Also
in view of (4.1), that is, Raikov’s theorem in the present context, we have

2m − 2

n(n − 2m + 2)

n∑
i=1

h̃2
1(Xi) = oP (1), as n → ∞.

Hence, in view of (4.21), in order to complete the proof of part (b), it suffices to
show that as n → ∞,

1

n − 2m + 2

∑
i∈{1,...,n}/{2,...,2m−1}

h̃∗2(Xi) = oP (1).
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To prove the latter relation, we first use Markov’s inequality and conclude that

P

( ∑
i∈{1,...,n}/{2,...,2m−1}

h̃∗2(Xi) > ε(n − 2m + 2)

)

≤ ε−1/2(n − 2m + 2)−1/2
∑

i∈{1,...,n}/{2,...,2m−1}
E
∣∣h̃∗2(Xi)

∣∣1/2

≤ ε−1/2(n − 2m + 2)1/2E
∣∣h̃∗(X1)

∣∣
≤ ε−1/2(n − 2m + 2)1/2n−1/2n1/2E

(|h12,...,m|1(|h|>n3m/5)

)
≤ ε−1/2(n − 2m + 2)1/2n−1/2E

(|h12,...,m|5/(6m)+11(|h|>n3m/5)

)
−→ 0, as n → ∞.

The last relation is true since for m ≥ 2, we have that 5
6m

+ 1 < 5
3 , and this com-

pletes the proof of part (b) and those of Proposition 12 and Theorem 5. �
�
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