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Abstract. For the first time, the beta Burr III distribution is introduced as an
important model for problems in several areas such as actuarial sciences, me-
teorology, economics, finance, environmental studies, survival analysis and
reliability. The new distribution can be expressed as a linear combination of
Burr III distributions and then it has tractable properties for the moments,
generating and quantile functions, mean deviations, reliability and entropies.
The density of its order statistics can be given in terms of an infinite linear
combination of Burr III densities. The beta Burr III model is modified for the
possibility of long-term survivors. We define a log-beta Burr III regression
model to analyze censored data. The estimation of parameters is approached
by maximum likelihood and the observed information matrix is derived. The
proposed models are applied to three real data sets.

1 Introduction

Burr (1942) introduced a system of distributions which contains the Burr XII
(BXII) distribution as the most widely used of these distributions. If a random
variable X has the BXII distribution, then X−1 has the Burr III (BIII) distribution
with cumulative distribution function (c.d.f.) defined (for x > 0) by

Gα,β,s(x) =
[
1 +

(
x

s

)−α]−β

=
[

(x/s)α

1 + (x/s)α

]β

, (1.1)

where α > 0 and β > 0 are shape parameters and s > 0 is a scale parameter. The
probability density function (p.d.f.) corresponding to (1.1) is given by

gα,β,s(x) = αβ

s(x/s)α+1

[
(x/s)α

1 + (x/s)α

]β+1

. (1.2)

The BIII distribution has been used in various fields of sciences. In the actuarial
literature, it is known as the inverse Burr distribution (see, e.g., Klugman et al.,
1998) and as the kappa distribution in the meteorological literature (Mielke, 1973;
Mielke and Johnson, 1973). It has also been employed in finance, environmental
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studies, survival analysis and reliability theory (see Sherrick et al., 1996; Lindsay
et al., 1996; Al-Dayian, 1999; Shao, 2000; Hose, 2005; Mokhlis, 2005; Gove et
al., 2008). Further, Shao et al. (2008) proposed an extended BIII distribution in
low-flow frequency analysis where its lower tail is of main interest. A bivariate
extension of the BIII distribution was defined by Rodriguez (1980).

The statistics literature is filled with hundreds of continuous univariate distribu-
tions. Recent developments focus on new techniques for building meaningful dis-
tributions such as the beta generalized class of distributions (Eugene et al., 2002)
that has two shape parameters in the generator. Based on this generator, we pro-
pose the beta Burr III (BBIII) distribution to accommodate a wide variety of shapes
including the BIII distribution. Its two extra shape parameters provide greater flex-
ibility in the form of the generated distribution and, consequently, it is very useful
for modeling observed positive data. If G denotes the baseline cumulative function
of a random variable, the beta-G distribution (Eugene et al., 2002) is defined by

F(x) = IG(x)(a, b) = 1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1 dw, (1.3)

where a > 0 and b > 0 are two extra shape parameters to the G distribution,
B(a, b) = �(a)�(b)/�(a + b) is the beta function, �(·) is the gamma function,
By(a, b) = ∫ y

0 wa−1(1 − w)b−1 dw is the incomplete beta function and Iy(a, b) =
By(a, b)/B(a, b) is the incomplete beta function ratio.

The class of generalized distributions (1.3) has been receiving considerable at-
tention over the last years, in particular after the works of Eugene et al. (2002)
and Jones (2004). In fact, following this idea, Eugene et al. (2002), Nadarajah
and Kotz (2004), Nadarajah and Gupta (2004), Nadarajah and Kotz (2006), Lee
et al. (2007), Akinsete et al. (2008), Barreto-Souza et al. (2010), Fischer and
Vaughan (2010), Pescim et al. (2010), Silva et al. (2010), Khan (2010), Paranaíba
et al. (2011) and Cordeiro and Lemonte (2011a, 2011b) proposed the beta normal,
beta Gumbel, beta Fréchet, beta exponential (BE), beta Weibull, beta Pareto, beta
exponentiated exponential (BEE), beta hyperbolic secant, beta generalized half-
normal, beta modified Weibull, beta inverse Weibull, beta Burr XII (BBXII), beta
Birnbaum–Saunders and beta Laplace distributions by taking G(x) in (1.3) to be
the c.d.f. of the normal, Gumbel, Fréchet, exponential, modified Weibull, Pareto,
exponentiated exponential (EE), hyperbolic secant, generalized half-normal, mod-
ified Weibull, inverse Weibull, BXII, Birnbaum–Saunders and Laplace distribu-
tions, respectively. The cumulative function (1.3) can be expressed as

F(x) = G(x)a

aB(a, b)
2F1

(
a,1 − b;a + 1;G(x)

)
,

where

2F1(p, q; r;y) =
∞∑

j=0

(p)j (q)j

(r)j

yj

j !
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is the hypergeometric function and (p)j is the Pochhammer symbol defined as
(p)j = p(p + 1) · · · (p + j − 1). Thus, for any parent G(x), the properties of
F(x) could, in principle, be obtained from the well established properties of the
hypergeometric function (Gradshteyn and Ryzhik, 2000, Section 9.1).

The density function corresponding to (1.3) has the form

f (x) = 1

B(a, b)
G(x)a−1[

1 − G(x)
]b−1

g(x), (1.4)

which will be most tractable when G(x) and g(x) = dG(x)/dx have simple an-
alytic expressions. Except for some special choices for G(x) in (1.4), such as the
case given by (1.1), the density function f (x) will be difficult to deal with in gen-
erality.

The five parameter BBIII distribution is defined from (1.3) by taking G(x) to
be the c.d.f. (1.1). Its cumulative distribution becomes

F(x) = I[1+(x/s)−α]−β (a, b). (1.5)

Here, we have four positive shape parameters α, β , a and b and a positive scale
parameter s. The p.d.f. and the hazard rate function corresponding to (1.5) (for
x > 0) are

f (x) = αβ

s(x/s)α+1B(a, b)

[
(x/s)α

1 + (x/s)α

]βa+1{
1 −

[
(x/s)α

1 + (x/s)α

]β}b−1

(1.6)

and

h(x) = βα[s(x/s)−α−1]
B(a, b)I1−[1+(x/s)−α]−β (b, a)

(1.7)

×
[

(x/s)α

1 + (x/s)α

]βa+1{
1 −

[
(x/s)α

1 + (x/s)α

]β}b−1

,

respectively. The BBIII density function (1.6) allows for greater flexibility of its
tails with a continuous crossover towards distributions with different shapes (e.g., a
particular combination of skewness and kurtosis). It includes three important sub-
models: the BIII distribution arises immediately for a = b = 1, the exponentiated
Burr III (EBIII) distribution for b = 1, and the Lehmann type II Burr III (LeBIII),
which is also the Kumaraswamy Burr III (KwBIII) distribution for a = 1. The
EBIII and LeBIII models have not been studied in the literature yet. Moreover,
while the transformation (1.3) is not analytically tractable in the general case, the
formulas related with the BBIII distribution turn out manageable as it is shown in
the rest of the article.

Plots of the density function (1.6) for selected parameter values are given in
Figures 1–4, respectively. Figure 5 shows that the BBIII failure rate function can be
bathtub shaped, monotonically decreasing or increasing and upside-down bathtub
depending on its parameter values.
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Figure 1 Plots of the BBIII density function for some values of the scale parameter s.

Figure 2 Plots of the BBIII density function for some values of the shape parameter α.

The rest of the article is organized as follows. In Section 2, we demonstrate that
the new density function can be expressed as a linear combination of BIII densi-
ties. This result is important to derive some BBIII mathematical quantities imme-
diately from those quantities of the BIII distribution. A range of the properties is
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Figure 3 Plots of the BBIII density function for some values of the shape parameter β .

Figure 4 Plots of the BBIII density function for some values of the shape parameter a.

considered in Sections 3–6. These include generating and quantile functions, simu-
lation, Bowley skewness and Moors kurtosis, mean deviations and Bonferroni and
Lorenz curves. In Section 7, we demonstrate that the density function of the BBIII
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Figure 5 Plots of the BBIII hazard rate function.

order statistics can be expressed as a linear combination of BIII densities. Explicit
formulae for the moments of the order statistics and L-moments are obtained in
Section 8. The reliability and the Rényi and Shannon entropies are determined in
Sections 9 and 10, respectively. Maximum likelihood estimation is investigated in
Section 11. In Section 12, we define a BBIII model for survival data with long-
term survivors. An useful log-beta Burr III regression model for lifetime analysis
in proposed in Section 13. Applications of the proposed models to three real life
data sets are given in Section 14. Finally, some conclusions are noted in Section 15.

2 Expansion for the density function

Equations (1.5) and (1.6) are straightforward to compute with the use of modern
computer resources with analytic and numerical capabilities. However, we obtain
expansions for F(x) and f (x) in terms of an infinite (or finite) weighted sums of
c.d.f.’s and p.d.f.’s of BIII distributions, respectively. Here and henceforth, denote
by X a random variable with density function (1.6), say X ∼ BBIII(a, b,α,β, s).
First, for b > 0 real noninteger, we can write the density function of X as

∫ x

0
wa−1(1 − w)b−1 dw =

∞∑
j=0

(−1)j
(b−1

j

)
(a + j)

xa+j ,
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where the binomial term
(b−1

j

) = �(b)/[�(b − j)j !] is defined for any real. From
(1.5), after some algebra, we have

F(x) =
∞∑

j=0

wjGα,β(a+j),s(x), (2.1)

where

wj = (−1)j
(b−1

j

)
(a + j)B(a, b)

.

By differentiating (2.1), the density function of X can be expressed as

f (x) =
∞∑

j=0

wjgα,β(a+j),s(x), (2.2)

which holds for any parameter values. If b > 0 is an integer, the index j in the
sum stops at b − 1. From the linear combination (2.2), we can obtain some BBIII
structural properties. For example, the ordinary, central, inverse and factorial mo-
ments of X can be expressed as linear functions of those BIII quantities. In fact,
the r th moment of the BIII distribution (with parameters α, β and s) is given by
μ′

r = βsrB(β + rα−1,1 − rα−1), and the r th moment of X follows from (2.2) as

E
(
Xr) = βsr

∞∑
j=0

(a + j)wjB
(
β(a + j) + rα−1,1 − rα−1)

. (2.3)

For a = b = 1, equation (2.3) yields the r th moment of the BIII distribution. From
this formula, we can obtain the skewness and kurtosis of X using well-known
relationships. Figures 6–9 show great flexibility for the values of these measures.

3 Quantile function

The BBIII quantile function, say Q(u) = F−1(u), is straightforward to be com-
puted from the beta quantile function (Qβ(a,b)(u)) by inverting (1.5). We have

x = Q(u) = F−1(u) = s
(
Qβ(a,b)(u)−1/β − 1

)−1/α
. (3.1)

So, the simulation of the BBIII random variables is straightforward from (3.1) as

X = s
(
V −1/β − 1

)−1/α
,

where V is a beta variate with shape parameters a and b.
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Figure 6 Skewness of the BBIII distribution as a function of b for some values of a and α = 5,
β = 2 and s = 1.

Figure 7 Skewness of the BBIII distribution as a function of a for some values of b and α = 5,
β = 2 and s = 1.

4 Quantile measures

The effect of the shape parameters a and b on the skewness and kurtosis of the new
distribution can be considered based on quantile measures. The shortcomings of
the classical skewness and kurtosis measures are well known. One of the earliest
skewness measures to be suggested is the Bowley skewness (Kenney and Keeping,
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Figure 8 Kurtosis of the BBIII distribution as a function of a for some values of b and α = 5, β = 2
and s = 1.

Figure 9 Kurtosis of the BBIII distribution as a function of b for some values of a and α = 5, β = 2
and s = 1.

1962) defined by the average of the quartiles minus the median, divided by half
the interquartile range, namely

B = Q(3/4) + Q(1/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
.

Since only the middle two quartiles are considered and the outer two quartiles are
ignored, this adds robustness to the measure.
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The Moors kurtosis is based on octiles

M = Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
.

The measures B and M are less sensitive to outliers and they exist even for distri-
butions without moments. For symmetric unimodal distributions, positive kurtosis
indicates heavy tails and peakedness relative to the normal distribution, whereas
negative kurtosis indicates light tails and flatness. Because M is based on the oc-
tiles, it is not sensitive to variations of the values in the tails or to variations of the
values around the median.

The basic justification of M as an alternative measure of kurtosis is the follow-
ing: keeping Q(2/8) and Q(6/8) fixed, M clearly decreases as Q(3/8) − Q(1/8)

and Q(7/8) − Q(5/8) decrease. So, if Q(3/8) − Q(1/8) → 0 and Q(7/8) −
Q(5/8) → 0, then M → 0 and half of the total probability mass is concentrated in
the neighborhoods of the octiles Q(2/8) and Q(6/8). Clearly, M > 0 and there is
a good agreement with the usual kurtosis measures for some distributions. For the
normal distribution, B = M = 0.

In Figures 10 and 11, we plot the measures B and M for the BBIII distribution
as functions of a and b for some values of the other parameter, respectively. These

Figure 10 Bowley skewness and Moors kurtosis of the BBIII distribution as function of a for some
values of b and α = 5, β = 2 and s = 1.
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Figure 11 Bowley skewness and Moors kurtosis of the BBIII distribution as function of b for some
values of a and α = 5, β = 2 and s = 1.

Table 1 Values of a for which the Bowley skewness van-
ishes and achieves its lowest value for different values of b

b a1 a2 Minimum point

2.5 0.1325 0.3679 0.2038
3.0 0.1265 0.4551 0.2122
4.0 0.1206 0.6186 0.2246
5.0 0.1175 0.7750 0.2332

10.0 0.1119 1.5212 0.2545

plots show that both measures B and M can be very sensitive to these shape param-
eters, thus indicating the importance of the model (1.6). For fixed b, the Bowley
skewness decreases and then increases sharply when a → 0. The value of a corre-
sponding to its minimum value depends on b. For fixed a, this skewness increases
when b decreases. The same conclusions apply to the Moors kurtosis. Table 1 lists
the values of a in Figure 10, say a1 and a2, for which the Bowley skewness van-
ishes and also the value of a which gives its minimum for different values of b. On
the other hand, when b → 0 (a fixed), this skewness increases rapidly. For fixed a,
the Moors kurtosis decreases when b increases. When b → ∞, this kurtosis tends
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to an asymptotic level which depends on the value of a. For fixed b, the Moors
kurtosis increases when a increases. The values of (a, b) for which the Bowley
skewness vanishes can be obtained from Figure 11 as: (0.2, 1.7544), (0.5, 3.2680),
(1.0, 6.4805), (2.0, 13.2837) and (3.0, 20.1986).

5 Generating function

The moment generating function (m.g.f.) of X, say MX(t) = E(etX), can be writ-
ten as

MX(t) =
∞∑

k=0

E(Xk)

k! tk.

Another representation for MX(t) as an infinite weighted sum can be obtained
from (2.2) as

MX(t) =
∞∑

j=0

wjMj(t), (5.1)

where Mj(t) denotes the m.g.f. of the BIII(α,β(a + j), s) distribution. Now, we
provide a simple representation for the m.g.f. of the BIII(α,β, s) distribution,
namely

MBIII(t) = sαβ

∫ ∞
0

exp(syt)yβα−1(
1 + yα)−(β+1) dy.

First, we require the Meijer G-function defined by

Gm,n
p,q

(
x
∣∣∣a1, . . . , ap

b1, . . . , bp

)
= 1

2πi

∫
L

∏m
j=1 �(bj + t)

∏n
j=1 �(1 − aj − t)∏p

j=n+1 �(aj + t)
∏p

j=m+1 �(1 − bj − t)
x−t dt,

where i = √−1 is the complex unit and L denotes an integration path; see Grad-
shteyn and Ryzhik (2000, Section 9.3) for a description of this path. The Meijer
G-function contains as particular cases many integrals with elementary and special
functions (Prudnikov et al., 1986).

Further, we assume that α = m/k, where m and k are positive integers. This
condition is not restrictive since every positive real number can be approximated
by a rational number. For t < 0, using the integral (A.1) given in Appendix A, we
obtain

MBIII(t) = βsm

k
I ′

(
−st, β

m

k
− 1,

m

k
,−β − 1

)
.

Hence, from equation (5.1), we can write MX(t) for t < 0 as

MX(t) = βsm

k

∞∑
j=0

wjI
′
(
−st, β(a + j)

m

k
− 1,

m

k
,−β(a + j) − 1

)
. (5.2)

Equation (5.2) is the main result of this section.
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6 Mean deviations

The amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. If X has the BBIII distribution,
we can derive the mean deviations about the mean μ = E(X) and about the median
M from

δ1 =
∫ ∞

0
|x − μ|f (x) dx and δ2 =

∫ ∞
0

|x − M|f (x) dx,

respectively. The mean μ is obtained from (2.3) with r = 1 and the median M is
the solution of the nonlinear equation I1−[1+(M/s)−α]−β (a, b) = 1/2.

These measures can be calculated by the following relationships

δ1 = 2μF(μ) − 2μ + 2T (μ) and δ2 = 2T (M) − μ, (6.1)

where T (a) = ∫ ∞
a xf (x) dx follows from (2.2) as

T (q) = 1

B(a, b)

∞∑
j=0

wj

[
E(Xj ) −

∫ q

0
xgα,β(a+j),s(x) dx

]
, (6.2)

where Xj has the BIII(α,β(a + j), s) distribution. Let 2F1 be the hypergeometric
function defined in Section 1. Setting u = (x/s)−α , we obtain using Maple∫ q

0
xgα,β(a+j),s(x) dx = sβ(a + j)

∫ ∞
(q/s)−α

u−1/α(1 + u)−[β(a+j)+1] du

= sβ(a + j)Uj ,

where Uj = Uj(q/s,α,β) is given by

Uj = −2F1[β(a + j) + 1,−α−1 + 1; (2 − α−1);−(q/s)−α](q/s)1−α

1 − α−1

− �[β(a + j) + α−1]π csc(−π/α)

�[β(a + j) + 1]�(α−1)
.

Hence,

T (q) = sβ

B(a, b)

∞∑
j=0

(−1)j
(

b − 1
j

){
B

[
β(a + j) + α−1,1 − α−1] + Uj

}
.

The quantity T (q) can also be used to determine Bonferroni and Lorenz curves
which have applications in economics, demography, income, poverty, reliability,
insurance and medicine. They are defined by

B(p) = 1

pμ

∫ q

0
xf (x) dx and L(p) = 1

μ

∫ q

0
xf (x) dx,
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respectively, where q = Q(p) = F−1(p) is the quantile function (given in Sec-
tion 3) for a given probability p. From

∫ q
0 xf (x) = μ − T (q), we have

B(p) = 1

p
− T (q)

pμ
and L(p) = 1 − T (q)

μ
.

7 Order statistics

The density function fi:n(x) of the ith order statistic for i = 1, . . . , n from data
values X1, . . . ,Xn having the BBIII distribution can be expressed as

fi:n(x) = 1

B(i, n − i + 1)
f (x)

n−i∑
l=0

(−1)l
(

n − i

l

)
F(x)i−1+l

where F(·) is the c.d.f. (1.5) and f (·) is the p.d.f. (1.6). Then

fi:n(x) = 1

B(i, n − i + 1)

βα

sB(a, b)

[
(x/s)α

1 + (x/s)α

]βa+1{
1 −

[
(x/s)α

1 + (x/s)α

]β}b−1

× 1

(x/s)α+1

n−i∑
l=0

(−1)l
(

n − i

l

){ ∞∑
j=0

wj

[
(x/s)α

1 + (x/s)α

]β(a+j)
}i+l−1

.

We use an equation of Gradshteyn and Ryzhik (2000, Section 0.314) for a power
series raised to a positive integer k given by( ∞∑

j=0

aju
j

)k

=
∞∑

j=0

ck,ju
j , (7.1)

where the coefficients ck,j (for k = 1,2, . . .) can be determined from the recurrence
equation

ck,j = (ja0)
−1

j∑
m=1

[
m(k + 1) − j

]
amck,j−m (7.2)

and ck,0 = ak
0 . Hence, ck,j follows directly from ck,0, . . . , ck,j−1 and, therefore,

from a0, . . . , ak . We can obtain from (7.1){ ∞∑
j=0

wj

[
(x/s)α

1 + (x/s)α

]β(a+j)
}i+l−1

=
[

(x/s)α

1 + (x/s)α

]βa(i+l−1) ∞∑
j=0

ci+l−1,j

[
(x/s)α

1 + (x/s)α

]βj

,
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where ci+l−1,0 = wi+l−1
0 and

ci+l−1,j = a�(b)

j

j∑
m=1

(−1)m[(i + l)m − j ]ci+l−1,j−m

(a + m)m!�(b − m)
.

Thus, setting a∗
i,j,l = a(i + l) + j and after some algebra, we have

fi:n(x) = 1

B(a, b)B(i, n − i + 1)
(7.3)

×
n−i∑
l=0

(−1)l
(

n − i

l

) ∞∑
j=0

ci+l−1,jB
(
a∗
i,j,l , b

)
fθi,j,l

(x),

where fθi,j,l
(x) denotes the BBIII density function defined by the parameter vec-

tor θi,j,l = (a∗
i,j,l, b, α,β, s)T . Equation (7.3) is an important result in applications

since it gives the density function of the BBIII order statistics as a linear combi-
nation of BBIII density functions. Several mathematical properties for the BBIII
order statistics (m.g.f., ordinary, inverse and factorial moments) can be derived
from this representation form.

8 Moments of order statistics and L-moments

The moments of the BBIII order statistics can be written directly in terms of the
moments of BIII distributions from (2.3) and (7.3). We have

E
(
Xr

i:n
) = βsr�(a + b)

B(i, n − i + 1)�(a)

×
n−i∑
l=0

(−1)l
(

n − i

l

) ∞∑
j,k=0

(−1)kci+l−1,j

�(b − k)k! (8.1)

× B
[
β

(
a∗
i,j,l + k

) + r/α,1 − r/α
]
,

where a∗
i,k,l is defined in Section 7.

L-moments (Hoskings, 1990) are summary statistics for probability distribu-
tions and data samples but have several advantages over ordinary moments. For
example, they apply for any distribution having finite mean and no higher-order
moments need be finite. The r th L-moment is computed from linear combinations
of the ordered data values by

λr =
r−1∑
j=0

(−1)r−1−j

(
r − 1

j

)(
r − 1 + j

j

)
βj ,

where βj = E{XF(X)j }. In particular, λ1 = β0, λ2 = 2β1 −β0, λ3 = 6β2 −6β1 +
β0 and λ4 = 20β3 − 30β2 + 12β1 − β0. In general, βr = (r + 1)−1E(Xr+1:r+1),
so λr can be computed from equation (8.1).
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9 Reliability

In the context of reliability, the stress-strength model describes the life of a com-
ponent which has a random strength X1 that is subjected to a random stress
X2. The component fails at the instant that the stress applied to it exceeds
the strength, and the component will function satisfactorily whenever X1 > X2.
Hence, R = P(X2 < X1) is a measure of component reliability (see Kotz et al.,
2003). It has many applications especially in the area of engineering. We derive
the reliability R when X1 and X2 have independent BBIII(a1, b1, α,β1, s) and
BBIII(a2, b2, α,β2, s) distributions with the same shape parameter α and scale pa-
rameter s. From equations (1.6) and (2.1), the reliability reduces to

R = P(X1 > X2) =
∫ ∞

0
f1(x)F2(x) dx

= β1α

sB(a1, b1)B(a2, b2)

∞∑
j=0

(−1)j
(b2−1

j

)
a2 + j

×
∫ ∞

0

(
x

s

)−(α+1)[
1 +

(
x

s

)−α]−[β1a1+β2(a2+j)+1]

×
{

1 −
[
1 +

(
x

s

)−α]−β1}b1−1

dx.

Setting z = [1 + (x/s)−α]−β1 , we obtain

R = 1

B(a1, b1)B(a2, b2)

∞∑
j=0

(−1)j
(b2−1

j

)
a2 + j

B
[
a1 + β2β

−1
1 (a2 + j), b1

]
.

From equations (2.1) and (2.2), an alternative expression for R follows as

R =
∞∑

j,k=0

w
(1)
j w

(2)
k

∫ ∞
0

β1(a1 + j)α

s(x/s)α+1

[
(x/s)α

1 + (x/s)α

]β1(a1+j)+β2(a2+k)+1

dx

= β1

B(a1, b1)B(a2, b2)

∞∑
j,k=0

(−1)j+k
(b1−1

j

)(b2−1
k

)
(a2 + k)[β1(a1 + j) + β2(a2 + k)] ,

where w
(l)
m = (−1)m

(bl−1
m

)[B(al, bl)(al + m)]−1, for l = 1,2.

10 Entropies

The entropy of a random variable X with density f (x) is a measure of variation
of the uncertainty. A large value of the entropy indicates the greater uncertainty in
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the data. The Rényi entropy is defined by

IR(ρ) = 1

1 − ρ
log

(∫
f (x)ρ dx

)
,

where ρ > 0 and ρ �= 1. Setting y = 1/[1 + (x/s)α], the integral L in IR(ρ) for
the BBIII distribution becomes

L =
(

βα

sB(a, b)

)ρ ∫ ∞
0

1

(x/s)ρ(α+1)

[
(x/s)α

1 + (x/s)α

]ρ(βa+1)

×
{

1 −
[

(x/s)α

1 + (x/s)α

]β}ρ(b−1)

dx

=
(

α

s

)ρ−1(
β

B(a, b)

)ρ ∫ 1

0
yρ(1+1/α)−1/α−1

× (1 − y)ρ(βa−1/α)+1/α−1[
1 − (1 − y)β

]ρ(b−1)
dy

= s

α

(
αβ

sB(a, b)

)ρ ∞∑
j=0

(−1)j
(

ρ(b − 1)

j

)

× B
[
ρ

(
1 + α−1) − α−1, ρ

(
βa − α−1) + α−1 + jβ

]
.

Thus,

IR(ρ) = 1

1 − ρ
log

{
C

∞∑
j=0

(−1)j
(

ρ(b − 1)

j

)

× B
[
ρ

(
1 + α−1) − α−1ρ

(
βa − α−1) + α−1 + jβ

]}
,

where

C = s

α

(
βα

sB(a, b)

)ρ

.

The Shannon entropy is given by

E
{− log

[
f (X)

]}
= − log

[
�(a + b)

] + log
[
�(a)

] + log
[
�(b)

] − log(β) − log(α)

− (βαa − 1)E
[
log(X)

] + βαa log(s) − (βa + 1)E
{
log

[
1 + (X/s)α

]}
− (b − 1)E

{
log

[
1 −

(
(X/s)α

1 + (X/s)α

)β]}
.
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Setting y = (x/s)α[1 + (x/s)α]−1, we have

E
[
log(X)

] = β

B(a, b)

∫ 1

0

[
log(s) + 1

α
log

(
y

1 − y

)]
yβa+1(

1 − yβ)b−1
dy

= β

B(a, b)

∫ 1

0

[
log(s) + 1

α
log

(
y

1 − y

)]
yβa+1

×
∞∑

j=0

(−1)j
(

b − 1
j

)
yβj dy

= β

B(a, b)

{
log(s)

∞∑
j=0

(−1)j
(

b − 1
j

)∫ 1

0
yβ(a+j)+1 dy

+ 1

α

∞∑
j=0

(−1)j
(

b − 1
j

)

×
[∫ 1

0
log(y)yβ(a+j)+1 dy

−
∫ 1

0
log(1 − y)yβ(a+j)+1 dy

]}
.

The last three integrals are easily calculated. The first one is equal to [β(a + j) +
2]−1. Setting z = − log(y), the second integral becomes∫ 1

0
log(y)yβ(a+j)+1 dy = − 1

[β(a + j) + 2]2 ,

and using the expansion log(1 − y) = −∑∞
k=1 yk/k, the last integral reduces to∫ 1

0
log(1 − y)yβ(a+j)+1 dy = −

∞∑
k=1

1

k[β(a + j) + k + 2] .

Since the expected values of the score functions vanish, equations (11.1) and (11.2)
(given in the next section) yield

E
{
log

[
1 + (X/s)α

]} = ψ(a + b) − ψ(a)

β
+ α

{
E

[
log(X)

] − log(s)
}

and

E

{
log

[
1 −

(
(X/s)α

1 + (X/s)α

)β]}
= ψ(b) − ψ(a + b),

where ψ(z) = d log[�(z)]
dz

= �′(z)
�(z)

is the digamma function.
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Hence,

E
{− log

[
f (X)

]}
= − log

[
�(a + b)

] + log
[
�(a)

] + log
[
�(b)

]
− log(β) − log(α) + α(aβ + 1) log(s)

− ψ(a + b) − ψ(a)

β
− (b − 1)

[
ψ(b) − ψ(a + b)

]
− β[α(aβ + 1) − 1]

B(a, b)

×
{

log(s)

∞∑
j=0

(−1)j
(b−1

j

)
β(a + j) + 2

− 1

α

[ ∞∑
j=0

(−1)j
(b−1

j

)
[β(a + j) + 2]2

−
∞∑

j=0

∞∑
k=1

(−1)j
(b−1

j

)
k[β(a + j) + k + 2]

]}
.

11 Estimation

Let θ = (a, b,α,β, s)T be the parameter vector of the BBIII distribution (1.6).
We consider the method of maximum likelihood to estimate θ . The log-likelihood
function for the five parameters from a single observation x > 0, say � = �(θ),
is

�(θ) = log
[
�(a + b)

] − log
[
�(a)

] − log
[
�(b)

] + log(β) + log(α)

+ (aαβ − 1) log(x) − aαβ log(s) − (aβ + 1) log
[
1 + (x/s)α

]
+ (b − 1) log

{
1 −

[
(x/s)α

1 + (x/s)α

]β}
.

The components of the unit score vector U = ( ∂�
∂a

, ∂�
∂b

, ∂�
∂α

, ∂�
∂β

, ∂�
∂s

)T are

∂�

∂a
= ψ(a + b) − ψ(a) + β

{
α log(x/s) − log

[
1 + (x/s)α

]}
, (11.1)

∂�

∂b
= ψ(a + b) − ψ(b) + log

{
1 −

[
(x/s)α

1 + (x/s)α

]β}
, (11.2)

∂�

∂α
= 1

α
+ log(x/s)

[
βa − (x/s)α

1 + (x/s)α

]
− β(b − 1)(x/s)αβ log(x/s)

[1 + (x/s)α]{[1 + (x/s)α]β − (x/s)αβ} ,
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∂�

∂β
= 1

β
+ log

[
(x/s)α

1 + (x/s)α

]{
a − (b − 1)(x/s)αβ

[1 + (x/s)α]β − (x/s)αβ

}
and

∂�

∂s
= −αβa

s
+ α(βa + 1)(x/s)α

s[1 + (x/s)α] + βα(b − 1)(x/s)αβ

s[1 + (x/s)α]{[1 + (x/s)α]β − (x/s)αβ} .
For a random sample (x1, . . . , xn) of size n from X, the total log-likelihood is

�n = �n(θ) = ∑n
i=1 �(i), where �(i) is the log-likelihood for the ith observation

(i = 1, . . . , n). The total score function is Un = ∑n
i=1 U(i), where U(i) has the

form given before for i = 1, . . . , n. The maximum likelihood estimate (MLE) θ̂
of θ is obtained numerically from the nonlinear equations Un = 0. For interval
estimation and tests of hypotheses on the parameters in θ , we require the 5 × 5
observed information matrix J = J (θ) = {−Lp,q}, where the entries Lp,q , for
p,q = a, b,α,β, s, are given in Appendix B.

Under conditions that are fulfilled for parameters in the interior of the parameter
space but not on the boundary, the approximate multivariate normal N5(0, J (̂θ)−1)

distribution of θ̂ can be used to construct confidence intervals for the parameters.
In fact, an approximate confidence interval with significance level γ for each pa-
rameter θp is given by

ACI
(
θp,100(1 − γ )%

) = (
θ̂p − zγ/2

√
Ĵ θp,θp , θ̂p + zγ/2

√
Ĵ θp,θp

)
,

where Ĵ θp,θp is the diagonal element of J (̂θ)−1 corresponding to each parame-
ter (p = a, b,α,β, s) and zγ/2 is the quantile (1 − γ /2) of the standard normal
distribution.

The likelihood ratio (LR) statistic can be used for comparing the BBIII distribu-
tion with some of its special sub-models. Considering the partition θ = (θT

1 , θT
2 )T ,

tests of hypotheses of the type H0 : θ1 = θ
(0)
1 versus HA : θ1 �= θ

(0)
1 can be per-

formed using LR statistics given by w = 2{�(̂θ) − �(̃θ)}, where θ̂ and θ̃ are the

MLEs of θ under HA and H0, respectively. Under the null hypothesis, w
d−→ χ2

q ,
where q is the dimension of the vector θ1 of interest. The LR test rejects H0 if
w > ξγ , where ξγ denotes the upper 100γ % point of the χ2

q distribution. For ex-
ample, we can verify if the fit using the BBIII distribution is statistically “superior”
to a fit using the EBIII distribution (for a given data set) by testing H0 :b = 1 versus
HA :b �= 1.

12 A BBIII model for survival data with long-term survivors

In population based cancer studies, cure is said to occur when the mortality in
the group of cancer patients returns to the same level as that expected in the gen-
eral population. The cure fraction is a useful measure of interest when analyzing
trends in cancer patient survival. Models for survival analysis typically assume that
every subject in the study population is susceptible to the event under study and
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will eventually experience such event if the follow-up is sufficiently long. How-
ever, there are situations when a fraction of individuals are not expected to expe-
rience the event of interest, that is, those individuals are cured or not susceptible.
For example, researchers may be interested in analyzing the recurrence of a dis-
ease. Many individuals may never experience a recurrence and, therefore, a cured
fraction of the population exists. Cure rate models have been used for modeling
time-to-event data for various types of cancers and to estimate the cured fraction
of patients. These models are survival models which allow for a cured fraction
of individuals and extend the understanding of time-to-event data by allowing for
the formulation of more accurate and informative conclusions. These conclusions
are otherwise unobtainable from an analysis which fails to account for a cured or
insusceptible fraction of the population. If a cured component is not present, the
analysis reduces to standard approaches of survival analysis.

Perhaps the most popular type of cure rate models is the mixture model
(Berkson and Gage, 1952; Maller and Zhou, 1996), where the population is di-
vided into two sub-populations so that an individual either is cured with probabil-
ity p, or has a proper survival function S(x) with probability 1 − p. This leads to
an improper population survivor function S∗(x) in the mixture form, namely

S∗(x) = p + (1 − p)S(x), S(0) = 0, S∗(∞) = p. (12.1)

Common choices for S(x) in (12.1) are the exponential and Weibull distributions.
Mixture models involving these distributions have been studied by several authors
(Farewell, 1982; Sy and Taylor, 2000 and Ortega et al., 2009). The book by Maller
and Zhou (1996) provides a wide range of applications of the long-term survivor
mixture model. The use of survival models with a cure fraction has become more
and more frequent because traditional survival analysis does not allow for mod-
eling data in which nonhomogeneous parts of the population do not represent the
event of interest even after a long follow-up.

Here, we adopt the BBIII distribution to compose a mixture model for cure
rate. Consider a sample x1, . . . , xn, where xi is either the observed lifetime or
censoring time for the ith individual. Let a binary random variable qi , for i =
1, . . . , n, indicating that the ith individual in a population is at risk or not with
respect to a certain type of failure, i.e., qi = 1 indicates that the ith individual
will eventually experience a failure event (uncured) and qi = 0 indicates that this
individual will never experience such event (cured).

For an individual i, the proportion of uncured 1 − p individuals can be speci-
fied such that the conditional distribution of qi is given by Pr(qi = 1) = 1−p. The
cure probability varies over the individuals, so that the probability that individual
i is cured is modeled by p. Suppose that the Xi’s are independent and identically
distributed random variables having the BBIII distribution (1.6). Thus, the contri-
bution of an individual that failed at xi to the likelihood function becomes

(1 − p)αβ

s(x/s)α+1B(a, b)

[
(x/s)α

1 + (x/s)α

]βa+1{
1 −

[
(x/s)α

1 + (x/s)α

]β}b−1

,
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and the contribution of an individual that is at risk at time xi is

p + (1 − p)
{
1 − I[1+(x/s)−α]−β (a, b)

}
,

where I·(·, ·) is the incomplete beta function ratio (Section 1). The model defined
from the last two equations is referred to as the BBIII mixture model with long-
term survivors. For a = b = 1, we obtain the BIII mixture model (a new model)
with long-term survivors. For b = 1, we have the exponentiated Burr III (EBIII)
mixture model and, for a = 1 the Lehmann type II Burr III (LeBIII) mixture model.
Thus, the log-likelihood function for the parameter vector θ = (p, a, b,α,β, s)T

can be expressed as

l(θ) = r log
[
(1 − p)αβ

sB(a, b)

]
− (α + 1)

∑
i∈F

log
(

xi

s

)

+ (βa + 1)
∑
i∈F

log
[

(xi/s)
α

1 + (xi/s)α

]

+ (b − 1)
∑
i∈F

log
{

1 −
[

(xi/s)
α

1 + (xi/s)α

]β}
+ ∑

i∈C

log
{
p + (1 − p)

[
1 − I[1+(xi/s)

−α]−β (a, b)
]}

,

where F and C denote the sets of individuals corresponding to lifetime observa-
tions and censoring times, respectively, and r is the number of uncensored ob-
servations (failures). The score functions for the parameters p, a, b, α, β and s

are

Up(θ) = r

(1 − p)
+ ∑

i∈C

Iqi
(a, b)

p + (1 − p)[1 − Iqi
(a, b)] ,

Ua(θ) = r
[
ψ(a + b) − ψ(a)

]
+ ∑

i∈F

{
β

{
α log(xi/s) − log

[
1 + (xi/s)

α]}}

− ∑
i∈C

(1 − p)[İqi
(a, b)]a

p + (1 − p)[1 − Iqi
(a, b)] ,

Ub(θ) = r
[
ψ(a + b) − ψ(b)

]
+ ∑

i∈F

log
{

1 −
[

(xi/s)
α

1 + (xi/s)α

]β}

− ∑
i∈C

(1 − p)[İqi
(a, b)]b

p + (1 − p)[1 − Iqi
(a, b)] ,
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Uα(θ) = r

α
+ ∑

i∈F

log(xi/s)

[
βa − (xi/s)

α

1 + (xi/s)α

]

− ∑
i∈F

β(b − 1)(xi/s)
αβ log(xi/s)

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}

− ∑
i∈C

(1 − p)[İqi
(a, b)]α

p + (1 − p)[1 − Iqi
(a, b)] ,

Uβ(θ) = r

β
+ ∑

i∈F

log
[

(xi/s)
α

1 + (xi/s)α

]{
a − (b − 1)(xi/s)

αβ

[1 + (xi/s)α]β − (xi/s)αβ

}

− ∑
i∈C

(1 − p)[İqi
(a, b)]β

p + (1 − p)[1 − Iqi
(a, b)] ,

Us(θ) = −rαβa

s
+ ∑

i∈F

α(βa + 1)(xi/s)
α

s[1 + (xi/s)α]

+ ∑
i∈F

βα(b − 1)(xi/s)
αβ

s[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}

− ∑
i∈C

(1 − p)[İqi
(a, b)]s

p + (1 − p)[1 − Iqi
(a, b)] .

Here, qi = [1 + (xi/s)
−α]−β , [İqi

(a, b)]p = ∂Iqi
(a, b)/∂p, [İqi

(a, b)]a =
∂Iqi

(a, b)/∂a, [İqi
(a, b)]b = ∂Iqi

(a, b)/∂b, [İqi
(a, b)]α = ∂Iqi

(a, b)/∂α,
[İqi

(a, b)]β = ∂Iqi
(a, b)/∂β , [İqi

(a, b)]s = ∂Iqi
(a, b)/∂s. The MLE θ̂ of θ is

obtained by solving the nonlinear likelihood equations Up(θ) = 0, Ua(θ) = 0,
Ub(θ) = 0, Uα(θ) = 0, Uβ(θ) = 0 and Us(θ) = 0. They cannot be solved an-
alytically and statistical software can be used to solve them numerically. We
can use iterative techniques such as a Newton–Raphson type algorithm to cal-
culate θ̂ . For interval estimation of (p, a, b,α,β, s), we can use the 6 × 6 ob-
served information matrix J (θ) = {−Li,j }, where the entries Li,j are given in
Appendix C.

13 The log-beta Burr III regression model

Let X be a random variable having the BBIII density function (1.6). The random
variable Y = log(X) has a log-beta Burr III (LBBIII) distribution, whose density
function (parameterized in terms of σ = α +1 and μ = − log(s)) can be expressed
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as

f (y) = β

σB(a, b)
exp

{
−

(
y − μ

σ

)}
(13.1)

×
[

exp((y − μ)/σ)

1 + exp((y − μ)/σ)

]βa−1{
1 −

[
exp((y − μ)/σ)

1 + exp((y − μ)/σ)

]β}b−1

,

where −∞ < y < ∞, σ > 0 and −∞ < μ < ∞.
We refer to equation (13.1) as the (new) LBBIII distribution, say Y ∼

LBBIII(a, b,β,σ,μ), where μ is a location parameter, σ is a dispersion parameter
and a and b are shape parameters. Thus,

if X ∼ BBIII(a, b,β,α, s) then Y = log(T ) ∼ LBBIII(a, b,β,σ,μ).

The plots of (13.1) in Figure 12 for selected parameter values show great flexibility
of the density function in terms of the parameters a and b. In Figure 12(a), b =
0.5 and in Figure 12(b), a = 1.5. The survival function corresponding to (13.1)
becomes

S(y) = 1 − I[exp((y−μ)/σ)/(1+exp((y−μ)/σ))]β (a, b). (13.2)

We define the standardized random variable Z = (Y − μ)/σ with density function

π(z;a, b) = β exp(−z)

B(a, b)

[
exp(z)

1 + exp(z)

]βa−1{
1 −

[
exp(z)

1 + exp(z)

]β}b−1

,

(13.3)
−∞ < z < ∞.

The special case a = b = 1 leads to the standard log-Burr III (LBIII) distribution.
For b = 1 and a = 1, we obtain the log-exponentiated Burr III (LEBIII) and log-
Lehmann type II Burr III (LLeBIII) distributions, respectively.

In many practical applications, the lifetimes are affected by explanatory vari-
ables such as the cholesterol level, blood pressure, weight and many others. Para-
metric regression models to estimate univariate survival functions for censored
data are widely used. A parametric model that provides a good fit to lifetime data
tends to yield more precise estimates of the quantities of interest. Based on the
LBBIII density function, we propose a linear location-scale regression model for
censored data linking the response variable yi and the explanatory variable vector
vT
i = (vi1, . . . , vip) as follows

yi = vT
i γ + σzi, i = 1, . . . , n, (13.4)

where the random error zi has density function (13.3), γ = (γ1, . . . , γp)T , σ > 0,
a > 0 and b > 0 are unknown parameters. The parameter μi = vT

i γ is the loca-
tion of yi . The location parameter vector μ = (μ1, . . . ,μn)

T is given by a linear
model μ = Vγ , where V = (v1, . . . ,vn)

T is a known model matrix. The LBBIII
regression model (13.4) opens new possibilities for fitting many different types of
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(a) (b)

(c)

Figure 12 Plots of the LBBIII density for some parameter values. Figures (a), (b) and (c) β = 0.5,
μ = 0 and σ = 1.

censored data. It is an extension of an accelerated failure time model using the
BBIII distribution for censored data.

Consider a sample (y1,v1), . . . , (yn,vn) of n independent observations, where
each random response is defined by yi = min{log(xi), log(ci)}. We assume non-
informative censoring such that the observed lifetimes and censoring times are
independent. Let F and C be the sets of individuals for which yi is the log-
lifetime or log-censoring, respectively. Conventional likelihood estimation tech-
niques can be applied here. The log-likelihood function for the vector of param-
eters τ = (a, b, σ,β,γ T )T from model (13.4) has the form l(τ ) = ∑

i∈F li(τ ) +∑
i∈C l

(c)
i (τ ), where li(τ ) = log[f (yi |vi )], l

(c)
i (τ ) = log[S(yi |vi )], f (yi |vi ) is the

density (13.1) and S(yi |vi ) is the survival function (13.2) of Yi . The total log-
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likelihood function for τ reduces to

l(τ ) = r log
[

β

σB(a, b)

]
− ∑

i∈F

zi + (βa − 1)
∑
i∈F

log
[

exp(zi)

1 + exp(zi)

]

+ (b − 1)
∑
i∈F

log
{

1 −
[

exp(zi)

1 + exp(zi)

]β}
(13.5)

+ ∑
i∈C

log
{
1 − I[exp(zi)/(1+exp(zi))]β (a, b)

}
,

where zi = (yi − vT
i γ )/σ and r is the number of uncensored observations (fail-

ures). The score functions for the parameters a, b, β , σ and γ are given by

Ua(τ ) = − r

σ

[
ψ(a) − ψ(a + b)

] + β
∑
i∈F

log(ui) − ∑
i∈C

[İ
u

β
i

(a, b)]a
1 − I

u
β
i

(a, b)
,

Ub(τ ) = − r

σ

[
ψ(a) − ψ(a + b)

] + ∑
i∈F

log
(
1 − u

β
i

) − ∑
i∈C

[İ
u

β
i

(a, b)]b
1 − I

u
β
i

(a, b)
,

Uβ(τ ) = r

β
+ a

∑
i∈F

log(ui) − (b − 1)
∑
i∈F

u
β
i log(ui)

1 − u
β
i

− ∑
i∈C

[İ
u

β
i

(a, b)]β
1 − I

u
β
i

(a, b)
,

Uσ (τ ) = −r

σ
+ 1

σ

∑
i∈F

(zi) − (aβ − 1)

σ

∑
i∈F

ziui

exp(zi)

− (b − 1)β

σ

∑
i∈F

u
β+1
i zi

(1 − u
β
i )(exp(zi))

− ∑
i∈C

[İ
u

β
i

(a, b)]σ
1 − I

u
β
i

(a, b)
,

Uγj
(τ ) = 1

σ

∑
i∈F

vij − (aβ − 1)

σ

∑
i∈F

vijui

exp(zi)

+ (b − 1)β

σ

∑
i∈F

u
β+1
i vij

(1 − u
β
i )(exp(zi))

− ∑
i∈C

[İ
u

β
i

(a, b)]γj

1 − I
u

β
i

(a, b)
.

Here, [İ
u

β
i

(a, b)]a = ∂I
u

β
i

(a, b)/∂a, [İ
u

β
i

(a, b)]b = ∂I
u

β
i

(a, b)/∂b, [İ
u

β
i

(a, b)]β =
∂I

u
β
i

(a, b)/∂β , [İ
u

β
i

(a, b)]σ = ∂I
u

β
i

(a, b)/∂σ , [İ
u

β
i

(a, b)]γj
= ∂I

u
β
i

(a, b)/∂γj ,

ui = exp(zi)/1 + exp(zi) and j = 1, . . . , p. The MLE τ̂ of τ is obtained by solv-
ing the nonlinear equations Ua(τ ) = 0, Ub(τ ) = 0, Uβ(τ ) = 0, Uσ (τ ) = 0 and
Uγj

(τ ) = 0. These equations cannot be solved analytically and statistical software
can be used to solve them numerically. We can use iterative techniques such as a
Newton–Raphson type algorithm to calculate the estimate τ̂ . The elements of the
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observed information matrix corresponding to (13.5) can be by obtained from the
authors upon request.

We use the subroutine NLMixed in SAS to compute τ̂ . Initial values for β , γ
and σ are taken from the fit of the LBIII regression model with a = b = 1. The fit
of the LBBIII model produces the estimated survival function for yi given by

S
(
yi; â, b̂, σ̂ , β̂, γ̂ T ) = 1 − I[exp(ẑi )/(1+exp(ẑi ))]β̂ (â, b̂), (13.6)

where ẑi = (yi − vT
i γ̂ )/σ̂ .

Under standard regularity conditions, the approximate multivariate normal dis-
tribution Np+4(0, J (τ )−1) for τ̂ can be used in the classical way to construct con-
fidence intervals for the parameters in τ , where J (τ ) is the observed information
matrix. Further, we can use LR statistics for comparing some special sub-models
with the LBBIII model. We consider the partition τ = (τT

1 ,τT
2 )T , where τ 1 is a

subset of parameters of interest and τ 2 is a subset of the remaining parameters.
The LR statistic for testing the null hypothesis H0 :τ 1 = τ

(0)
1 versus the alternative

hypothesis H1 :τ 1 �= τ
(0)
1 is w = 2{�(τ̂ ) − �(τ̃ )}, where τ̃ and τ̂ are the estimates

under the null and alternative hypotheses, respectively. The statistic w is asymp-
totically (as n → ∞) distributed as χ2

k , where k is the dimension of the subset of
parameters τ 1 of interest.

14 Applications

In this section, we give three applications using well-known data sets, two of them
with censoring, to demonstrate the flexibility and applicability of the proposed
models. These data show that it is necessary to have positively skewed distributions
with nonnegative support in different fields. These data present different degrees
of skewness and kurtosis.

14.1 Acute myelogeneous data

Here, we apply our methods to a survival data set that was analyzed by Feigl
and Zelen (1965). The data represent the survival times, in weeks, of 33 patients
suffering from acute myelogeneous Leukaemia. The data, that can also be found
at library SMIR of the R program (http://cran.r-project.org), are the following: 65,
156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22,
3, 4, 2, 3, 8, 4, 3, 30, 4, 43. We fit the BBIII, EBIII, LeBIII and BIII distributions to
these data using the method of maximum likelihood. The MLEs of the parameters
(with standard errors) and the Akaike Information Criterion (AIC) for the fitted
models are listed in Table 2.

A comparison of the new distribution with three of its sub-models using LR
statistics is performed in Table 3. So, considering a significance level of 10%,
we reject the null hypotheses in favor of the BBIII distribution in the three tests.

http://cran.r-project.org
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Table 2 MLEs of the model parameters for the acute myelogeneous data, the corresponding SEs
(given in parentheses) and the AIC measure

Model a b α β s AIC

BBIII 0.0671 68.8649 0.7687 15.6785 40.5867 315.02
(0.0080) (20.6863) (0.0615) (2.2911) (11.5609)

LeBIII 1 4.6233 0.5024 2.8857 17.2698 316.37
(–) (1.0142) (1.1221) (0.0816) (16.9161)

EBIII 9.3906 1 0.8303 0.3084 3.0707 319.17
(8.9829) (–) (0.0404) (0.2951) (1.4018)

BIII 1 1 0.8478 2.5633 3.7879 317.12
(–) (–) (0.0471) (0.7354) (1.8414)

Table 3 LR statistics for the acute myelogeneous data

Model Hypotheses Statistics w p-value

BBIII vs EBIII H0 :b = 1 vs H1 :H0 is false 6.1515 0.01312
BBIII vs LeBIII H0 :a = 1 vs H1 :H0 is false 3.3500 0.06720
BBIII vs BIII H0 :a = b = 1 vs H1 :H0 is false 6.0972 0.04742

The plots of the fitted BBIII, EBIII, BIII and LeBIII densities are given in Fig-
ure 13. They show that the new distribution provides a better fit than the other
three sub-models. The required numerical evaluations were implemented by using
an R program (sub-routine nlminb that can be found at http://cran.r-project.org).

Chen and Balakrishnan (1995) proposed a general approximate goodness-of-fit
test for the hypothesis H0 :X1, . . . ,Xn with Xi following F(x, θ), that is, under
H0, X1, . . . ,Xn is a random sample from a continuous distribution with cumu-
lative distribution F(x, θ), where the form of F is known but the p-vector θ is
unknown. The method is based on the Cramér–von Mises and Anderson–Darling
statistics and, in general, the smaller the values of those statistics, the better the fit.
Next, we apply such methodology in order to provide goodness-of-fit tests for the
distributions in study.

Table 4 gives the values of the Cramér–von Mises and Anderson–Darling statis-
tics for the acute myelogeneous data. According to the critical points given in
Table 1 of Chen and Balakrishnan (1995), when the Anderson–Darling statistic
is used, the null hypotheses are rejected at the significance level of 5% for the
BIII and EBIII models and at 10% for the LeIII model. The null hypothesis is
not rejected for the BBIII model. The same conclusions are obtained when the
Cramér–von Mises statistic is used.

http://cran.r-project.org


530 Gomes, da-Silva, Cordeiro and Ortega

Figure 13 Fitted BBIII, EBIII, BIII and LeBIII densities for the acute myelogeneous data.

Table 4 Goodness-of-fit statistics for the acute myelogeneous data

Model Anderson–Darling Cramér–von Mises

BIII 0.8922 0.1498
EBIII 0.8984 0.1512
LeBIII 0.7125 0.1128
BBIII 0.5657 0.0832

14.2 Melanoma data with long-term survivors

Here, we apply the BBIII model for survival data with long-term survivors to pre-
dict cancer recurrence. The data are part of a study on cutaneous melanoma (a type
of malignant cancer) for the evaluation of postoperative treatment performance
with a high dose of a certain drug (interferon alfa-2b) in order to prevent recur-
rence. Patients were included in the study from 1991 to 1995, and follow-up was
conducted until 1998. The data were collected by Ibrahim et al. (2001). The sur-
vival time X is defined as the time until the patient’s death. The original sample
size was n = 427 patients, 10 of whom did not present a value for the explanatory
variable tumor thickness. When such cases are removed, a sample of size n = 417
patients was retained. The percentage of censored observations was 56%.

We start the analysis of the data considering only failure (xi) and censoring
(censi) observations. An appropriate model for fitting such data could be the BBIII
distribution. Table 5 lists the MLEs (and the corresponding standard errors in
parentheses) of the model parameters and the AIC statistic for the fitted models.
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Table 5 Estimates of the model parameters for the melanoma data, the corresponding SEs (given
in parentheses) and the statistics AIC, CAIC and BIC

Model a b α β s AIC

BBIII 0.0348 0.0536 1.2575 99.3570 0.6363 1061.6
(0.0194) (0.0326) (0.6433) (25.87) (0.9928)

EBIII 5.5084 1 0.6617 100.12 0.0002 1066.1
(1.6584) – (0.0384) (0.0144) (0.00001)

LeBIII 1 0.7719 0.7440 142.47 0.0027 1065.8
– (0.3624) (0.1604) (0.0004) (0.0002)

BIII 1 1 0.6672 99.4551 0.0031 1064.1
– – (0.0372) (2.712E−6) (0.0011)

α1 γ1

Weibull 6.9437 1.0509 1102.1
(0.5611) (0.0691)

Table 6 LR statistics for the melanoma data

Model Hypotheses Statistics w p-value

BBIII vs EBIII H0 :b = 1 vs H1 :H0 is false 6.40 0.0114
BBIII vs LeBIII H0 :a = 1 vs H1 :H0 is false 6.20 0.0127
BBIII vs BIII H0 :a = b = 1 vs H1 :H0 is false 6.50 0.0388

The computations were performed using the subroutine NLMixed in SAS. These
results indicate that the BBIII model has the lowest AIC value among those values
of the fitted models, and therefore it could be chosen as the best model.

Note that α1 and γ1 are the scale and shape parameters of the Weibull distribu-
tion, respectively.

A comparison of the new distribution with three of its sub-models using LR
statistics is performed in Table 6.

From the values of these statistics in Table 6, we conclude that the BBIII
distribution provides a good fit for these data. In Figure 14, we plot the empiri-
cal survival function and the estimated survival functions of the BBIII, BIII and
Weibull distributions. These plots indicate that the BBIII model gives the best fit
to these data. Next, we present results by fitting the BBIII mixture model. The
MLEs (approximate standard errors in parentheses) are: â = 0.8459 (0.0472), b̂ =
7.5865 (0.2401), p̂ = 0.4822 (0.0408), β̂ = 5.5316 (2.9311), α̂ = 0.7596 (0.2210)

and ŝ = 0.9516 (1.5506). The proportion of cured individuals estimated by the
BBIII mixture model is p̂BBIII = 0.4822. In Figure 15, we plot the empirical sur-
vival function and the estimated survival function for the BBIII mixture model
which indicates an appropriate fit to the current data.



532 Gomes, da-Silva, Cordeiro and Ortega

Figure 14 Estimated survival functions and the empirical survival for melanoma data.

Figure 15 Estimated survival function for the BBIII mixture model and the empirical survival for
melanoma data.

14.3 Ovarian carcinoma data

Fleming et al. (1980) reports an study, performed at the Clinic Mayo, of patients
having limited Stage II or III ovarian carcinoma. The main goal was to determine
whether or not the grade of the disease was associated with the time to progression
of the disease. The sample size is n = 35 and the percentage of censored observa-
tions was 34%. The variables involved in the study are:

• ti—survival times (in days);
• censi—censoring indicator (0 = censoring, 1 = lifetime observed);
• xi1—grade of disease (0 = patients with low-grade or well-differentiated cancer,

1 = patients with high-grade or undifferentiated cancer).
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Table 7 MLEs of the parameters from the LBBIII and LBIII regression models fitted to the ovarian
carcinoma data, the corresponding SEs (given in parentheses), p-value in [·] and the statistic AIC

Model a b β σ β0 β1 AIC

LBBIII 0.0072 0.0166 10.7400 0.0520 6.1856 −0.1403 86.7
(0.0050) (0.0140) (4.9442) (0.0343) (0.0942) (0.1313)

[<0.001] [0.2928]
LEBIII 0.4396 1 0.7916 0.2954 7.1673 −0.8968 94.6

(0.1019) – (0.1944) (0.0151) (0.4636) (0.4046)

[<0.001] [0.0333]
LLeBIII 1 81.0385 2.2209 1.5580 9.6877 −0.7698 96.3

– (2.5643) (0.6492) (0.1971) (1.1108) (0.3746)

[<0.001] [0.0474]
LBIII 1 1 0.3480 0.2954 7.1673 −0.8968 92.6

(0.2236) (0.1498) (0.4605) (0.4025)

[<0.001] [0.0324]

Table 8 LR statistics for the ovarian carcinoma data

Model Hypotheses Statistics w p-value

LBBIII vs LEBIII H0 :b = 1 vs H1 :H0 is false 9.8 0.0017
LBBIII vs LLeBIII H0 :a = 1 vs H1 :H0 is false 11.6 0.0007
LBBIII vs LBIII H0 :a = b = 1 vs H1 :H0 is false 9.9 0.0071

Now, we present results by fitting the model

yi = β0 + β1xi1 + σzi,

where the random variable zi follows the LBBIII distribution (13.1) for i =
1, . . . ,35. The MLEs of the model parameters are calculated using the procedure
NLMixed in SAS. Iterative maximization of the logarithm of the likelihood func-
tion (13.5) starts with initial values for β and σ taken from the fit of the LBIII
regression model with a = b = 1. Table 7 lists the MLEs of the model parameters.
The value of the AIC statistic is smaller for the LBBIII regression model when
compared to the value of the LBIII regression model.

A comparison of the new distribution with three of its sub-models using LR
statistics is performed in Table 8. From the values of these statistics, we conclude
that the LBBIII distribution provides a good fit for these data.

We note from the fitted LBBIII regression model that x1 is not significant at 5%
and that there is not a significant difference between the patients with low-grade
or high-grade for the survival times.
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15 Conclusion

In this article, we study several mathematical properties of the beta Burr III (BBIII)
distribution, which represents a generalization of the Burr III (BIII) distribution.
The current generalization is important because of the wide usage of the base-
line distribution and the following two facts: it is quite flexible to analyze positive
data and it is an important alternative model to the exponentiated Burr III (EBIII),
Lehmann type II Burr III (LeBIII) and Burr III (BIII) sub-models. The new den-
sity function can be expressed as a linear combination of BIII densities, which
provide some expansions for the ordinary moments, generating function, mean de-
viations, Bonferroni and Lorenz curves, reliability and two measures of entropy.
The density function of the BBIII order statistics can also be expressed as a linear
combination of BIII densities. We provide a general formula for the moments of
the order statistics. The estimation of parameters is approached by the method of
maximum likelihood and the observed information matrix is derived. We adopt
the BBIII distribution to compose a mixture model for cure rate and propose a log-
BBIII regression model for censored data. The usefulness of the proposed models
is illustrated in three applications to real data sets.

Appendix A

We have the following result which holds for m and k positive integers, μ > −1
and p > 0 (Prudnikov et al., 1986, page 21):

I ′
(
p,μ,

m

k
, ν

)
=

∫ ∞
0

xμ exp(−px)
(
1 + xm/k)ν dx (A.1)

= k−νmμ+1/2

(2π)(m−1)/2�(−ν)pμ+1 G
k,k+m
k+m,k

(
mm

pm

∣∣∣�(m,−μ),�(k, ν + 1)

�(k,0)

)
,

where �(k, a) = a
k
, a+1

k
, . . . , a+k

k
.

Appendix B

The elements of the observed information matrix J (θ) for θ = (a, b,α,β, s)T are:

La,a = n
[
ψ ′(a + b) − ψ ′(a)

]
,

La,b = nψ ′(a + b),

La,α = β

n∑
i=1

[
log(xi/s) − (xi/s)

α log(xi/s)

1 + (xi/s)α

]
,
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La,β = α

n∑
i=1

log(xi/s) −
n∑

i=1

log
[
1 + (xi/s)

α]
,

La,s = −βα

s

n∑
i=1

1

1 + (xi/s)α
,

Lb,b = n
[
ψ ′(a + b) − ψ ′(b)

]
,

Lb,α = −β

n∑
i=1

(xi/s)
αβ log(xi/s)

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ} ,

Lb,β = −
n∑

i=1

(xi/s)
αβ[α log(xi/s) − log(1 + (xi/s)

α)]
[1 + (xi/s)α]β − (xi/s)αβ

,

Lb,s = βα

s

n∑
i=1

(xi/s)
αβ

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ} ,

Lα,α = − n

α2 − (βa + 1)

n∑
i=1

(xi/s)
α[log(xi/s)]2

[1 + (xi/s)α]2

− β(b − 1)

×
n∑

i=1

(xi/s)
αβ[

log(xi/s)
]2

× {β[1 + (xi/s)
α]β − (xi/s)

α{[1 + (xi/s)
α]β − (xi/s)

αβ}}
[1 + (xi/s)α]2{[1 + (xi/s)α]β − (xi/s)αβ}2 ,

Lα,β = a

n∑
i=1

log(xi/s)

1 + (xi/s)α

− (b − 1)

n∑
i=1

(xi/s)
αβ log(xi/s)

×
{ [1 + (xi/s)

α]β{1 + αβ log(xi/s) − β log[1 + (xi/s)
α]} − (xi/s)

αβ

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}2

}
,

Lα,s = −aβ

s

n∑
i=1

1

[1 + (xi/s)α] + 1

s

n∑
i=1

(xi/s)
α

[1 + (xi/s)α]

+ (aβ + 1)α

s

n∑
i=1

(xi/s)
α log(xi/s)

[1 + (xi/s)α]2

+ β(b − 1)

s

n∑
i=1

{ [1 + αβ log(xi/s)](xi/s)
αβ

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}
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+ βα(xi/s)
αβ log(xi/s){(xi/s)

αβ − (xi/s)
α[1 + (xi/s)

α]β−1}
[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}2
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[
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Appendix C

The elements of the observed information matrix J (τ ) for the parameters
(p, a, b,α,β, s) are:

Lp,p = r

(1 − p)2 − ∑
i∈C

[Iqi
(a, b)]2

{p + (1 − p)[1 − Iqi
(a, b)]}2 ,
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Lp,a = ∑
i∈C

[İqi
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[İqi
(a, b)]α[p + 2(1 − p)Iqi

(a, b)]
{p + (1 − p)[1 − Iqi

(a, b)]}2 ,

Lp,β = ∑
i∈C

[İqi
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Ïqi

(a, b)
]
ab

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
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∑
i∈F

[
log(xi/s) − (xi/s)

α log(xi/s)

1 + (xi/s)α

]
− ∑

i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
aα

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
a

[
İqi

(a, b)
]
α

)
/{

p + (1 − p)
[
1 − Iqi

(a, b)
]}2

,

La,β = α
∑
i∈F

log(xi/s) −
n∑

i=1

log
[
1 + (xi/s)

α]
− ∑

i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
aβ

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
a

[
İqi

(a, b)
]
β

)
/{

p + (1 − p)
[
1 − Iqi

(a, b)
]}2

,
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La,s = −βα

s

∑
i∈F

1

1 + (xi/s)α

− ∑
i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
as

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
a

[
İqi

(a, b)
]
s

)
/{

p + (1 − p)
[
1 − Iqi

(a, b)
]}2

,

Lb,b = r
[
ψ ′(a + b) − ψ ′(b)

]
− ∑

i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
bb

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]2
b

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lb,α = β
∑
i∈F

(xi/s)
αβ log(xi/s)

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}
− ∑

i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
bα

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
b

[
İqi

(a, b)
]
α

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lb,β = − ∑
i∈F

(xi/s)
αβ[α log(xi/s) − log(1 + (xi/s)

α)]
[1 + (xi/s)α]β − (xi/s)αβ

− ∑
i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
bβ

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
b

[
İqi

(a, b)
]
β

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lb,s = βα

s

∑
i∈F

(xi/s)
αβ

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}
− ∑

i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
bs

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
b

[
İqi

(a, b)
]
s

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lα,α = − r

α2 − (βa + 1)
∑
i∈F

(xi/s)
α[log(xi/s)]2

[1 + (xi/s)α]2

− β(b − 1)
∑
i∈F

(xi/s)
αβ[

log(xi/s)
]2

× {β[1 + (xi/s)
α]β − (xi/s)

α{[1 + (xi/s)
α]β − (xi/s)

αβ}}
[1 + (xi/s)α]2{[1 + (xi/s)α]β − (xi/s)αβ}2
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− ∑
i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
αα

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]2
α

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lα,β = a
∑
i∈F

log(xi/s)

1 + (xi/s)α

− (b − 1)
∑
i∈F

(xi/s)
αβ log(xi/s)

×
{ [1 + (xi/s)

α]β{1 + αβ log(xi/s) − β log[1 + (xi/s)
α]} − (xi/s)

αβ

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}2

}
− ∑

i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
αβ

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
α

[
İqi

(a, b)
]
β

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lα,s = −βa

s

n∑
i=1

1

[1 + (xi/s)α]

+ 1

s

∑
i∈F

(xi/s)
α

[1 + (xi/s)α] + (βa + 1)α

s

∑
i∈F

(xi/s)
α log(xi/s)

[1 + (xi/s)α]2

+ β(b − 1)

s

∑
i∈F

{ [1 + αβ log(xi/s)](xi/s)
αβ

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}
+ (

βα(xi/s)
αβ log(xi/s)

× {
(xi/s)

αβ − (xi/s)
α[

1 + (xi/s)
α]β−1})

/
([

1 + (xi/s)
α]{[

1 + (xi/s)
α]β − (xi/s)

αβ}2)
− α(xi/s)

α(β+1) log(xi/s)

[1 + (xi/s)α]2{[1 + (xi/s)α]β − (xi/s)αβ}
}

− ∑
i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
αs

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
α

[
İqi

(a, b)
]
s

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lβ,β = − n

β2

− (b − 1)
∑
i∈F

[1 + (xi/s)
α]β(xi/s)

αβ[α log(xi/s) − log(1 + (xi/s)
α)]2

{[1 + (xi/s)α]β − (xi/s)αβ}2
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− ∑
i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
ββ

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]2
β

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Lβ,s = α(b − 1)

s

∑
i∈F

1

[1 + (xi/s)α]

×
{

(xi/s)
αβ

[1 + (xi/s)α]β − (xi/s)αβ
− a

+ β log
[

(xi/s)
α

1 + (xi/s)α

] [1 + (xi/s)
α]β

{[1 + (xi/s)α]β − (xi/s)αβ}2

}
− ∑

i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
βs

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]
β

[
İqi

(a, b)
]
s

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

,

Ls,s = nβαa

s2 + α(βa + 1)

s2

∑
i∈F

{α − (1 + α)[1 + (xi/s)
α]}

{[1 + (xi/s)α]}2

+ (βα)2(b − 1)

s2

∑
i∈F

(xi/s)
αβ

[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}

− βα(b − 1)

s2

× ∑
i∈F

(xi/s)
αβ[(xi/s)

α(1 − α) + 1]{[1 + (xi/s)
α]β − (xi/s)

αβ}
{[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}}2

− β2α(b − 1)a

s2

∑
i∈F

[1 + (xi/s)
α]{(xi/s)

αβ − (xi/s)
α[1 + (xi/s)

α]β−1}
{[1 + (xi/s)α]{[1 + (xi/s)α]β − (xi/s)αβ}}2

− ∑
i∈C

(
(1 − p)

[
Ïqi

(a, b)
]
ss

{
p + (1 − p)

[
1 − Iqi

(a, b)
]}

+ (1 − p)2[
İqi

(a, b)
]2
s

)/{
p + (1 − p)

[
1 − Iqi

(a, b)
]}2

.

Here, [Ïqi
(a, b)]aa = ∂2Iqi

(a, b)/∂a2, [Ïqi
(a, b)]ab = ∂2Iqi

(a, b)/∂a ∂b,
[Ïqi

(a, b)]aα = ∂2Iqi
(a, b)/∂a ∂α, [Ïqi

(a, b)]aβ = ∂2Iqi
(a, b)/∂a ∂β ,

[Ïqi
(a, b)]as = ∂2Iqi

(a, b)/∂a ∂s, [Ïqi
(a, b)]bb = ∂2Iqi

(a, b)/∂b2, [Ïqi
(a, b)]bα =

∂2Iqi
(a, b)/∂b ∂α, [Ïqi

(a, b)]bβ = ∂2Iqi
(a, b)/∂b ∂β , [Ïqi

(a, b)]bs = ∂2Iqi
(a, b)/

∂b ∂s, [Ïqi
(a, b)]αα = ∂2Iqi

(a, b)/∂α2, [Ïqi
(a, b)]αβ = ∂2Iqi

(a, b)/∂α ∂β ,
[Ïqi

(a, b)]αs = ∂2Iqi
(a, b)/∂α ∂s, [Ïqi

(a, b)]ββ = ∂2Iqi
(a, b)/∂β2, [Ïqi

(a, b)]βs =
∂2Iqi

(a, b)/∂β ∂s and [Ïqi
(a, b)]ss = ∂2Iqi

(a, b)/∂s2.
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