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A stochastic analysis of table tennis

Yves Dominicy, Christophe Ley and Yvik Swan
E.C.A.R.E.S. and Université Libre de Bruxelles

Abstract. We establish a general formula for the distribution of the score in
table tennis. We use this formula to derive the probability distribution (and
hence the expectation and variance) of the number of rallies necessary to
achieve any given score. We use these findings to investigate the dependence
of these quantities on the different parameters involved (number of points
needed to win a set, number of consecutive serves, etc.), with particular focus
on the rule change imposed in 2001 by the International Table Tennis Fed-
eration (ITTF). Finally, we briefly indicate how our results can lead to more
efficient estimation techniques of individual players’ abilities.

1 Introduction

We consider the following situation. Two players (or teams), referred to as A and
B , play a sequence of rallies after each of which either A or B is declared winner.
Every rally is initiated by a server—the other player is then called the receiver—
and a point is scored (by the winner) after each rally. The players continue com-
peting until a match-winner is declared, with a match being composed of several
sets according to the (m,n,G)-scoring system, which we define as follows.

The (m,n,G)-scoring system: (i) A set consists of a sequence of independent rallies;
the winner of a set is the first player to score n points or, in case of a tie at n − 1,
the first player to create a difference of two points after the tie. (ii) A match consists
of a sequence of independent sets; the winner of a match is the first player to win G

sets. (iii) The server in the first rally of the first set is determined by flipping a coin; if
G ≥ 2, the right to serve in the first rally of each subsequent set alternates between the
two opponents. (iv) Within a set, the right to serve changes between the opponents after
each sequence of m consecutive rallies by a server until either a set-winner is declared
or a tie is reached at (n − 1, n − 1). (v) After a tie at (n − 1, n − 1), the right to serve
alternates after each rally.

To the best of our knowledge, table tennis is the only sport currently using the
(m,n,G)-scoring system, although speed badminton (a.k.a. speedminton or, be-
fore 2001, shuttleball) can nevertheless be shown to fit, up to a minor modification,
within the above scoring system for m = 3, n = 16 and G = 3 (the change concerns
the right to serve in the first rally of each subsequent set, as here the player who
has lost the previous set serves first). Until 2001, table tennis was played according
to the (5,21,G)-scoring system, with G = 2 or 3. In 2001 the International Table
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Tennis Federation (ITTF) decided to switch to the (2,11,G)-scoring system, with
G either 3 or 4.

In this article we regard table tennis as a succession of identical and indepen-
dent random experiments (the rallies) and analyze the properties of the random
processes (score change, game duration, etc.) induced by the scoring system. As
in most of the (mathematical) literature on this kind of sport, we will restrict our at-
tention to two well-known models. The first is the so-called server model in which
it is assumed that rally-outcomes are mutually independent and are, conditionally
upon the server, identically distributed. Denoting by pa (resp., pb) the probability
that player A (resp., player B) wins a rally he/she initiates, the game is then entirely
governed by the bivariate parameter (pa,pb) ∈ (0,1) × (0,1). The second model
under investigation is the simpler no-server model, in which it is assumed that ral-
lies are won with probabilities that do not depend on the server; the latter model is
thus a particular case of the former, with parameters pa = 1 −pb = p ∈ (0,1). For
a discussion on the validity of these models we refer the reader to, for example,
Klaassen and Magnus (2001), where it is shown, within the framework of the game
of tennis, that i.i.d. models provide a good approximation to real games. We have
not investigated whether their conclusions can be transposed to our framework,
and reserve such empirical considerations for later publications.

While an important literature has been devoted to sports such as tennis [see, e.g.,
Hsi and Burych (1971), George (1973), Carter and Crews (1974), Riddle (1988) or
Klaassen and Magnus (2003)] or badminton [see, e.g., Phillips (1978), Simmons
(1989) or the recent contributions by Percy (2009) and Paindaveine and Swan
(2011)], the corresponding literature on table tennis is, to say the least, scant. In-
deed, to the best of our knowledge, only one paper [Schulman and Hamdan (1977)]
addresses this issue and proposes a solution only for (m,n,G) = (5,21,2). This
lack of interest perhaps originates in the apparent simplicity of the stochastics un-
derlying the game of table tennis. Indeed, whereas in sports such as badminton or
tennis the number of consecutive serves by any player is random, the right to serve
in table tennis changes according to a deterministic rule, and, thus, rather sim-
ple (albeit delicate) combinatoric arguments allow to obtain all the corresponding
probability distributions—see Section 2. Moreover, the formulae we obtain are—
see Appendix A.1—rather lengthy and cumbersome.

This dismissive view of the problem is, in our opinion, wrong. Consequently,
we tackle in this paper all possible questions of interest related to sports based on
the (m,n,G)-scoring system, and solve them in full generality. The formulae we
obtain are based on rally-level combinatorial arguments and allow us to derive the
probability distribution (and hence the expectation and variance) of the number of
rallies necessary to achieve any given succession of rally-outcomes. By doing so,
we extend the previous contribution on the subject [Schulman and Hamdan (1977)]
where only the special case of the (5,21,2)-scoring system and only set-winning
probabilities are computed.
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The outline of the paper is as follows. In Section 2 we fix the notation, obtain
the main theoretical results and derive the distributions of the score and game-
duration. In Section 3 we investigate the dependence of the quantities obtained
in Section 2 on the parameters (m,n,G), with a particular attention given to the
effects of the ITTF’s rule change (see above) on the game-winning probabilities
and durations. Some final comments and an outlook on future research are stated
in Section 4, while an appendix collects the full-length formulae and their proofs.

2 Distribution of the score, set-winning probabilities and distribution
of the number of rallies in a single set

In this section we fix the notation and obtain the fundamental probabilities associ-
ated with the scoring process within a single set (see Lemma 2.2 below). We use
these to derive the distribution of the scores, the set-winning probabilities as well
as the distribution of the number of rallies needed to complete a set.

2.1 Notation

Here and throughout we denote scores by couples of integers where the first entry
(resp., the second entry) stands for the number of points scored by player A (resp.,
by player B). We will reserve the use of the notation (n, k) [resp., (k, n)] to indicate
the final score in a set won by A (resp., by B) without a tie. General intermediate
scores will be denoted (α,β).

We call A-set (resp., B-set) a set in which player A (resp., player B) is the first
server. Note the symmetric roles played by A and B , which will often allow us to
state our results in terms of A-sets only. For C1,C2 ∈ {A,B}, we denote by p

C2
C1

the probability that C2 wins a C1-set. Now, similarly to Schulman and Hamdan
(1977), it can be shown that, for m dividing n − 1, pA

A = pA
B (resp., pB

A = pB
B ),

that is, the probability for each player to win a single set is not affected by the
choice of the first server in the set. Consequently, the probability of player A (resp.,
player B) winning a match can be obtained in a straightforward manner by simple
conditioning. Since the values of m chosen by international federations always
satisfy the aforementioned divisibility constraint, we can (and will) restrict most
of our attention on the outcome of a single A-set.

For C ∈ {A,B}, we denote by E
α,β,C
A the event associated with all sequences

of α + β rallies in an A-set that gives rise to α (resp., β) points scored by player
A (resp., by player B) and sees player C score the last point. The latter condition
entails that we necessarily assume α > 0 (resp., β > 0) when C = A (resp., when
C = B). We denote the corresponding probability by

p
α,β,C
A = P[Eα,β,C

A ]. (2.1)



470 Y. Dominicy, C. Ley and Y. Swan

With this notation, an A-set is won by A (resp., by B) on the score (n, k) [resp.,
(k, n)] with probability p

n,k,A
A (resp., pk,n,B

A ), for k ≤ n−2. Obviously these quan-
tities do not suffice to compute the probability pC

A that C wins a set initiated by A,
since we still need to account for what happens in case of a tie at n − 1, an event
which occurs with probability p

n−1,n−1,A
A +p

n−1,n−1,B
A . For this we introduce the

notation p
tie,A
A (resp., p

tie,B
A ) to represent the probability that A (resp., B) scores 2

more consecutive points than his/her opponent after the tie; this quantity will have
to be computed differently than those defined above, since the rules governing the
game after a tie are not the same as those which were applicable before this event.
With this notation we get

pA
A =

n−2∑
k=0

p
n,k,A
A + (p

n−1,n−1,A
A + p

n−1,n−1,B
A )p

tie,A
A , (2.2)

and

pB
A =

n−2∑
k=0

p
k,n,B
A + (p

n−1,n−1,A
A + p

n−1,n−1,B
A )p

tie,B
A . (2.3)

The corresponding quantities for B-sets are defined by switching the roles of the
two players in these definitions.

Determining (2.1) and computing p
tie,C
A is the key to our understanding of the

problem. We derive a general formula for these quantities in the following sec-
tion.

2.2 Distribution of the scores in a single set

In order to give the reader a feeling for what kind of mechanics are at play, we
start with the (very simple) no-server model. Here every rally is won by player A

(resp., by player B) with probability p (resp., 1 − p), irrespective of the server.
The process therefore reduces to a succession of independent Bernoulli trials with
success-probability p, yielding

p
α,β,A
A =

(
α + β − 1

α − 1

)
pα(1 − p)β and

(2.4)

p
α,β,B
A =

(
α + β − 1

α

)
pα(1 − p)β

for all α,β ∈ N. All that remains is to determine the probabilities p
tie,A
A and p

tie,B
A .

Clearly, the number of rallies played after a tie until either player wins the set has
to be even. Let � ∈ N0. In order to have 2� rallies after the tie, it suffices that A

and B win alternatively during the first 2(� − 1) rallies, and that one of the two
players scores 2 successive points thereafter. This entails that the probability that
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A (resp., B) wins the set after 2� points is given by p2(2p(1 − p))�−1 [resp., by
(1 −p)2(2p(1 −p))�−1]. Hence, the probability of A (resp., of B) winning the set
after a tie at n − 1 is given by

p
tie,A
A = p2

1 − 2p(1 − p)
and p

tie,B
A = (1 − p)2

1 − 2p(1 − p)
. (2.5)

Thus, from (2.2), (2.3) and (2.4), a simple summation yields the game-winning
probabilities pA

A and pB
A . Note that these quantities do not depend on the parame-

ter m.
The case of the server model is trickier. The scoring process of A (resp., of B) is

a succession of m independent Bernoulli trials with success-probability pa (resp.,
1 − pa), followed by m independent trials with success-probability 1 − pb (resp.,
pb), followed again by m Bernoulli trials identical to the first and so on, until the
end of the set (or until the tie is reached). We aim to derive the probability of the
event E

α,β,C
A . We know that this event is equivalent to a succession of independent

(albeit not identically distributed) binomial experiments with parameters (m,pa)

or (m,1 − pb). Hence, all related distributions will be relatively straightforward
to derive as soon as we are able to compute, for any given score, the number K ,
say, of complete service sequences (of m rallies) and the number R (< m), say,
of remaining serves (by either A or B) during the last service sequence. This is
performed in the following lemma (which we state without proof).

Lemma 2.1. Let 0 ≤ α,β ≤ n − 1. Define the integers K and R as the unique
solutions of α + β = Km + R with R ≤ m − 1. Then the event E

α,β,C
A can be

decomposed into k1 := �K/2� service sequences by A and k2 := �K/2� service
sequences by B , ended by R serves of A (resp., of B) when K is even (resp., when
K is odd).

Let us now consider the event E
α,β,C
A for C ∈ {A,B}. From the nature of the

game it is clear that, given the score (α,β), the only random quantity left is
the number of points A (or, equivalently, B) has obtained on his/her own serve.
Hence, it is natural to define the events E

α,β,C
A (j) ⊂ E

α,β,C
A for which the scoring

sequence occurs with A scoring exactly j points on his/her serve. Denoting by
p

α,β,C
A (j) the corresponding probability, these quantities can then be derived by

exploring the essentially binomial nature of the experiment, as summarized in the
following lemma.

Lemma 2.2. Let α,β ∈ N, and define K,R as in Lemma 2.1. Also, for C ∈ {A,B},
define δC

A as the indicator of the equality between A and C. Then, (i) if R > 0 and
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K is even (or R = 0 and K is odd),

p
α,β,C
A (j) =

⎛
⎝

⌈
K

2

⌉
m + R − 1

j − δC
A

⎞
⎠pj

a(1 − pa)
�K/2�m+R−j

×
(⌊

K

2

⌋
m

α − j

)
(1 − pb)

α−jp
�K/2�m−α+j
b ,

where j ∈ {max(δC
A,α − �K

2 �m), . . . ,min(α, �K
2 �m + R − 1 + δC

A)}; (ii) if R > 0
and K is odd (or R = 0 and K is even),

p
α,β,C
A (j) =

(⌈
K

2

⌉
m

j

)
pj

a(1 − pa)
�K/2�m−j

×
⎛
⎝

⌊
K

2

⌋
m + R − 1

α − j − δC
A

⎞
⎠ (1 − pb)

α−jp
�K/2�m+R−α+j
b ,

where j ∈ {max(0, α − �K
2 �m − R + 1 − δC

A), . . . ,min(α − δC
A, �K

2 �m)}.
Note that the above condensed formulae are easier to read if spelt out explic-

itly in each of the 8 possible cases. We therefore provide a complete version of
Lemma 2.2 in the Appendix, accompanied by a formal proof. Summing up, it is
now a simple matter to obtain the final formulae—at least for game scores that do
not involve a tie.

Theorem 2.1. Fix α,β ∈ N, and let p
α,β,C
A := P[Eα,β,C

A ], where E
α,β,C
A :=⋃

j E
α,β,C
A (j) with C ∈ {A,B}. Then p

α,β,A
A = ∑∞

j=0 p
α,β,A
A (j) and p

α,β,B
A =∑∞

j=0 p
α,β,B
A (j), where the probabilities p

α,β,C
A (j) are defined in Lemma 2.2 .

When the parameters are chosen so as to satisfy the constraint pa = 1−pb = p,
the corresponding results concur with those obtained for the no-server model. In
all other cases, these results do not allow for an agreeable form so we dispense
with their explicit expression. The behavior of these quantities in terms of the rul-
ing parameters of the game is illustrated (both in the old and new scoring systems)
in Figure 3 below. Finally, regarding the winning probabilities in case of a tie, the
same reasoning as for (2.5) reveals that the probability that A (resp., B) wins the
set after 2� points is given by pa(1 − pb)((1 − pa)(1 − pb) + papb)

�−1 [resp.,
by (1 − pa)pb((1 − pa)(1 − pb) + papb)

�−1]. The probability of A (resp., of B)
winning the set after a tie at n − 1 readily follows and, thus, combining Theo-
rem 2.1 and equations (2.2) and (2.3) yields pA

A and pB
A , as desired. Because these

probabilities are particularly cumbersome to spell out explicitly, we rather choose
to illustrate their behavior (both in the old and new scoring systems) numerically
and graphically (see Table 1 and the different figures below).
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2.3 Distribution of the number of rallies in a single set

The results established in the previous section allow us now to investigate the dis-
tribution of the number of rallies, D, say, needed to end a single set. Let S stand for
the random variable recording the first server of a set, and, for C ∈ {A,B} and E

an event, denote by PC[E] := P[E|S = C] the probability of E conditional upon
who serves first in a set. The main object of interest in this section is the mapping
d �→ PA[D = d] for d ∈ N.

Obviously, because a point is scored on every rally, the number of rallies
needed to reach a score (α,β) is equal to α + β . Hence, PA[D = d] = 0 for
all d ≤ n − 1 and PA[D = d] = p

n,d−n,A
A + p

d−n,n,B
A for all n ≤ d ≤ 2(n − 1).

Finally, for d ≥ 2n − 1, such length can only be achieved through the occur-
rence of a tie so that PA[D = d] = 0 if d = 2n − 1 and otherwise PA[D =
d] = (p

n−1,n−1,A
A + p

n−1,n−1,B
A )p

d,n
tie , where the latter quantity gives the proba-

bility that there are exactly d − 2(n − 1) rallies after the tie. All that remains is
therefore to compute p

d,n
tie . For this first note that p

d,n
tie = 0 if d − 2(n − 1) is

odd. Next it is a simple matter of applying the same arguments as in Section 2.2
to obtain p

d,n
tie = (pa(1 − pb) + (1 − pa)pb)((1 − pa)(1 − pb) + papb)

�−1 with
2� = d − 2(n − 1). The distribution of D (as well as its moments) readily follows,
as illustrated in Table 1, Figure 1 and Figure 4 below.

The evolution of the expectation and variance of the number of rallies D in an
A-set unconditional on the winner of that set are displayed in Figure 1. [Note that
the effect of a variation of n in one set played according to the (m,n,G)-rule will
be a straightforward rescaling. Plots are therefore not provided.] The expectation
curves are quite smooth and unimodal around pa = pb, while the variance curves
are also smooth but exhibit a slightly bimodal nature around pa = pb. These find-
ings are in accordance with the intuition that players of approximately the same
strength play longer. Moreover, when the strengths are only slightly different, the
variance becomes biggest, as in that case there may be both tight and uneven sets.
Finally, note that when pb → 0 or pb → 1 the expected duration is not equal to
21 as one might think at first sight but is rather around 25. This evidently follows
from the fact that pa is confined between 0.3 and 0.7, and, hence, when player A

serves the outcomes remain random.

3 Comparing scoring systems in table tennis

In this section we discuss the influence of the parameters (m,n,G) in terms of
score distributions, durations and match-winning probabilities. Our main interest
is to discuss the effects of the switch from the “old” (5,21,G)-scoring system to
the “new” (2,11,G)-scoring system.

We first stress how little influence the choice of m has on the different distri-
butions, as long as m is chosen so as to satisfy the above described divisibility
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Table 1 Probability and expected duration

pb

pa 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability that A wins a set when A serves first with m = 5 and n = 21
0.1 0.5000 0.1657 0.0404 0.0072 0.0008 0 0 0 0
0.2 0.8342 0.5000 0.2190 0.0702 0.0159 0.0023 0.0002 0 0
0.3 0.9595 0.7809 0.5000 0.2430 0.0863 0.0209 0.0030 0.0002 0
0.4 0.9928 0.9297 0.7569 0.5000 0.2530 0.0914 0.0209 0.0023 0
0.5 0.9991 0.9840 0.9136 0.7469 0.5000 0.2530 0.0863 0.0159 0.0008
0.6 0.9999 0.9976 0.9790 0.9085 0.7469 0.5000 0.2430 0.0702 0.0072
0.7 0.9999 0.9998 0.9969 0.9790 0.9136 0.7569 0.5000 0.2190 0.0404
0.8 1 0.9999 0.9998 0.9976 0.9840 0.9297 0.7809 0.5000 0.1657
0.9 1 1 0.9999 0.9999 0.9991 0.9928 0.9595 0.8342 0.5000

Probability that A wins a set when A serves first with m = 2 and n = 11
0.1 0.5000 0.2300 0.0951 0.0343 0.0103 0.0024 0.0003 0 0
0.2 0.7699 0.5000 0.2819 0.1376 0.0568 0.0189 0.0046 0.0006 0
0.3 0.9048 0.7180 0.5000 0.3035 0.1576 0.0673 0.0219 0.0046 0.0003
0.4 0.9656 0.8623 0.6964 0.5000 0.3121 0.1635 0.0673 0.0189 0.0024
0.5 0.9896 0.9431 0.8423 0.6878 0.5000 0.3121 0.1576 0.0568 0.0103
0.6 0.9975 0.9810 0.9326 0.8364 0.6878 0.5000 0.3035 0.1376 0.0343
0.7 0.9996 0.9953 0.9780 0.9326 0.8423 0.6964 0.5000 0.2819 0.0951
0.8 0.9999 0.9993 0.9953 0.9810 0.9431 0.8623 0.7180 0.5000 0.2300
0.9 0.9999 0.9999 0.9996 0.9975 0.9896 0.9656 0.9048 0.7699 0.5000

Expected duration of a set when A serves first with m = 5 and n = 21
0.1 40.1616 36.5982 33.7171 31.3842 29.3013 27.4362 25.8432 24.5067 23.3333
0.2 38.6311 38.2747 36.3666 34.0094 31.7268 29.6526 27.8216 26.2500 24.9032
0.3 36.0125 37.5782 37.6279 36.3163 34.2761 32.0696 29.9949 28.1681 26.6186
0.4 33.1567 35.4021 36.9720 37.3272 36.3937 34.5748 32.4159 30.3135 28.4663
0.5 30.5940 32.7743 34.9382 36.6022 37.2359 36.6022 34.9382 32.7743 30.5940
0.6 28.4663 30.3135 32.4159 34.5748 36.3937 37.3272 36.9720 35.4021 33.1567
0.7 26.6186 28.1681 29.9949 32.0696 34.2761 36.3163 37.6279 37.5782 36.0125
0.8 24.9032 26.2500 27.8216 29.6526 31.7268 34.0094 36.3666 38.2747 38.6311
0.9 23.3333 24.5067 25.8433 27.4362 29.3013 31.3843 33.7172 36.5982 40.1616

Expected duration of a set when A serves first with m = 2 and n = 11
0.1 22.5402 19.9063 18.0171 16.5767 15.4215 14.4575 13.6267 12.8901 12.2222
0.2 20.4333 20.0069 19.0096 17.8241 16.6473 15.5657 14.6029 13.7513 12.9904
0.3 18.7138 19.3163 19.2465 18.6612 17.7620 16.7301 15.6955 14.7315 13.8635
0.4 17.2440 18.2349 18.8266 18.9228 18.5459 17.8052 16.8511 15.8300 14.8509
0.5 15.9686 17.0222 17.9547 18.5985 18.8285 18.5985 17.9547 17.0222 15.9686
0.6 14.8509 15.8300 16.8511 17.8052 18.5459 18.9228 18.8266 18.2349 17.2440
0.7 13.8635 14.7315 15.6955 16.7301 17.7620 18.6612 19.2465 19.3163 18.7138
0.8 12.9904 13.7513 14.6029 15.5657 16.6473 17.8241 19.0096 20.0069 20.4333
0.9 12.2222 12.8901 13.6267 14.4575 15.4215 16.5767 18.0171 19.9063 22.5402
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Figure 1 Both subfigures refer to an A-set played under the (5,21,1)-scoring system for differ-
ent values of pa , as a function of pb . In (a) we plot the evolution of the expectation of the dura-
tion D unconditional on the winner of the set. In (b) we plot the evolution of the variance of the
duration D unconditional on the winner of the set. In both plots the parameter pa takes values
(0.3,0.4,0.5,0.6,0.7); the legend is the same in (b) as in (a).

constraints. This is illustrated in Figure 2, where the ratio between the expected
durations (Figure 2(a)) and standard deviations (Figure 2(b)) under the (5,11,1)

and the (2,11,1) rules are reported. Aside from the fact that the different curves
cross the horizontal line y = 1 at each couple (pa,pb) such that pa + pb = 1,
we draw the reader’s attention to how little variation these quantities endure. This
encourages to disregard the role of m in the future, and concentrate on the depen-
dence on the parameters n, G and (pa,pb).

Table 1 shows the probability that A wins a set, in which he/she serves first,
both for the old and new scoring system, as well as the expected duration of such a
set in both scoring systems. The two first parts in Table 1 list the values of pA

A for
all possible combinations of couples (pa,pb) varying respectively from 0.1 to 0.9
with a step size of 0.1. A simple inspection of the probabilities indicates that the
stronger one of the two players inevitably wins the set, which is a confirmation of
the common intuition. The main difference between the two scoring systems lies in
the fact that, on the one hand, when pa > pb (values under the diagonal), player A

has a higher chance to win the set in the old system than in the new one, whereas
on the other hand, when pa < pb (values over the diagonal), player A’s (small)
chances to win the set are higher in the new system. This can be explained as fol-
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Figure 2 Both plots refer to an A-set played with n = 11 and G = 1 for different values of pa , as a
function of pb . In (a) we plot the ratio between the expected durations under the (2,11,1) rule and
that under the (5,11,1) rule. In (b) we plot the ratio between the standard deviations. In both plots
the parameter pa takes values (0.3,0.4,0.5,0.6,0.7); the legend is the same in (b) as in (a).

lows: the more points are necessary to win the set, the more important the strengths
pa and pb become, and the “victory against the odds” is therefore less probable in
the old scoring system than in the new one. We also draw the reader’s attention to
the fact that pA

A(pa,pb) = pA
A(1 − pb,1 − pa) and pA

A(pa,pb) + pA
A(pb,pa) = 1

[with pA
A(x, y) standing for the probability that player A wins an A-set under the

conditions pa = x and pb = y, x, y ∈ (0,1)]. These phenomena are discussed in
Schulman and Hamdan (1977), and will not be further elaborated on here.

The two last parts of Table 1 show the expected duration of a set in which
player A serves first. The sets with the largest expected durations are those on
the diagonal, where both players are roughly of similar strength. Clearly the du-
ration of a set is smaller in the new scoring system than in the older one. More
interesting is the fact that the duration of a set in the old scoring system is al-
ways roughly double that in the new scoring system or, more precisely, that we
have e

A,old
A /e

A,new
A ≈ 21/11. This seemingly linear relationship between the aver-

age length of a set and the number of points played is easily confirmed by further
computations, as shown in Table 2. Likewise, from Table 2, we see that the same
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Table 2 Ratio of expected durations and standard deviations in the no-server model

n2/n1 0.1 0.2 0.3 0.4 0.5

Ratio of expectations
21/11 = 1.9090 1.9000 1.9058 1.9297 1.9623 1.9776
31/21 = 1.4761 1.4670 1.4697 1.4797 1.4963 1.5052
41/31 = 1.3225 1.3149 1.3172 1.3221 1.3326 1.3392
31/11 = 2.8181 2.8231 2.8276 2.8728 2.9419 2.9769
41/11 = 3.7272 3.7482 3.7527 3.8151 3.9260 3.9867

Ratio of standard deviations√
21/11 = 1.3816 1.3437 1.3037 1.3426 1.2975 1.2356√
31/21 = 1.2149 1.1789 1.2171 1.2527 1.2356 1.1754√
41/31 = 1.1500 1.1553 1.1500 1.1790 1.1863 1.1349√
31/11 = 1.6787 1.5490 1.6080 1.6819 1.5944 1.4524√
41/11 = 1.9306 1.8476 1.8529 1.9749 1.8816 1.6484

multiplicative factor (under a square root) appears when considering the standard
deviation of D. The same conclusions hold true when passing from a single set
to a full match. From this we deduce that in order for the ITTF, for instance, to
derive a scoring triple (m2, n2,G2) which does not change the average length of
the game when switching from the original triple (m1, n1,G1), it is advisable to
choose the number of sets G2 in such a way that G1n1 = G2n2. If, for instance,
n1 = 21 and G1 = 3, then the choice of n2 = 11 and G2 = 6 would influence the
expected durations less than G2 = 3 or G2 = 4. The choice of G2 = 3 or 4 never-
theless ensures a difference that is negligible (see Figures 5, 6 and 7 below where
different choices of triples are compared in the no-server model).

Figure 3 presents, for n = 11 and n = 21 respectively, the score distribution as-
sociated with (pa,pb) = (0.7,0.5), (0.6,0.5), (0.5,0.5), (0.4,0.5) and (0.3,0.5).
Subplots (a) and (c) contain the probabilities that player A wins an A-set in which
the opponent scores a total of k points [for instance, in the new scoring system,
k = 0, . . . ,9 corresponds to a victory of A on the score (11,0), . . . , (11,9), and in
case of a tie, for which k ≥ 10, player A wins on scores of the form (k + 2, k)]
and the subplots (b) and (d) give the probability for B winning an A-set where
this time player A scores k points. It appears that these distributions are highly
sensitive to the values of (pa,pb); obviously, this extends to the corresponding
match-winning probabilities. In the (5,21,G)-scoring system, pA

A varies between
0.09 and 0.91 and pB

A between 0.91 and 0.09, when, for fixed pb = 0.5, pa ranges
from 0.3 to 0.7. For the other scoring system, pA

A takes values between 0.16 and
0.84, while pB

A ranges from 0.84 to 0.16. This confirms our previous findings that
the difference in strengths is more important in the old than in the new system. The
following three comments hold for both scoring systems: (i) as A (resp., B) is get-
ting stronger with respect to B (resp., A), his/her winning probability dramatically
increases, (ii) whatever the value of pa , white-washes seldom occur, and (iii) the
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Figure 3 In all plots we fix pb = 0.5 and take pa ∈ (0.3,0.4,0.5,0.6,0.7) [see subfigure (c) for the
legend]. Subfigures (a) and (b) refer to an A-set played under the (2,11,1)-scoring system. Subfigure
(a): for (pa,pb) = (0.7,0.5), (0.6,0.5), (0.5,0.5), (0.4,0.5) and (0.3,0.5), probabilities p

n,k,A
A that

player A wins the set on the score (n, k). Subfigure (b): the corresponding values for victories of B .
Subfigures (c) and (d) refer to an A-set played under the (5,21,1)-scoring system. Subfigure (c): for
(pa,pb) = (0.7,0.5), (0.6,0.5), (0.5,0.5), (0.4,0.5) and (0.3,0.5), probabilities p

n,k,A
A that player

A wins the set on the score (n, k). Subfigure (d): the corresponding values for victories of B . The
different set-winning probabilities pC

A for C ∈ {A,B} and each couple of values (pa,pb) are given
in each subfigure.

score distributions are not monotone in pa . Finally, note that subfigures (a) and
(b), as well as subfigures (c) and (d), display the same curves, with the symbols
indicating points in reverse order; this is due to the symmetric roles played by the
two players.

In Figure 4 we plot, in the setup of an A-set and for (pa,pb) = (0.5,0.5), (0.4,

0.5) and (0.3,0.5) [we omit the couples (0.7,0.5) and (0.6,0.5) as the symmetry
of the situation implies a confounding with the plots for (0.3,0.5) and (0.4,0.5),
resp.], the unconditional (on the winner of the set) probabilities that the number
of rallies D equals d ∈ [0,60] with respect to that value d . The expectations of D

in each case are indicated as well. Subfigure (a) corresponds to the new scoring
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Figure 4 Both plots refer to an A-set played with pb = 0.5. For (pa,pb) = (0.5,0.5), (0.4,0.5)

and (0.3,0.5) they report the probabilities that the number of rallies D needed to finish the set takes
value d unconditional on the winner of the set. Plot (a) shows the probabilities and expectations for
the (2,11,1)-scoring system and plot (b) for the (5,21,1)-scoring system.

system, and subfigure (b) to the old one. In the old scoring system the proba-
bilities are more dispersed than in the new scoring system; this is a direct con-
sequence of the larger number of points needed to play until either player wins
the set. For both plots, the peaks that occur after the main peak are due to the
fact that a set can only end after an even number of rallies in case of a tie. The
curve whose points are indicated by squares is the one that takes the highest val-
ues, which confirms the intuition that two players of the same strength take more
time to battle out the set and that the scores are quite tight (see also the related
expected values eA = 18.83 in the new scoring system and eA = 37.24 in the old
one).

The dependence of the set-winning probabilities on (pa,pb) is of primary im-
portance. In what follows, we will investigate this dependence visually by compar-
ing both scoring systems in the no-server model (p = pa = 1 − pb). The results
are illustrated in Figure 5. Figure 5(a) shows the probability that player A wins an
A-set as a function of his/her strength p. The dashed curve gives the probability
for the new scoring system and the dotted curve for the old scoring system. The
plot supports the claim that, for most values of p, the choice of the scoring system
does not influence the set-winning probabilities. The only slight differences appear



480 Y. Dominicy, C. Ley and Y. Swan

Figure 5 Comparison: a set. As a function of p = pa = 1 − pb (that is, in the no-server model),
subfigure (a) contains the probabilities pA

A (dotted line) that player A wins an A-set in the (5, 21,

1)-scoring system, along with the probabilities pA
A (dashed line) that player A wins an A-set in the

(2, 11, 1)-scoring system. Subfigures (b) and (c) show the expectation and the standard deviation of
the number of rallies needed to complete the corresponding set, unconditional on the winner.

within [0.3,0.45] and [0.55,0.7], where the new scoring system quicker equalizes
both players, which is in agreement with our previous findings. The duration plots
simply confirm what common sense already tells us. Indeed, we see in Figure 5(b)
that the expectation of D is, uniformly in p ∈ (0,1), smaller for the new scoring
system than for the old one; this is of course a direct consequence of the dramatic
reduction of the number of points necessary to win the set. The same conclusion
happens to be true for the standard deviation of D, as illustrated in Figure 5(c).
The twin-peak shape of both standard error curves is most certainly due to the
quasi-equality in rally-winning probabilities between both players, which leads to
both tighter final scores and more uneven scores. Finally, note that both curves of
Figures 5(b) and (c) are symmetric about p = 0.5, as expected.

We conduct, in Figure 6, a similar comparison between both scoring systems
at match level. More precisely, we compare a (5,21,3)-scoring system (dotted
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Figure 6 Comparison: a match. As a function of p = pa = 1 −pb (that is, in the no-server model),
subfigure (a) contains the probabilities pA

A (dotted line) that player A wins an A-match in the (5, 21,

3)-scoring system, along with the probabilities pA
A (dashed line) that player A wins an A-match in

the (2, 11, 4)-scoring system. Subfigures (b) and (c) show the expectation and the standard deviation
of the number of rallies needed to complete the corresponding match, unconditional on the winner.

curve) with a (2,11,4)-scoring system (dashed curve). Figure 6(a) (to be com-
pared with the corresponding subfigure in Figure 5) indicates that, for any fixed
p, the higher number of sets needed to achieve victory in the new scoring sys-
tem ensures that match-winning probabilities remain roughly the same before and
after the rule change. Subfigures (b) and (c), that is, the expectation and stan-
dard deviation plots, convey the same message as for a single set, except that
here the two curves of the standard deviation cross at some points. Note that
the standard deviation is in general smaller in the new scoring system, hence,
the change has made the length of the match more predictable. Finally, in Fig-
ure 7 we show, for the sake of illustration, how choosing Gnew and Gold such
that nnewGnew ≈ noldGold ensures—as is intuitively clear—that both the prob-
abilities and the expectations remain largely unchanged when switching from
(mold, nold,Gold) to (mnew, nnew,Gnew).
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Figure 7 Comparison: a match. As a function of p = pa = 1 −pb (that is, in the no-server model),
subfigure (a) contains the probabilities pA

A (dotted line) that player A wins an A-match in the (5, 21,

4)-scoring system, along with the probabilities pA
A (dashed line) that player A wins an A-match in

the (2, 11, 8)-scoring system. Subfigures (b) and (c) show the expectation and the standard deviation
of the number of rallies needed to complete the corresponding match, unconditional on the winner.

4 Final comments

This paper provides a complete probabilistic description of games played accord-
ing to the (m,n,G)-scoring system. It complements and extends the previous con-
tribution by Schulman and Hamdan (1977). The formulae provided, although cum-
bersome, can easily be implemented for numerical purposes, and yield some strik-
ing illustrations. The results of our paper can be useful, in practice, to the sport
community (e.g., the ITTF) and to TV broadcasting programs, as they allow to
analyze any (m,n,G)-scoring system. Our findings have allowed us to perform
an in-depth comparison of the old and new scoring system in table tennis. If the
aims behind the system change were (i) a better control of the length of a match
and (ii) an increase in the potential number of crucial points without influencing
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the relative strengths of the players too much (i.e., without changing the winning
probabilities), then our results confirm that these goals are achieved.

We also mention how our results also allow for constructing elegant estima-
tion procedures of the respective strengths of the players. Obviously, disposing
of the full formulae permits to work out maximum likelihood estimators for pa ,
pb. These will necessarily be obtained by numerical maximization on basis of the
formulae in Lemma 2.2. There is, however, a more elegant (and efficient) way to
perform such estimation, which only requires retaining one more bit of information
from a given encounter between two players, namely, the number of points scored
by player A (resp., player B) on his/her own serve and on the serve of his/her
opponent. Indeed, with this information one can show that the maximum likeli-
hood estimator for pa , say, is given by the ratio of the number of points won by
A on his/her serve and the total number of his/her serves. Based on Bradley–Terry
paired comparison methods, these estimators will allow for constructing interest-
ing new ranking methods within round-robin tournaments. This will be the subject
of a future publication.

Finally, since our results of Lemma 2.2 are valid for general intermediate scores
(α,β), an extension to the case where the initial score differs from (0,0) is readily
implemented. This naturally paves the way to a more dynamic analysis of a match,
à la Klaassen and Magnus (2003), in which the winning probabilities and duration
are sequentially estimated throughout the course of a given match.

Appendix

A.1 Complete formulae

Lemma A.1. Fix m ∈ N0 and α,β ∈ N, and define K,R ∈ N via the Euclidian
division α + β = Km + R. Then we have

1. If R = 0 and K is even, then

p
α,β,A
A (x) =

( K

2
m

x

)
px

a(1 − pa)
(K/2)m−x

×
( K

2
m − 1

α − x − 1

)
(1 − pb)

α−xp
(K/2)m−α+x
b ,

where x ∈ {max(0, α − K
2 m), . . . ,min(α − 1, K

2 m)}, and

p
α,β,B
A (x) =

( K

2
m

x

)
px

a(1 − pa)
(K/2)m−x

×
( K

2
m − 1

α − x

)
(1 − pb)

α−xp
(K/2)m−α+x
b ,
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where x ∈ {max(0, α − K
2 m + 1), . . . ,min(α, K

2 m)}.
2. If R = 0 and K is odd, then

p
α,β,A
A (x) =

⎛
⎝

⌈
K

2

⌉
m − 1

x − 1

⎞
⎠px

a(1 − pa)
�K/2�m−x

×
⎛
⎝

⌊
K

2

⌋
m

α − x

⎞
⎠ (1 − pb)

α−xp
�K/2�m−α+x
b ,

where x ∈ {max(1, α − �K
2 �m), . . . ,min(α, �K

2 �m)}, and

p
α,β,B
A (x) =

(⌈
K

2

⌉
m − 1

x

)
px

a(1 − pa)
�K/2�m−x

×
⎛
⎝

⌊
K

2

⌋
m

α − x

⎞
⎠ (1 − pb)

α−xp
�K/2�m−α+x
b ,

where x ∈ {max(0, α − �K
2 �m), . . . ,min(α, �K

2 �m − 1)}.
3. If R > 0 and K is even, then

p
α,β,A
A (x) =

( K

2
m + R − 1

x − 1

)
px

a(1 − pa)
(K/2)m+R−x

×
( K

2
m

α − x

)
(1 − pb)

α−xp
(K/2)m−α+x
b ,

where x ∈ {max(1, α − K
2 m), . . . ,min(α, K

2 m + R)}, and

p
α,β,B
A (x) =

( K

2
m + R − 1

x

)
px

a(1 − pa)
(K/2)m+R−x

×
( K

2
m

α − x

)
(1 − pb)

α−xp
(K/2)m−α+x
b ,

where x ∈ {max(0, α − K
2 m), . . . ,min(α, K

2 m + R − 1)}.
4. If R > 0 and K is odd, then

p
α,β,A
A (x) =

(⌈
K

2

⌉
m

x

)
px

a(1 − pa)
�K/2�m−x

×
⎛
⎝

⌊
K

2

⌋
m + R − 1

α − x − 1

⎞
⎠ (1 − pb)

α−xp
�K/2�m+R−α+x
b ,
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where x ∈ {max(0, α − �K
2 �m − R), . . . ,min(α − 1, �K

2 �m)}, and

p
α,β,B
A (x) =

(⌈
K

2

⌉
m

x

)
px

a(1 − pa)
�K/2�m−x

×
⎛
⎝

⌊
K

2

⌋
m + R − 1

α − x

⎞
⎠ (1 − pb)

α−xp
�K/2�m+R−α+x
b ,

where x ∈ {max(0, α − �K
2 �m − R + 1), . . . ,min(α, �K

2 �m)}.

A.2 Proof of the complete formulae

Since all the formulae follow a very similar pattern, we only provide formal proofs
for two of the eight expressions, namely, for p

α,β,A
A (x) when R = 0 and K is even

and for p
α,β,B
A (x) when R > 0 and K is odd.

Suppose α and β are such that α + β = Km with K even, and player A scores
the last point. In this setting, the last point is served by player B , hence, only
the outcome of K

2 m − 1 serves of player B are random, while all the K
2 m serves

of player A are random. Thanks to the independence of the rallies, we may con-
sider the serves of player A and player B separately. Moreover, as explained in
Section 2, each sequence of serves corresponds to a binomial distribution, with
parameters (K

2 m,pa) for player A serving and parameters (K
2 m − 1,1 − pb) for

player B serving, where we adopt each time the point of view of player A. Since
player A scores x points on his/her own serve, he/she necessarily wins α − x ral-
lies initiated by player B . The last point being considered apart, we are left with
α−x−1 successes for the binomial distribution with parameters (K

2 m−1,1−pb).
Combining all these facts yields the announced formula, and it remains to establish
the domain of the possible values of x.

As player B serves exactly K
2 m times, it is clear that, whenever α > K

2 m, neces-
sarily player A has to score at least α− K

2 m points on his/her own serve. Otherwise,
he/she may very well score only on player B’s serve. These two observations read-
ily yield the lower bound for x. Regarding the upper bound, as player A scores at
least one point not served by himself/herself, he/she cannot score more than α − 1
points on his/her own serve. This directly yields the upper bound, as player A is
limited to K

2 m serves.
Suppose now that α +β = Km+R with K odd and R > 0, and player B scores

the last point. In this case, player B also serves the last point; would R be zero,
then the oddness of K would give the last serve to player A. With this said, player
A serves exactly �K

2 �m points, while player B initiates �K
2 �m+R exchanges. The

formula for p
α,β,B
A (x) and the corresponding lower and upper bound for x follow

along the same lines as for p
α,β,A
A (x), which concludes the proof.



486 Y. Dominicy, C. Ley and Y. Swan

Acknowledgments

Yves Dominicy is supported by an IAP P6/07 contract, from the IAP program
(Belgian Scientific Policy): Economic policy and finance in the global economy.
Christophe Ley is supported by a Mandat d’Aspirant of the Fonds National de
la Recherche Scientifique, Communauté française de Belgique. Yvik Swan is
supported by a Mandat de Chargé de Recherches of the Fonds National de la
Recherche Scientifique, Communauté française de Belgique. The authors wish
to thank the three anonymous referees for their helpful and insightful comments
which have allowed for substantial improvement of the original manuscript.

References

Carter, W. H. and Crews, S. L. (1974). An analysis of the game of tennis. The American Statistician
28, 130–134.

George, S. L. (1973). Optimal strategy in tennis: A simple probabilistic model. Journal of the Royal
Statistical Society, Ser. C 22, 97–104.

Hsi, B. P. and Burych, D. M. (1971). Games of two players. Journal of the Royal Statistical Society,
Ser. C 20, 86–92.

Klaassen, F. J. G. M. and Magnus, J. R. (2001). Are points in tennis independent and identically dis-
tributed? Evidence from a dynamic binary panel data model. Journal of the American Statistical
Association 96, 500–509. MR1939350

Klaassen, F. J. G. M. and Magnus, J. R. (2003). Forecasting the winner of a tennis match. European
Journal of Operations Research 148, 257–267.

Paindaveine, D. and Swan, Y. (2011). A stochastic analysis of some two-person sports. Studies in
Applied Mathematics 127, 221–249. MR2852481

Percy, D. F. (2009). A mathematical analysis of badminton scoring systems. Journal of the Opera-
tional Research Society 60, 63–71.

Phillips, M. J. (1978). Sums of random variables having the modified geometric distribution with
application to two-person games. Advances in Applied Probability 10, 647–665. MR0482936

Riddle, G. H. (1988). Probability Models for Tennis Scoring Systems. Journal of the Royal Statistical
Society, Ser. C 37, 63–75.

Schulman, R. S. and Hamdan, M. A. (1977). A probabilistic model for table tennis. The Canadian
Journal of Statistics 5, 179–186.

Simmons, J. (1989). A probabilistic model of squash: Strategies and applications. Journal of the
Royal Statistical Society, Ser. C 38, 95–110. MR0983305

E.C.A.R.E.S.
and
Département de Mathématique
Université Libre de Bruxelles
Boulevard du Triomphe
Bruxelles, 1050
Belgium

http://www.ams.org/mathscinet-getitem?mr=1939350
http://www.ams.org/mathscinet-getitem?mr=2852481
http://www.ams.org/mathscinet-getitem?mr=0482936
http://www.ams.org/mathscinet-getitem?mr=0983305

	Introduction
	Distribution of the score, set-winning probabilities and distribution of the number of rallies in a single set
	Notation
	Distribution of the scores in a single set
	Distribution of the number of rallies in a single set

	Comparing scoring systems in table tennis
	Final comments
	Appendix
	Complete formulae
	Proof of the complete formulae

	Acknowledgments
	References
	Author's Addresses

