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Abstract. Polyhazard models constitute a flexible family for fitting lifetime
data. The main advantages over single hazard models include the ability to
represent hazard rate functions with unusual shapes and the ease of including
covariates. The primary goal of this paper was to include dependence among
the latent causes of failure by modeling dependence using copula functions.
The choice of the copula function as well as the latent hazard functions re-
sults in a flexible class of survival functions that is able to represent hazard
rate functions with unusual shapes, such as bathtub or multimodal curves,
while also modeling local effects associated with competing risks. The model
is applied to two sets of simulated data as well as to data representing the un-
employment duration of a sample of socially insured German workers. Model
identification and estimation are also discussed.

1 Introduction

Polyhazard models are a flexible family for fitting lifetime data. Their flexibility
stems from the acknowledgment that there are latent causes of failure. There are
many applied examples of these models in the literature. Kalbfleisch and Pren-
tice (1980) proposed the poly-log-logistic model for log-logistic competing risks;
Berger and Sun (1993) proposed the poly-Weibull model for Weibull competing
risks; Louzada-Neto (1999) proposed a generalized polyhazard model which en-
compasses the poly-Weibull, poly-log-logistic and generalized-poly-gamma mod-
els; Kuo and Yang (2000) and Basu et al. (1999) used the poly-Weibull model to
model masked-systems, in which the cause of failure may be unknown or partially
known; Mazucheli et al. (2001) presented a Bayesian inference procedure for the
polyhazard models with covariates; and Louzada-Neto et al. (2004) analyzed the
identifiability of the poly-Weibull model. The main advantage of polyhazard mod-
els compared to single hazard models is the flexibility to represent hazard rate
functions with unusual shapes.

In the applications cited above, the latent causes of failure are independent. In
this paper, we extend the independent polyhazard models to encompass depen-
dence modeled by copula functions. The model is general enough to allow for
various forms of dependence and also for any marginal distributions for the latent
times. The proposed models are able to generate much more flexible risk functions
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than the independent polyhazard models, including features such as bathtub shape,
multimodality and local effects.

The literature also mentions another approach for constructing flexible hazard
functions that is not pursued here. In this approach, the authors generalize known
distributions. See, for instance, Pham and Lai (2007) and Nadarajah et al. (2011).
The method proposed in the present paper, however, is more general. For instance,
each of these distributions can be used as a marginal distribution for the latent
causes.

The polyhazard model with dependence is proposed in Section 2. In Sec-
tion 3 identification and estimation of the model through the maximum likelihood
method is discussed. Another option would be to use a Bayesian approach; how-
ever, this is tangential to the purpose of this paper, as is model estimation, and
thus is not discussed in detail. In Section 4 we present applications of simulated
data and of data on unemployment duration of German women who are part of the
socially secured workforce. General remarks are presented in Section 5.

2 The polyhazard model with dependence

Consider that we observe n units of observations, each one subject to k ≥ 2 com-
peting latent causes of failure. Let the lifetime related to the j th latent cause of
the ith unit of observation, Xij , have a density fj (·;�j ), which are considered
as known except for the unknown set of parameters �j . Denote the survival and
hazard functions by Sj (·;�j ) and λj (·;�j ), respectively. Only Xi = min{Xij , j =
1, . . . , k} is observed for each unit of observation. Thus, considering the indepen-
dence among risks, namely, among the failure times Xij , j = 1, . . . , k, the overall
survival function of Xi , denoted by S(t;ϒ), where ϒ = (�1, . . . ,�k), is given for
any i = 1, . . . , n by the product of marginal survival functions, that is,

S(t;ϒ) = Pϒ [Xi > t]
= Pϒ [Xi1 > t, . . . ,Xik > t] (2.1)

=
k∏

j=1

Sj (t;�j ),

and the hazard function of Xi , λ(t;ϒ), is given by the sum of the marginal hazards,
because

λ(t;ϒ) = − d

dt

k∏
j=1

Sj (t;�j)

/ k∏
j=1

Sj (t;�j )

(2.2)

=
k∑

j=1

λj (t;�j ).
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An example of an application of the independent polyhazard model is given in
Mazucheli et al. (2001) where they estimate the poly-Weibull model with covari-
ates using a Bayesian approach. In this paper, we model the failure time Xi with
k = 2 competing risks, allowing for dependence between the risks. Henceforth,
we use the notation for k = 2 for simplicity, but the notation for k > 2 can be
easily generalized. Denoting by H(·, ·;ϒ) the joint distribution function and by
H̄ (·, ·;ϒ) the joint survival function of the latent variables Xi1 and Xi2, we can
write the survival function of Xi as

S(t;ϒ) = Pϒ [Xi1 > t,Xi2 > t]
(2.3)

= H̄ (t, t;ϒ).

To model the joint survival function H̄ , considering dependence between the la-
tent variables, we propose the use of copula functions. An m-dimensional copula
function may be defined as a cumulative distribution function whose marginal dis-
tributions are uniform over [0,1] and whose support is the [0,1]m hypercube. Cop-
ula functions have been extensively studied in the multivariate modeling literature,
especially when the use of the multivariate normal distribution is questionable.
An important feature of the copula approach is the possibility of modeling the
dependence and the marginal behavior of the related variates separately, thus mak-
ing the copula a very convenient alternative in the case of multivariate modeling.
Some references for copulas include the textbooks of Nelsen (2006), Joe (1997)
and Cherubini et al. (2004) as well as the paper of Trivedi and Zimmer (2005).

Let F1(·;�1) and F2(·;�2) be the distribution functions of Xi1 and Xi2, re-
spectively. It follows from Sklar’s theorem that there is always a copula func-
tion C∗ such that we can write H(t1, t2;ϒ) = C∗(F1(t1;�1),F2(t2;�2)) and that
C∗ is unique if the marginal distributions F1 and F2 are continuous. C∗ is then
called a copula function because it couples the marginal distributions F1 and F2 to
their joint distribution H . It is possible to represent the joint survival function
directly by H̄ (t1, t2;ϒ) = P [X1 > t1,X2 > t2;ϒ] = C̃(S1(t1;�1), S2(t2;�2)),
where C̃(u, v) = u + v − 1 + C∗(1 − u,1 − v) is also a copula. On the other
hand, for any copula C, C(S1(t1;�1), S2(t2;�2)) is a survival distribution func-
tion. Therefore, we can also model the survival function S directly by a copula
function C as in Kaishev et al. (2007). This is also the approach adopted here be-
cause it is generally easier to work analytically with this representation. Then for
the survival function of the polyhazard model with dependence given by a copula
function C with dependence parameter θ and ϒ = (θ,�1,�2), we can write

S(t;ϒ) = H̄ (t, t;ϒ)
(2.4)

= Cθ(S1(t;�1), S2(t;�2)),

where S1 and S2 are, in this paper and in almost all practical applications, con-
tinuous marginal survival functions. The copula C in (2.4) is called the survival
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copula; in this paper, we refer to it as the copula function. Notice that the right
(left) tail dependence for the latent survival times is equal to the left (right) tail
dependence of copula C of (2.4). From the survival function (2.4), it follows that
the probability density and hazard rate functions for the polyhazard model with
dependence are obtained in the usual fashion, that is,

f (t;ϒ) = − d

dt
S(t;ϒ) and h(t;ϒ) = f (t;ϒ)

S(t;ϒ)
. (2.5)

The proposed model is a generalization of the independent polyhazard model in
that we allow for dependence while at the same time modeling the marginal behav-
ior of the latent risks. For each combination of copula and marginal survival func-
tions employed, we have another model that allows for the construction of a rich
family of competing risks latent models. For instance, in the following sections,
we will work with exponential, log-logistic, log-normal, gamma and Weibull dis-
tributions for the latent failure causes and Clayton, Gumbel and Frank copula func-
tions. However, we could work with any distribution and any copula function. The
symmetrized Joe Clayton (SJC) copula is not used in the applications, although it
is used as an example in some parts of the paper. These copula functions were se-
lected because they have been widely used in the literature and have different types
of dependence. The Frank copula, with parameter θ ∈ (−∞,+∞), is a symmet-
ric Archimedean copula with Kendall’s τ ∈ (−1,1) and Spearman’s ρ ∈ (−1,1),
and with lower and upper tail dependence λL and λU equal to zero. While it can
generate distributions with strong dependence in the center, the dependence in
the tails is always small. Thus, in the tails, the hazard function of the competing
risks model will be approximately equal to the sum of the marginal hazard func-
tions. For the Clayton copula, the parameter θ ∈ (0,+∞), τ = θ/(θ + 2) ∈ [0,1),
ρ ∈ [0,1), λU = 2−1/θ ∈ (0,1) and λL = 0. For the Gumbel copula, the parameter
θ ∈ [1,+∞), τ = (θ −1)/θ ∈ [0,1), ρ ∈ [0,1), λU = 0 and λL = 2−21/θ ∈ [0,1).

For the SJC copula λL and λU ∈ [0,1). These features must be taken into consid-
eration when selecting the copula function [see Trivedi and Zimmer (2005) for
more properties]. In the above discussion, we always referred to the dependence
between the latent variables.

As an example of a specification of the polyhazard model with dependence,
consider the Frank copula and Weibull latent failure times such that Xij ∼
Weibull(μj ;βj ), j = 1,2. This model will be referred to as Frank–Weibull–
Weibull, where the first name stands for the copula function and the last two
names denote the latent distributions. According to the notation of the proposed
model, its parameters can be denoted by ϒ = (θ,�1,�2), where �1 = (μ1;β1)

and �2 = (μ2;β2). The overall survival function of Xi is given by

S(t;ϒ) = −1

θ
log

(
1 − (1 − e−θe−(t/μ1)β1

)(1 − e−θe−(t/μ2)β2
)

(1 − e−θ )

)
, (2.6)
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Figure 1 Examples of density, hazard and survival functions for the single risk Weibull model
and polyhazard model with Weibull marginals and dependence through Frank copula and Weibull
marginals.

and the probability density of Xi by

f (t;ϒ) = (1 − e−θS2(t))e−θS1(t)f1(t) + (1 − e−θS1(t))e−θS2(t)f2(t)

(1 − e−θ ) − (1 − e−θS1(t))(1 − e−θS2(t))
, (2.7)

where f1 and f2 are the density functions of Xi1 and Xi2, respectively. Figure 1
illustrates some possible shapes for the distribution of Xi for the Frank–Weibull–
Weibull specification, considering Xi1 ∼ W(4;0.9) and Xi2 ∼ W(5;3) and the de-
pendence parameter varying in a range where the Kendall’s τ ranges from −0.80
to 0.80. The figure shows that different shapes for the hazard rates can result, de-
pending on the shapes of the marginal distributions and the dependence type. Fig-
ure 2 shows various hazard rate functions for other specifications of the model in
which it is possible to notice local effects and bathtub and multimodal shapes. The
two points in the figure denote the 99% and 99.9% quantiles for each specifica-
tion and the dependence parameter between the latent variables is the Kendall’s
τ , except for the SJC copula where they denote the lower and upper tail depen-
dence. Henceforth, we use the acronyms Lnor, Llog, Exp, Wei, Gam and Indep for
the log-normal, log-logistic, exponential, Weibull and gamma distributions and the
independence copula, respectively, when referring to a specification of the poly-
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Figure 2 Examples of hazard rate functions for the polyhazard model with dependence.

hazard model. For instance, Clayton–Llog–Wei refers to a polyhazard model with
the Clayton copula and log-logistic and Weibull latent variables.

3 Model identification and estimation

Some models are clearly nonidentifiable. Consider, for instance, the model Indep–
Exp–Exp whose overall hazard function is constant, say, λ > 0, where the latent
hazard function can be any non-negative constant, say, λ1 and λ2, such that λ =
λ1 + λ2. A less trivial nonidentifiable model is the dependent polyhazard model
Gumbel–Wei–Wei. The Gumbel copula function is given by

C(u, v) = exp[−{(− logu)θ + (− logv)θ }1/θ ], u, v ∈ [0,1].
Therefore, by (2.4), considering Weibull margins with parameters functions
(λ1, β1) and (λ2, β2), the overall survival function is given by

S(t) = C(S1(t), S2(t))

= exp[−{λθ
1t

θβ1 + λθ
2t

θβ2}1/θ ],
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showing that the model is not identifiable when β1 = β2 = β for which any
triple (λ′

1, λ
′
2, θ

′) satisfying (λ′θ ′
1 + λ′θ ′

2 )1/θ ′ = (λθ
1 + λθ

2)
1/θ can generate the same

model. The same nonidentification problem occurs in the subclass of the Gumbel–
Wei–Wei models: Gumbel–Exp–Exp, Indep–Exp–Exp and Indep–Wei–Wei mod-
els. Another example of a nonidentifiable model is the Clayton–Llog–Llog model
when both marginal distributions have the same shape parameter and the depen-
dence parameter equals 1. In general, we also have nonidentifiability when the dis-
tribution of one marginal latent variable is stochastically dominated by the other
latent distribution and we use a copula with perfect positive dependence. Usually,
it is not that easy to check whether a dependent polyhazard model is identifiable
or not by analytical analysis. For this reason, identification of the other models,
given by combinations of the Clayton, Gumbel and Frank copulas with the ex-
ponential, log-logistic, log-normal, gamma and Weibull latent cause distributions,
was conducted by two types of numerical analyses. In the first analysis, the identi-
fication of each specification of the model was analyzed by means of an optimiza-
tion procedure that searched over a region of parametric space for different points
representing equal density functions. The analysis covered 1000 points that were
sampled uniformly in a hyperspace that was a Cartesian product of individual pa-
rameter sets that were considered wide enough to represent the parametric space
for real situations. For the dependence parameter, we considered the Kendall’s τ in
[−0.99,0.99] for the Frank copula and in [0.01,0.99] for the Clayton and Gum-
bel copula functions. For the latent variables parameters: exponential’s scale in
[0.01;4.00]; gamma’s form in [0.01;10] and scale [0.01;8]; log-logistic’s scale
in [0.01;8] and form in [0.01;8]; log-normal’s location in [−3;3] and form in
[0.5;3]; and Weibull’s scale in [0.01;10] and shape in [0.01;3]. Then, for each
of these 1000 points, its density function was evaluated in a grid of 301 points
to serve as reference of a search of another point that could produce the same
density function. Denote by M(ϒ) the model under investigation, where ϒ is
its set of parameters in the parametric space Eϒ . For ϒ0, one of the 1000 ar-
bitrarily chosen points in Eϒ , the overall density of M(ϒ0) was evaluated in a
grid with 301 points, the 100(0.005 + 0.99i/300)% quantiles, i = 0, . . . ,300. The
algorithm looked for a point in the parametric space that minimizes the objec-
tive function, D(ϒ,ϒ0), the sum of squared errors in which the errors were the
differences between the density functions of M(ϒ0) and M(ϒ) on the grid. For
each ϒ0 the optimization step was repeated by 10 initial values, summing 10,000
cases, so that for the ith initial value denote by ϒ0,i the value located by the algo-
rithm. After the optimization analysis the cases where D(ϒ0,ϒ0,i) < 10−16 and
d(ϒ0,ϒ0,i) = ∑p

j=1[(υ0,i,j − υ0,j )/υ0,j ]2 > 10−10 were considered as indication
of nonidentifiability, where ϒ0 = (υ0,1, . . . , υ0,p) and ϒ0,i = (υ0,i,1, . . . , υ0,i,p).

Every case satisfying these conditions was analysed individually. The procedure
detected the special cases of the Gumbel–Wei–Wei, Indep–Wei–Wei and Clayton–
Llog–Llog models mentioned before as nonidentifiable. In the second analysis, in
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the applications with the real data set and with the simulated data, we used different
initial points, numbering approximately 200, for the optimization of the likelihood
function in all cases. Except for a few cases of local maxima, the convergences
were at the same values. In this study of convergence, we used more simulated
data sets than the two presented in the illustration section. The analysis showed
that, except for the cases mentioned previously, there was strong evidence of iden-
tification for all other specifications. A different point, estimability, is discussed
more in the following paragraphs. An identifiable model does not ensure easy pa-
rameter estimation. For instance, when the overall hazard function is dominated by
the first latent cause, it is very difficult to estimate the second latent cause, except
for large samples.

In the traditional competing risks literature, when the cause of failure is known,
there is another type of discussion of identification. See, for instance, Cox (1972)
and Tsiatis (1975). In this classical problem, a competing risks model is identi-
fiable if the joint survival function can be calculated or identified by the simple
knowledge of the overall survival distribution. Tsiatis (1975) found that, for a
model with dependent risks, it is possible to find a set of independent risks that
produces the same joint survival distribution. It follows that, unless restrictions
are imposed on the behavior of the competing risks, this type of identification is
not possible. Some papers exhibit results in this direction. Heckman and Honoré
(1989) use a function that is similar to a copula based on covariates to overcome,
nonparametrically, the identification problem. Carriere (1994) relates the marginal
crude probabilities to the net probabilities using copula functions when there is
dependence among the risks. Zheng and Klein (1995) show that the identification
of the marginal distributions is possible if the copula function is fixed.

The polyhazard model can be seen as a competing risks model with missing val-
ues for the cause. Because less information is available, identification of the equiv-
alent competing risks model is necessary but not sufficient for the identification of
the polyhazard model. However, even when we have this type of nonidentification
in polyhazard models, we can still use these models to model lifetime data and
thus benefit from the good characteristics of these models.

The model parameters are estimated by the maximum likelihood method. Con-
sidering a random sample Xi , i = 1, . . . , n, with random right censoring in which
δi is the failure indicator variable and ti the minimum value of the failure and
censoring times, it follows from (2.4) and (2.5) that the likelihood is given by

L(ϒ) =
n∏

i=1

f (ti;ϒ)δiS(ti;ϒ)1−δi ,

where ϒ denotes the parameters for the copula function and the marginal distribu-
tions. The algorithms were written in R and the log-likelihood functions were im-
plemented in C for fast computation. The optimization used the Nelder–Mead al-
gorithm; in all applications, we tested for several initial parameter values to check
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for possible problems of local maxima and identification. Except for the issue of
local maxima observed in the estimation of the copula specifications, we did not
find convergence problems in several applications using both empirical and simu-
lated data.

The analysis of the Hessian matrix shows that, for some specifications, a large
number of observations are necessary to have a small variance of the estimator of
the copula parameter. This is especially important when the difference between the
polyhazard model with dependence and the independent polyhazard model lies in
a region with small probability. This is expected because a large number of overall
observations are needed to have a reasonable number of observations in the region
of small probability.

4 Illustrations

This section presents illustrations for simulated data, using two models and for the
real data on the duration of female unemployment in Germany. For each data set,
all models given by the combinations of the exponential, log-logistic, log-normal,
gamma and Weibull distributions for the latent failure causes and the Clayton,
Gumbel, Frank and Independent copulas were fitted, except for the Indep–Exp–
Exp and Gumbel–Exp–Exp models, which are not identifiable. The exponential,
log-logistic, log-normal, gamma and Weibull distributions, which are single risk
models, were also fitted. Because there are many polyhazard models, we only
present the fitting of some of these models. These include all single risk factor
models and those polyhazard models selected according to the AIC criterion: the
best specification for each copula function and for each data set for models with
AIC comparable with that of the best model. In the simulations, we also included
for each copula the model with the right marginal specification. We consider data
sets with and without censored observations.

4.1 Simulated data

The first data set is a random sample of size N = 5000 from a Frank–Lnor–Wei
model. The parameter of the Frank copula is given by θ = −5.74, which gives
Kendall’s τ equal to −0.50. The Frank copula has both tail dependencies equal to
zero. For the latent marginal distribution, we used log-normal (μ1 = 0.6; σ1 = 1.8)
and Weibull (μ2 = 2.0; β2 = 4.0). A large sample size is necessary for this model
to have sufficient observations in the right extreme tail. A random censoring mech-
anism was applied with uniform distribution U(0;ax(n)), where x(n) is the maxi-
mum of the simulated latent values and a = 5.3. This resulted in 20% of the obser-
vations censored, while 43.1% of the observed data came from the first latent cause
and 36.9% from the second cause. The upper panel of Figure 3 presents a graph
where on the Y -axis, we have the cause of failure (1 for the first cause, 2 for the
second cause and 3 if it is censored), and on the X-axis, we have the minimum of
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Figure 3 Dot plot of the minimum between the latent times by cause of failure. Simulation 1 in the
upper panel and Simulation 2 in the lower panel. Cause of failure: 1: 1st cause; 2: 2nd cause; and 3:
censored value.

the two latent failure times. We plotted only a sample of 500 observations to be able
to visualize the points. We observe that almost all the smallest values came from
the first latent cause, while for the large values, we have an inversion, although
not as dominant as for small values. Table 1 presents the estimates of some single
risk models and for the polyhazard models selected by the Akaike criterion. The
Akaike criterion was calculated as AIC = −2L(ϒ̂) + 2k, where k is the number
of parameters and L(ϒ̂) is the log-likelihood function evaluated at the maximum
likelihood estimate. The parameters for the marginal distributions are as follows:
exponential(scale); Weibull(form; scale); gamma(form; scale); log-logistic(scale;
form) and log-normal(location; scale). The confidence intervals for the estimates
are exhibited in parentheses and were calculated numerically from the Fisher in-
formation. In this example, the polyhazard models offered a better fit in terms of
the AIC and in terms of adjustment to the nonparametric estimation of the density,
hazard and survival functions relative to the single risk models. The first 4 models
selected by the AIC criterion are Frank copula models (from a total of 63 mod-
els tested, 15 are Frank Copula models). In this simulated data set, selection of
the right copula was likely facilitated due to the large sample size. Moreover, the
Frank copula has no tail dependence and was generated with a negative Kendall’ τ

coefficient, while both the Gumbell and Clayton copulas have tail dependence and
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Table 1 Simulation 1. True model: Frank copula θ = −5.74 (Kendall’s τ = −0.50) with log-normal(0.6;1.8) and Weibull(2.0;4.0) marginals and
sample size equal to 5000. Single risk models and models selected by AIC criterion: best polyhazard models, best marginals configuration for each copula
and the copula model for the right marginal configuration

Model AIC τ θ Marginal distribution 1 Marginal distribution 2

Frank–Lnor–Wei 7417.90 −0.51 −5.90 0.64 1.83 2.03 3.96
(−0.62; −0.34) (−8.46; −3.33) (0.53; 0.76) (1.74; 1.93) (1.90; 2.15) (3.35; 4.57)

Frank–Lnor–Gam 7418.84 −0.66 −9.79 0.61 1.81 7.23 0.29
(−0.71; −0.60) (−11.65; −7.93) (0.50; 0.72) (1.73; 1.90) (5.98; 8.47) (0.23; 0.34)

Frank–Lnor–Llog 7419.91 −0.67 −10.28 0.65 1.84 1.98 4.06
(−0.72; −0.61) (−12.29; −8.27) (0.53; 0.76) (1.75; 1.93) (1.93; 2.04) (3.65; 4.46)

Frank–Lnor–Lnor 7420.83 −0.70 −11.40 0.58 1.79 0.72 0.43
(−0.74; −0.65) (−13.46; −9.35) (0.48; 0.68) (1.71; 1.88) (0.69; 0.74) (0.39; 0.46)

Clayton–Lnor–Gam 7426.42 0.45 1.67 0.54 1.76 15.08 0.09
(0.36; 0.53) (1.11; 2.22) (0.45; 0.63) (1.69; 1.84) (12.55; 17.62) (0.08; 0.11)

Clayton–Lnor–Wei 7427.26 0.58 2.80 0.76 1.90 1.45 3.18
(0.49; 0.65) (1.90; 3.70) (0.64; 0.88) (1.81; 2.00) (1.42; 1.48) (2.96; 3.40)

Gumbel–Lnor–Wei 7427.31 0.39 1.65 0.60 1.80 1.53 3.54
(0.10; 0.54) (1.11; 2.19) (0.49; 0.70) (1.72; 1.89) (1.45; 1.61) (3.14; 3.93)

Indep–Lnor–Wei 7432.81 0.67 1.86 1.69 4.27
(0.57; 0.78) (1.77; 1.94) (1.67; 1.72) (4.06; 4.48)

Weibull 8605.86 1.22 1.51
(1.20; 1.25) (1.47; 1.54)

Gamma 8919.70 1.58 0.72
(1.52; 1.64) (0.69; 0.76)

Exponential 9407.66 1.19
(1.16; 1.23)

Log-logistic 9825.31 0.95 1.77
(0.93; 0.98) (1.73; 1.82)

Log-normal 10,243.41 −0.18 1.08
(−0.21; −0.15) (1.06; 1.10)
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Figure 4 Simulation 1. Comparison of the estimates of the density, hazard and survival functions
by single risk models and by the polyhazard models of Table 1.

positive Kendall’ τ coefficients. Table 1 presents the estimation of the fitted mod-
els. We also included the first four best models selected by the AIC criteiron, all
of which are Frank copula models. Observe that when the lognormal distribution
is selected for the model, its estimates are not far from the true marginal distribu-
tions, even when the fitted copula is wrong or when the other marginal distribution
is specified incorrectly.

Figure 4 presents the theoretical values of the density, hazard and survival func-
tions and their estimates using single risk models, polyhazard models selected by
AIC (Frank–Lnor–Wei) and using a nonparametric method. The nonparametric
estimate of the survival function is the Kaplan–Meier survival function estimate
smoothed by the R-program Loess method. To estimate the hazard function, the
derivatives are numerically computed from the smoothed survival function and the
Loess filter was again applied to the numerical derivatives. The smoothing param-
eter was selected empirically for each case. The estimation can depend strongly on
the parameter, especially in the extremes. The nonparametric and the polyhazard
function methods provide good estimates, while the single risk models are not able
to fit the data. This first illustration clearly demonstrates the greater flexibility of
the polyhazard models compared to the single risk models. Figure 5 presents the
comparison of the fit of some polyhazard models. The estimates of the function
density and survival function by all the polyhazard models selected by AIC cri-
terion are close to the true functions. However, only the models with the Frank
copula estimate the hazard function well for the entire period. The other specifica-
tions fail to fit the theoretical and nonparametric estimates of the hazard function
in the right tail.

We used the same data set to fit the eight copula models of Table 1 without cen-
soring and with 10% and 30% of the observations censored. Considering the cases
of 10% and 20% of censoring, we have a total of 64 estimates of the risk parame-
ters. Comparing with the estimates found without censoring, the maximum relative
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Figure 5 Simulation 1. Comparison among the best copula model fitted. Density, hazard and sur-
vival functions for the polyhazard models of Table 1.

difference was 6% for the point estimates and 23% for their standard deviations.
These values were equal to 11% and 23% for the 16 estimates of the Kendall’s
τ and their standard deviations. The standard deviations were estimated using the
delta method. For the 30% censoring the maximum relative difference in the 32
estimates was 98%, and 69% for the point estimates and their standard deviations,
respectively. These differences, however, are smaller when we considered that the
second last differences were equal to 32%, and 47%.

The same exercise was repeated with sample sizes N equal to 100, 250, 500,
1000, 2000 and 10,000 without censoring and with 20% of censored observations.
For every case, the single risk model yielded a bad fit. The AIC selected a de-
pendent copula over the independent copula only when the sample size was larger
or equal to N = 1000. This is somewhat expected because the main difference
between both models occurs in the extreme right tail. The hazard function has a
change in the curvature around time 2.15 and another change around time 2.5. To
detect this change in the curvatures, it is necessary to have some observations in
this region. Thus, it is not surprising that even when we simulated a sample as
large as 2000, the estimated hazard function was not accurate at the extreme be-
cause, without censoring, the probability of observing a failure larger than 2.5 is
0.0039. That is the main reason why, in this first example, we used a large sample.
The estimation of the probability density and survival functions requires fewer
observations. For instance, Figure 6 presents the estimation of the same Frank–
Lnor–Wei model with sample size equal to 500, 1000, 2000 and 5000, without
censoring. All the estimates are close to the theoretical values.

The second example is a random sample of size N = 1000 from a model with
Clayton copula with parameter θ = 18 (Kendall’s τ = 0.90, λU = 0.96 and λL =
0) and log-logistic(13.0;1.0) and log-normal(3.0;0.5) latent marginals. More than
half (61.6%) of the observed data were obtained from the first latent cause and
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Figure 6 Simulation 1. Frank–Lnor–Wei model fitted to samples of sizes 500, 1000, 2000, 5000 and
10,000.

31.5% were obtained from the second cause. The censoring mechanism was the
same as in the previous case with a = 3 producing 6.9% of censored observations.
The lower panel of Figure 3 presents the same graph as in the first simulated data
set, also including only 500 observations. Almost all the smallest values came from
the first latent cause and there is less mixture in the middle in comparison with the
first example. Table 2 shows the estimates for the polyhazard models with the
best fit for each copula according to the Akaike criterion and the models of single
risk. Except for the independent copula, which was ranked only 19th in terms
of AIC, the other polyhazard models produced a fit close to the nonparametric
hazard function estimate. Because the single risk model again produced a bad fit,
in Figure 7, we present only the results for the polyhazard models of Table 2. In
this example, it is observed that when one or both of the marginals are correctly
specified, the parameter estimates of the correctly specified variables are very close
to their true value. In this example, we also observed the same facts we observed
in respect to the estimates of the marginal distributions and the effect of censoring.

Similarly to the first example, we fitted models with different sample sizes, with
and without censoring. The copula parameter was often estimated in the border of
the parametric space for sample sizes up to 500. The result was worst with censor-
ing, when in many cases the independent copula was selected by the AIC criterion.
When the sample size was increased to 1000, the AIC criterion seldom selected the
independent copula, and the nonparametric and the parametric estimation (by the
correct Clayton–Llog–Lnor model) were close to the theoretical hazard function.
Even when the wrong copula was fitted, the fit was good, except in the right tail.
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Table 2 Simulation 2. True model: Clayton copula θ = 18 (Kendall’s τ = 0.90) and log-logistic(13.0;1.0) and log-normal(3.0;0.5) marginals, and
sample size equal to 1000. Single risk models and models selected by AIC criterion: best polyhazard models, best marginals configuration for each copula
and the copula model for the right marginal configuration

Model AIC τ θ Marginal distribution 1 Marginal distribution 2

Frank–Llog–Llog 7035.63 0.77 15.60 12.95 0.97 22.89 4.65
(0.33; 0.87) (3.24; 27.96) (11.41; 14.49) (0.90; 1.04) (21.00; 24.78) (3.93; 5.37)

Clayton–Llog–Llog 7035.72 0.76 6.28 13.03 0.97 22.38 4.55
(0.54; 0.84) (2.38; 10.17) (11.46; 14.60) (0.90; 1.04) (21.03; 23.73) (3.88; 5.22)

Gumbel–Llog–Llog 7035.73 0.83 5.87 12.94 0.97 22.88 4.70
(−0.02; 0.91) (0.98; 10.75) (11.41; 14.46) (0.90; 1.04) (20.84; 24.92) (3.85; 5.55)

Clayton–Llog–Lnor 7037.27 0.83 9.86 12.92 0.97 3.04 0.44
(0.62; 0.89) (3.21; 16.50) (11.38; 14.45) (0.90; 1.04) (2.98; 3.10) (0.39; 0.49)

Gumbel–Llog–Lnor 7037.69 0.91 10.98 12.85 0.98 3.04 0.44
(0.62; 0.95) (2.60; 19.35) (11.35; 14.36) (0.91; 1.04) (2.98; 3.11) (0.39; 0.49)

Frank–Llog–Lnor 7037.75 0.87 29.61 12.87 0.98 3.05 0.44
(0.52; 0.93) (6.03; 53.19) (11.36; 14.37) (0.91; 1.04) (2.98; 3.11) (0.39; 0.49)

Indep–Llog–Lnor 7049.22 32.79 5.85 2.64 1.88
(31.39; 34.19) (5.07; 6.62) (2.50; 2.78) (1.76; 2.01)

Gamma 7181.87 0.93 18.80
(0.86; 1.00) (16.82; 20.77)

Weibull 7184.91 17.30 0.98
(16.14; 18.47) (0.93; 1.03)

Exponential 7183.37 17.41
(16.29; 18.52)

Log-logistic 7378.90 10.87 1.27
(9.93; 11.81) (1.20; 1.33)

Log-normal 7400.32 2.25 1.41
(2.16; 2.34) (1.35; 1.48)
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Figure 7 Simulation 2: Comparison among the best copula model fitted. Density, hazard and sur-
vival functions for the polyhazard models of Table 2.

The reasons for this are the same as in example 1: few observations in the extreme
and incorrect tail dependency.

The simulation was also conducted with different copula parameter values. The
copula parameter was chosen to have Kendall’s τ equal to 0.7, 0.5 and 0.3. When
τ is equal to 0.3 or 0.5, the likelihood of the models with independent copula
was very close to that of models with dependent copulas, and, in general, the AIC
criterion selected the independent copula. For τ = 0.7, the AIC criterion almost
always selected a dependent copula.

4.2 Unemployment duration data

The unemployment duration data set was previously studied by Wichert and Wilke
(2008), who described it as follows: “it is a sample of German administrative in-
dividual unemployment duration data. It is extracted from the IAB-Employment
Sample 1975-2001 (IABS-R01), which contains employment trajectories of about
1.1 million individuals from West-Germany and about 200K individuals from
East-Germany. It is a 2% random sample of the socially insured workforce.” At
the time the data were collected, certain rules governed the administration of the
two basic benefits related to unemployment: the unemployment benefit and unem-
ployment assistance. The unemployment benefit was granted at the beginning of
the individual’s unemployment and could last from six to 32 months. The benefit
had mechanisms to incentivize the insured individual’s return to the job market,
for instance, by suspending the benefit of a person who refused a job offer that
would pay a salary comparable with that of his or her last job. The unemployment
assistance could be granted immediately after the end of the unemployment ben-
efit; it had additional criteria for eligibility, its value was lower than that of the
unemployment benefit and it could last indefinitely in time.
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The available data consist of the duration of the withdrawals of an individual
from one or both of the benefits. Therefore, the date when an individual began
and finished his or her withdrawals from the unemployment insurance is the only
available measure. The end of the benefit may occur due to several causes, such as
emigration, finding another job or starting a business, but this information is not
available. Thus, we believe that there are risks competing for the end of the unem-
ployment duration of an individual. Only the 8109 observations of women in the
data set were used. We considered as censored observation cases when the woman
was still unemployed by the end of the observation period (the year of 2001) or
when she was unemployed when the benefit reached its maximum duration. There
are 15.8% censored observations.

Table 3 shows the estimates for each copula for the best AIC polyhazard mod-
els fitted to the unemployment data; estimates for the single risk models are also
provided. Estimates of the density, hazard and survival functions are presented in
Figure 8. The polyhazard models exhibit a good fit to the data, and are clearly su-
perior to the single risk models. The estimated hazard function has a peak at the
beginning and a maximum at approximately 1.4 months, followed by a subsequent
decline. A minimum value is reached at approximately one year and four months,
after which the function increases again. Except for the model with the Frank cop-
ula, the estimates show dependence between the latent variables. Independently
of the model, the estimates of the density, hazard and survival functions are very
close, showing again that the estimation of these functions is robust to the model
misspecification.

5 Final remarks

Independent polyhazard models are known to be a flexible tool for the construction
of hazard functions. The use of copulas to model the dependence of the latent fac-
tors considerably increases this flexibility. With generalized polyhazard models,
it is possible to construct a rich family of hazard rate functions with bathtub and
multimodal shapes as well as local effects. The proposed model yields a strong fit
to simulated data and unemployment duration data representing effects resulting
from the presence of competing risks. Although it was not possible to infer the
latent times due to the identification issue resulting from the lack of information
about the cause of failure, the proposed model conveniently allows for restrictions
on dependence (negative, positive or tail dependence), and also allows for the di-
rect examination of the association between covariates and the behavior of the
latent times.
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Table 3 Summary of the models fitted to the unemployment data. Single risk models and selected polyhazard models. For each copula, only the specifi-
cation selected by the AIC criterion is presented

Model AIC τ θ Marginal distribution 1 Marginal distribution 2

Clayton–Lnor–Gam 20,429.48 0.75 5.90 0.24 1.62 1.45 1.31
(0.68; 0.79) (4.34; 7.45) (0.15; 0.32) (1.56; 1.68) (1.33; 1.57) (1.22; 1.41)

Gumbel–Lnor–Lnor 20,436.03 0.53 2.14 0.85 0.55 0.13 1.65
(0.00; 0.82) (1.00; 5.44) (0.12; 1.58) (0.35; 0.75) (0.08; 0.17) (1.61; 1.69)

Frank–Lnor–Lnor 20,436.46 −0.05 −0.44 1.38 0.50 0.13 1.65
(−0.28; 0.19) (−2.69; 1.81) (1.11; 1.65) (0.42; 0.57) (0.08; 0.18) (1.61; 1.69)

Indep–Lnor–Lnor 20,434.62 0.13 1.65 1.33 0.48
(0.08; 0.18) (1.61; 1.70) (1.29; 1.37) (0.45; 0.52)

Weibull 20,822.76 1.66 0.92
(1.62; 1.71) (0.90; 0.93)

Gamma 20,832.89 0.88 1.95
(0.86; 0.91) (1.87; 2.03)

Exponential 20,906.22 1.70
(1.66; 1.74)

Log-normal 21,170.94 −0.08 1.40
(−0.11; −0.05) (1.38; 1.42)

Log-logistic 21,333.81 0.99 1.23
(0.96; 1.02) (1.20; 1.25)
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Figure 8 Density, hazard and survival functions of the models fitted to the women unemployment
data. Polyhazard models of Table 3.
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