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Abstract. In this article we consider a class of asymmetric distributions
which belongs to one parameter regular exponential family. The Marshall–
Olkin version of this family is also considered. Various properties are exam-
ined. Applications of these models in time series analysis are discussed. We
also consider an application of Marshall–Olkin Esscher transformed Laplace
distribution in financial modeling. A comparative study shows that Marshall–
Olkin Esscher transformed Laplace distribution is a better fit to our data com-
pared to asymmetric Laplace and Esscher transformed Laplace distributions.

1 Introduction

Among the important symmetric distributions such as uniform, triangular, cosine,
logistic, Laplace, normal etc., the Laplace distribution has a special position be-
cause of its towering peak and heavy tails. For many years, this distribution was
a popular topic in probability theory due to the simplicity of its characteristic
function, density function and the distribution function, and thus enjoys numer-
ous attractive probabilistic features. Under geometric summation, the Laplace dis-
tribution plays a role analogous to that of Gaussian distribution under ordinary
summation, so that the Laplace distribution is applicable in stochastic modeling,
economics and health sciences.

There has been some growing interest in the literature, in engineering and re-
cently in finance, in using Laplace and related distributions in data modeling con-
texts that involve time. McGill (1962) showed that the Laplace distribution pro-
vides a characterization of the error in a timing device that is under periodic exci-
tation. Hsu (1979) found that navigation errors for aircraft position are best fitted
by a mixture of two Laplace distributions. Damsleth and El-Shaarawi (1989) em-
ployed an ARMA model with Laplace noise to fit weekly data on sulphate con-
centration in a Canadian watershed. Anderson and Arnold (1993) observed that
IBM daily stock prize returns are adequately modeled by Linnik processes. The
Linnik distribution is also a symmetric distribution with tail index α ∈ (0,2]. For
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α = 2, the Linnik distribution coincides with the Laplace distribution. Mathew and
Jayakumar (2003) discussed a generalized Linnik distribution and process.

In the last few decades, applications from environmental, financial, telecom-
munications, signal processing, image processing, climatology and the biomedical
sciences have shown that data sets following a normal law are more often the ex-
ception rather than the rule. Therefore, probability distributions which can account
for skewness and kurtosis and are more flexible than the normal, are often needed
in statistical modeling of data from these contexts. A well-known approach intro-
duced to model departure from normality is by modifying a symmetric probability
density function of a random variable/vector in a multiplicative fashion, thereby
introducing skewness. Azzallini (1985, 1986) thoroughly implemented this idea
for the univariate normal distribution, thereby yielded the skew-normal distribu-
tion. An extension to the multivariate case was then introduced by Azzallini and
Dalla Valle (1996) and it became a fruitful starting point for further develop-
ments. Since then various univariate and multivariate skew-symmetric distribu-
tions have been constructed and intensively studied in the last decade. Later this
idea was successfully used for defining skew-elliptical families and their gener-
alizations (see Genton (2004a)). In the following years, significant progress has
been made towards the construction of so-called multivariate skew-symmetric and
skew-elliptical distributions and their successful application to problems in ar-
eas such as engineering, environmetrics, economics and biomedical sciences. For
more details see Genton (20004b) and Azzallini (2005).

In this work, we consider a transformation procedure known as Esscher trans-
formation (exponential tilting), introduced for density approximations by Esscher
(1932) and further developed as a general probabilistic method by Daniels (1954)
and Barndorff-Nielsen (1979) for introducing asymmetry and skewness in a sym-
metric distribution. The Esscher transform of a single random variable is a well
established concept in the risk theory literature. This method provides a means for
creating a regular exponential family from a distribution whose cumulant generat-
ing function converges in the regular sense. It is a time-honored tool in actuarial
science. Though initially the Esscher transform was developed to approximate the
aggregate claim amount distribution around a point of interest, say, x0, by applying
with an analytic approximation (the Edgeworth series) to the transformed distribu-
tion with the parameter θ chosen such that the new mean is equal to x0, nowadays
Esscher transformation is used as an efficient technique for valuing derivative se-
curities, if the logarithms of the prices of the primitive securities are governed by
certain stochastic processes with stationary and independent increments. An Es-
scher transform of such a stock price process induces an equivalent probability
measure on the process. The Esscher parameter or parameter vector is determined
so that the discounted price of each primitive security is a martingale under the
new probability measure. Straight forward consequences of the Esscher transfor-
mations include formulae for pricing options on the maximum and minimum of
multiple risky assets.
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Since Laplace distribution is a member of an elliptical class of distributions
(see Fang, Kotz and Ng (1990)), and has many applications in stochastic mod-
eling and risk analysis, we consider the Esscher transform of a standard sym-
metric Laplace distribution. We introduce Esscher transformed Laplace distribu-
tion in Section 2. In Section 3, we present the Marshall–Olkin form of the Ess-
cher transformed Laplace distribution, which is obtained by the general method of
adding a parameter to a family of distributions (introduced by Marshall and Olkin
(1997)), and explore its properties. Estimation of the parameters is considered in
Section 4. Autoregressive processes of order 1 and order k with Marshall–Olkin
Esscher transformed Laplace marginals are developed in Section 5. In Section 6,
we model financial data, using Marshall–Olkin Esscher transformed Laplace dis-
tribution and show that it is a better fit compared to asymmetric Laplace and Ess-
cher transformed Laplace distributions. We conclude the paper by Section 7.

2 Esscher transformed Laplace distribution

The Esscher transform of a density f (x) is defined as

f (x; θ) = eθxf (x)

M(θ)
,

provided the moment generating function, M(θ) = ∫
eθxf (x) dx, exists in an in-

terval containing zero. Here θ is known as an Esscher parameter.
For the symmetric standard Laplace distribution with p.d.f.,

f (x) = 1

2
exp(−|x|), −∞ < x < ∞,

the moment generating function is given by

M(θ) = 1

1 − θ2 , |θ | < 1.

Thus, the Esscher transformed Laplace density, denoted by ETL(θ ), is

f (x; θ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − θ2)

2
exp[x(1 + θ)], x < 0,

(1 − θ2)

2
exp[−x(1 − θ)], x ≥ 0

(2.1)

for θ ∈ (−1,1).
The cumulative distribution function (c.d.f.) corresponding to ETL(θ ) is given

by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − θ)

2
exp[x(1 + θ)], x < 0,

1 − θ

2
+ 1 + θ

2
(1 − exp[−x(1 − θ)]), x ≥ 0

(2.2)
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for θ ∈ (−1,1).
This distribution satisfies many important statistical properties like infinite di-

visibility, geometric infinite divisibility, stability with respect to geometric summa-
tion, maximum entropy, finiteness of moments, etc. Moreover, this model provides
more flexibility, allowing for more asymmetry, peakedness and tail heaviness than
the normal model, which are common features of many financial data sets (see
Boothe and Glassman (1987)).

For many years stable Paretian laws were considered for modeling such data
sets, because they also account for asymmetry and heavier tails. Though the theory
of stable Paretian distributions are well developed, because of the lack of analytical
form of the densities and infinite second moment, their applications in practical
modeling are still rather limited; for more details we refer to Samorodnitsky and
Taqqu (1994). Again, the stable Paretian model does not account for peakedness
around the origin which is seen in most financial data. Considering all these facts,
the Esscher transformed Laplace model can be considered as a good alternative to
the stable Paretian model.

The characteristic function of the ETL(θ) distribution is

φX(t) =
(

1 + t2

1 − θ2 − 2itθ

1 − θ2

)−1

. (2.3)

Graphs of Laplce and ETL(θ ) distributions for various values of θ are given in
Figure 1(a), Figure 1(b) and Figure 1(c).

Note that after transformation on the Laplace model, we get an asymmetric uni-
modal distribution with high peakedness at zero. Here the Esscher parameter θ acts
as the skewness parameter. ETL(θ ) belongs to the one parameter regular exponen-
tial family. Families of this type are especially tractable for statistical inference.

Introducing a location parameter μ and a scale parameter σ , we have the loca-
tion scale family, with p.d.f.

f (x; θ,μ,σ ) =
(

1 − θ2

2σ

)
exp

[
θ

(
x − μ

σ

)
−

∣∣∣∣x − μ

σ

∣∣∣∣
]
,

(2.4)
−∞ < x < ∞, |θ | < 1,μ ∈ R,σ > 0,

and c.d.f.

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − θ)

2
exp

[(
x − μ

σ

)
(1 + θ)

]
, x < μ,

1 − 1 + θ

2
exp

[(
μ − x

σ

)
(1 − θ)

]
, x ≥ μ,

(2.5)

where |θ | < 1 and σ > 0.
This family of distributions is quite useful for modeling asymmetric data such

as financial data and file size data having high skewness and a heavy-tailed nature.
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(a) (b)

(c)

Figure 1 Densities of Esscher transformed Laplace distribution for (a) θ ∈ (−1,0), (b) θ = 0
(standard symmetric Laplace) and (c) θ ∈ (0,1).

3 Marshall–Olkin Esscher transformed Laplace distribution

In this section we introduce the Marshall–Olkin Esscher transformed Laplace dis-
tribution using the method proposed by Marshall and Olkin (1997). They intro-
duced a method of obtaining a new family of survival functions by adding a new
parameter to the existing distribution given by

Ḡ(x) = F̄ (x)

β + (1 − β)F̄ (x)
, x ∈ R,

where F̄ is a survival function and β > 0. If β = 1, then we have Ḡ = F̄ .
In the past decade, many distributions which belong to the Marshall–Olkin

family of distributions have been investigated: Exponential (Marshall and Olkin
(1997)), Weibull (Marshall and Olkin (1997)), Marshall–Olkin q-Weibull (Jose,
Naik and Ristic (2010)) and Generalized Marshall–Olkin (Li and Pellerey (2011)).
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Here we replace the survival function with the characteristic function φ(t) using
the result that if φ(t) is a characteristic function of some arbitrary distribution, then

ψβ(φ(t)) = βφ(t)

1 − (1 − β)φ(t)
, 0 < β ≤ 1, (3.1)

forms another class of characteristic functions. Note that ψβ(φ(t)) is the char-
acteristic function of the geometric sum of independently and identically dis-
tributed (i.i.d.) random variables with common characteristic function φ(t). That
is, ψβ(φ(t)) is the characteristic function corresponding to Y = ∑N

i=1 Xi, where
X1,X2, . . . ,XN are i.i.d. with common characteristic function φ(t) and N ∼
Geometric(1 − β), independent of Xi . These kinds of geometric sums are of spe-
cial interest in financial modeling and time series analysis; see Kotz, Kozubowski
and Podgórski (2001). When β = 1,ψβ(φ(t)) = φ(t).

Remark 3.1. Consider the transformation

ψβ(φ(t)) = βφ(t)

1 − (1 − β)φ(t)
, 0 < β ≤ 1,

then

ψβ ′(ψβ(φ(t)) = β ′ψβ(φ(t))

1 − (1 − β ′)ψβ(φ(t))

= ββ ′φ(t)

1 − (1 − ββ ′)φ(t)

= ψββ ′(φ(t)).

If X is an ETL(θ ) random variable with characteristic function (2.3), then, us-
ing (3.1), the characteristic function of the Marshall–Olkin Esscher transformed
Laplace distribution is

ψ(t) =
[
1 + 1

β

(
t2

1 − θ2 − 2itθ

1 − θ2

)]−1

for 0 < β ≤ 1, |θ | < 1

(3.2)

=
(

1 + 1

λ2 [t2 − 2itθ ]
)−1

.

We shall denote the Marshall–Olkin Esscher transformed Laplace distribution
as MOETL(λ, κ), where

λ =
√

β(1 − θ2) (3.3)

and

κ = λ

θ + √
λ + θ2

. (3.4)
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Here |θ | < 1 and β > 0 so that λ > 0 and κ > 0. Obviously, when β = 1, the
distribution in (3.2) reduces to the one parameter ETL distribution.

The probability density function and cumulative distribution function of the
MOETL(λ, κ) distribution are respectively given by

f (x;λ, κ) = λκ

1 + κ2

⎧⎨
⎩ exp

[
λx

κ

]
, x < 0,

exp[−λκx], x ≥ 0
(3.5)

and

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

κ2

1 + κ2 exp
[
λx

κ

]
, x < 0,

1 − 1

1 + κ2 exp[−λκx], x ≥ 0,
(3.6)

where λ > 0 and κ > 0 are the parameters of the distribution.
The rth raw moment of the MOETL(λ, κ) distribution denoted by αr is given

by

αr = r!
(

1

λκ

)r(1 + (−1)rκ2(r+1)

1 + κ2

)
,

so that

Mean = 1 − κ2

λκ

and

Variance = 1 + κ4

λ2κ2 .

Figure 2 represents the probability density plots of the MOETL distribution for
θ = 0.2, θ = −0.2 and for various values of β .

Figure 2 Probability density plots of MOETL(λ, κ).
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It is clear that the distributions are unimodal with mode equal to zero. The co-
efficient of skewness and kurtosis of the distribution are given by

γ1 = 4θ2 + 3λ2

2θ2

and

γ2 = 6 + 8θ2λ2 + 3λ4

2θ4 ,

where λ is given in (3.3).
The distribution is positively skewed and lepto kurtic. When θ is positive, as

β increases, the tail heaviness of the distribution increases at the right tail. When
θ is negative, as β increases, the tail heaviness of the distribution increases at the
left tail. So this distribution can have more flexible applications than the Esscher
transformed Laplace distribution. Since we are mostly dealing with heavy-tailed
distributions and Esscher transformed Laplace distribution is light heavy-tailed,
this distribution serves as a competing alternative to it, in data modeling, in the
areas of environmental, financial, telecommunications, signal processing, image
processing, climatology and biomedical sciences.

We have the following theorems. The proofs of the theorems are given in Ap-
pendix sections A.1, A.2, A.3, A.4 and A.5, respectively.

Theorem 3.1. If X1,X2, . . . are i.i.d. as MOETL(λ, κ) distribution and N, a
geometric random variable independent of X1,X2, . . . with parameter p, 0 <

p < 1, then the geometric compound SN = X1 + X2 + X3 + · · · + XN has the
MOETL(

√
pλ,κ) distribution.

Theorem 3.2. If X ∼ MOETL(λ, κ) distribution and if Z and W are independent
random variables such that Z ∼ N(0,1) and W an exponential random variable
with mean 1

β
, then

X
d= 2θ

1 − θ2 W +
√

2√
1 − θ2

√
WZ, (3.7)

where
d= represents ‘distributed as.’

Theorem 3.3. If X ∼ MOETL(λ, κ) distribution and Ik is a discrete random vari-

able which take the values −κ and 1
κ

with probabilities ( κ2

1+κ2 ) and ( 1
1+κ2 ), respec-

tively and W is a standard exponential random variable, then

X
d=

(
1

λ

)
IkW. (3.8)

Theorem 3.4. The MOETL(λ, κ) distribution is infinitely divisible.
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Proposition 3.1. Let X ∼ MOETL(λ, κ). Then X is infinitely divisible, admitting
the representation

X
d=

n∑
i=1

Xni
,

where Xni
’s are i.i.d. variables which are the difference of two gamma variables

with means 1
nκλ

and κ
nλ

, respectively.

Theorem 3.5. If X ∼ MOETL(λ, κ), then X is geometrically infinitely divisible
and for all p ∈ (0,1),

X
d=

γp∑
i=1

X(i)
p , (3.9)

where γp is a geometric random variable with mean 1
p

, the random variables

X
(i)
p ’s are i.i.d. MOETL(λ, κ) for each p and γp and X

(i)
p ’s are independent.

4 Estimation of parameters

In this section, for estimating the parameters, we use the method of maximum
likelihood and the method of moments.

4.1 Maximum likelihood estimation

For convenience, we reparametrize the distribution given in (3.5), by putting κ2 =
η
δ

and λ2 = ηδ so that the reparametrized model is given by

f (x;η, δ) = ηδ

η + δ

{
exp[δx], x < 0,
exp[−ηx], x ≥ 0.

(4.1)

Here η > 0 and δ > 0 are the model parameters. We will use the notation
MOETL(η, δ) to refer this distribution. The skewness and kurtosis of the distri-
bution depends on η and δ. A value of η greater than δ suggests that the right tail
is thinner and there is less probability concentration to the right side of zero than
the left side. Similarly, if δ is greater than η, the left tail will be thinner and there
will be less probability concentration to the left of zero than the right side. When
η = δ, the distribution becomes symmetric.

For sample data D = (X1,X2, . . . ,Xn) where Xi’s are i.i.d. like X following
MOETL(η, δ) given by (4.1), then the log likelihood function of η and δ given the
observations is obtained as

LL(η, δ|D) = n log
(

ηδ

η + δ

)
+ ∑

(Xi∈D/Xi<0)

(δXi) + ∑
(Xi∈D/Xi≥0)

(−ηXi)

(4.2)

= n log
(

ηδ

η + δ

)
+ δSl − ηSr,
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where Sl = ∑
(Xi∈D/Xi<0) Xi and Sr = ∑

(Xi∈D/Xi≥0) Xi .
Solving the equations obtained by taking the partial derivatives of the log like-

lihood function with respect to η and δ and equating to zero, we get the estimates
of η and δ as

η̂ = n

−Sl + √
Sr(−Sl)

(4.3)

and

δ̂ = n

Sr + √
Sr(−Sl)

. (4.4)

Using the estimates of η and δ, we can estimate the parameters λ and κ in (3.5).

4.2 Method of moments

In this section, we derive the moment estimators for the parameters λ and κ

in the MOETL distribution. Let (X1,X2, . . . ,Xn) be a random sample from a
MOETL(λ, κ) distribution given by the characteristic function (3.2). Here the first
and second sample moments are m′

1 = 1
n

∑n
i=1 Xi and m′

2 = 1
n

∑n
i=1 X2

i . From the
characteristic function (3.2), the first and second raw moments of the distribution
are

α1 = E(X) = 2θ

λ2 and α2 = E(X2) = 8θ2 − 2λ2

λ4 .

Equating the raw moments of the sample and population, we obtain the moment
estimators as

θ̂ = m′
1

2(m′
1)

2 − m′
2
,

λ̂ =
√

2

2(m′
1)

2 − m′
2

and

β̂ = 2[2(m′
1)

2 − m′
2]

[2(m′
1)

2 − m′
2]2 − (m′

1)
2 .

5 Autoregressive models

Recently there has been growing interest in the construction of time series mod-
els with non-Gaussian marginal distributions, because of the wide applications
of such models in socioeconomic fields. The pioneering work in this area is by
Gaver and Lewis (1980). Subsequently, Lawrence and Lewis (1981), Dewald and
Lewis (1985), Anderson and Arnold (1993), Jayakumar and Pillai (1993), Lekshmi
and Jose (2004), Jose, Tomy and Sreekumar (2008), Tomy and Jose (2009) and
Trindade, Zhu and Andrews (2010) developed autoregressive models with differ-
ent marginal distributions.
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5.1 First order autoregressive processes with MOETL(λ, κ) marginal

This section characterizes two autoregressive models with MOETL(λ, κ) marginal
distribution.

5.1.1 AR(1) Model I. The first order autoregressive process is defined by the
structural relationship

Xn = aXn−1 + εn, |a| < 1, (5.1)

where ε1,ε2, . . . are i.i.d. random variables and εn is independent of X1,X2, . . . ,

Xn−1.

Theorem 5.1. The process {Xn} in (5.1) is strictly stationary with MOETL(λ, κ)

if and only if εn has the characteristic function

φεn(t) = λ2 + a2t2 − 2iatθ

λ2 + t2 − 2itθ
(5.2)

and X0 is MOETL(λ, κ).

Proof is given in Appendix section A.6.

Remark 5.1. If X0 ∼ any arbitrary distribution, then

Xn = aXn−1 + εn = anX0 +
n−1∑
k=0

akεn−k, |a| < 1.

φXn(t) = φX0(a
nt)

n−1∏
k=0

φε(a
kt)

= φX0(a
nt)

n−1∏
k=0

λ2 + ak+2t2 + 2iak+1tθ

λ2 + t2 + 2itθ

= [1 + λ2(t2 − 2itθ)]−1.

That is, the process (5.1) is stationary with MOETL(λ, κ) marginal distribution.
Again, for any positive integer k, the sum

Tk = Xn + Xn+1 + · · · + Xn+k−1

=
k−1∑
j=0

ajXn + aj−1εn+1 + aj−2εn+2 + · · · + εn+j

= 1 − ak

1 − a
Xn +

k−1∑
j=1

1 − ak−j

1 − a
εn+j ,
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has the characteristic function

φTk
(t) = φXn

(
1 − ak

1 − a
t

) k−1∏
j=1

φε

(
1 − ak−j

1 − a
t

)

= 1
/(

1 + 1

λ2

[(
1 − ak

1 − a
t

)2

− 2i

(
1 − ak

1 − a
t

)
θ

])

×
k−1∏
j=1

[(
λ2 +

(
1 − ak−j

1 − a

)2

a2t2 − 2ai

(
1 − ak−j

1 − a
t

)
θ

)

/(
λ2 +

(
1 − ak−j

1 − a

)2

t2 − 2i

(
1 − ak−j

1 − a
t

)
θ

)]
.

The joint characteristic function of (Xn,Xn+1) is

φXn,Xn+1(t1, t2) = E
[
exp

(
it1Xn + it2(aXn + εn+1)

)]
=

[
λ2

λ2 + (t1 + at2)2 − 2ia(t1 + at2)

][
λ2 + a2t2

2 − 2iat2θ

λ2 + t2
2 − 2it2θ

]
.

The autocorrelation function

ρ(k) = Corr(Xn,Xn−k)

= a|k|, k = 0,±1,±2, . . . ,

which can be assumed either positive or negative in practical situations. Of course,

φXn,Xn+1(t1, t2) 	= φXn,Xn+1(t2, t1)

reveals that the AR process (5.1) with MOETL(λ, κ) marginal distribution is not
time reversible.

In the exponential autoregressive process of Gaver and Lewis (1980) the struc-
ture (5.1) takes the form

Xn =
{

aXn−1 with probability p,
aXn−1 + εn with probability 1 − p,

(5.3)

where 0 ≤ p ≤ 1. This model suffers from the ‘zero defect’ which caused suc-
cessive values of the process to be fixed multiples of previous values. In order to
overcome this defect, Lawrence and Lewis (1981) developed a new exponential
auto regressive model which we refer to as AR(1) Model II.

5.1.2 AR(1) Model II. This is the autoregressive model with general structure

Xn =
{

εn with probability p,
δXn−1 + εn with probability 1 − p,

(5.4)

where 0 ≤ p ≤ 1 and 0 ≤ δ ≤ 1.
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In terms of characteristic functions, (5.4) can be written as

φXn(t) = φεn(t)[p + (1 − p)φXn−1(δt)].
Assuming stationarity, it becomes

φX(t) = φε(t)[p + (1 − p)φX(δt)] and
(5.5)

φε(t) = φX(t)

p + (1 − p)φX(δt)
.

Consider the AR(1) model defined by the structure,

Xn =

⎧⎪⎪⎨
⎪⎪⎩

εn with probability
1

β
,

Xn−1 + εn with probability 1 − 1

β
,

(5.6)

where n ≥ 1, β > 1 and {εn} is a sequence of independently and identically dis-
tributed random variables. This model is equivalent to the model (5.4).

Theorem 5.2. A necessary and sufficient condition that {Xn} in (5.6) is strictly
stationary with ETL(θ ) marginal is that {εn} is distributed as MOETL(λ, κ).

Proof is given in Appendix subsection A.7.

5.2 Bivariate process of (Xn−1,Xn)

The joint characteristic function of (Xn−1,Xn) in the autoregressive model (5.6) is

φXn−1,Xn(t1, t2) = φεn(t2)

[
1

β
φXn−1(t1) +

(
1 − 1

β

)
φXn−1(t1 + t2)

]

= (
1 + λ2(t2

2 − 2it2)
)−1

×
[

1

β

(
1 + t2

1

1 − θ2 − 2it1θ

1 − θ2

)−1

+
(

1 − 1

β

)(
1 + (t1 + t2)

2

1 − θ2 − 2i(t1 + t2)θ

1 − θ2

)−1]
.

This process is not time reversible, since

φXn,Xn+1(t1, t2) 	= φXn,Xn+1(t2, t1).

Again, since {Xn} is stationary with Xn
d= ETL(θ) and εn

d= MOETL(λ, κ), we

have E(Xn) = 2θ
1−θ2 , Var(Xn) = 2(1+θ2)

(1−θ2)2 and E(εn) = 2θ
β(1−θ2)

. Then

E[Xn+1/Xn = x] =
(

1 − 1

β

)
x + 2θ

β(1 − θ2)
.

Hence, the regression of Xn+1 on Xn = x is linear in x.
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By some algebraic evaluations in (A.4) given in Appendix section A.7, we have

Cov(Xn,Xn−k) =
(

1 − 1

β

)k

Cov(Xn−k,Xn−k).

So the autocorrelation function

ρ(k) =
(

1 − 1

β

)k

,

which is always positive and, hence, the variables are positively correlated.

5.3 Sample path behavior

The simulated sample path using 100 observations generated from the
MOETLAR(1) process for different values of θ and β is given in Figure 3. The
sample path behavior seems to be distinctive and is adjustable through the param-
eters θ and β . This makes the model very rich. The model identification can be
done as described in Sim (1994).

For an AR(1) process, the first order autocorrelation function decays exponen-
tially, while the partial autocorrelation function cuts off after the first lag. If these
two functions of the sample are consistent with that of the AR(1) model, we can
identify the model as AR(1) and the parameter β of the model can be estimated
using the sample autocorrelation.

Here the estimate of β is β̂ = 1
1−r1

(see Sim (1994)), where r1 is the sample
autocorrelation of first order.

Figure 3 Sample path of MOETLAR process.
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5.4 Extension to higher order processes

In this section, we consider the kth order autoregressive model constructed by
Lawrence and Lewis (1981) with structure

Xn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εn with probability p0,
Xn−1 + εn with probability p1,
Xn−2 + εn with probability p2,
. . .

Xn−k + εn with probability pk ,

(5.7)

where
∑k

i=0 pi = 1,0 < pi < 1, i = 0,1,2, . . . , k and {εn} is a sequence of i.i.d.
MOETL(λ, κ), independent of {Xn,Xn−1,Xn−2, . . .}.

In terms of characteristic function, (5.7) can be written as

φXn(t) = p0φεn(t) + p1φXn−1(t)φεn(t)

+ p2φXn−2(t)φεn(t) + · · · + pkφXn−k
(t)φεn(t).

Assuming stationarity, we get

φε(t) = φX(t)

p + (1 − p)φX(t)
.

This shows that the previous results in this section can be applied in higher order
cases also

6 A case study

This section deals with an application of Marshall–Olkin Esscher transformed
Laplace distribution in modeling exchange rates. We consider a data on daily ob-
servations of US Dollar–Indian Rupee foreign exchange rates. The data consists of
2516 observations starting from 01/09/1998 to 29/08/2008. The data can be down-
loaded from the NSE website. A time series plot of the data is provided in Figure 4.
From the graph it can be seen that the exchange rate shows an increase initially and
then decrease and again a slow increase. The first order autocorrelation of the se-
ries {Xn} is obtained as ρ0 = 0.9987. To make the series stationary, we take the
first order autocorrelated difference of the {Xn}. The new series obtained is {Yn}
where Yn = Xn − ρ0Xn−1. This series is standardized by subtracting its mean and
dividing by its standard deviation. The autocorrelation of the resulting series is
insignificant. Each observation in the series is multiplied by 10. The observations
are classified into classes of width one unit. A histogram is constructed and is
given in Figure 5. The graph resembles the shape of the Marshall–Olkin Esscher
transformed Laplace distribution presented in Figure 2. We estimate the values
of λ and κ, say, λ̂ and κ̂, respectively, from the observed data using the MLEs.
We get λ̂ = 0.9816 and κ̂=0.8682. We construct frequency curve of the Marshall–
Olkin Esscher transformed Laplace density with these λ and κ and super impose
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Figure 4 Time series of daily exchange rate of US Dollar–Indian Rupee.

Figure 5 Histogram of the observed series.

this curve on the histogram of the observed data. Figure 6(c) represents the his-
togram of the observed data and embedded Marshall–Olkin Esscher transformed
Laplace frequency curve. Since the Marshall–Olkin Esscher transformed Laplace
distribution is considered as a more flexible model than the Esscher transformed
Laplace distribution and since the Esscher transformed Laplace distribution is a
special case of the asymmetric Laplace distribution, a comparison with both Ess-
cher transformed Laplace distribution and asymmetric Laplace distribution is also
done by fitting these probability distributions to the same observed data. The esti-
mated value of the parameter θ of the Esscher transformed Laplace distribution is
θ̂ = 0.12432 and the estimated values of the parameters of the asymmetric Laplace
distribution are κ̂ = 1.101 and σ̂ = 0.7812. Figures 6(a) and 6(b), respectively, rep-
resent the histogram of the observed data and the embedded asymmetric Laplace
frequency curve and the histogram of the observed data and the embedded Es-
scher transformed Laplace frequency curve. Figures 7(a), 7(b) and 7(c) are, re-
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(a) (b)

(c)

Figure 6 The histogram and embedded frequency polygon of (a) asymmetric Laplace distribution
(b) Esscher transformed Laplace distribution and (c) Marshall–Olkin Esscher transformed Laplace
distribution.

spectively, the P–P plots of asymmetric Laplace distribution, Esscher transformed
Laplace distribution and Marshall–Olkin Esscher transformed Laplace distribu-
tion. All these graphs reveal that the Marshall–Olkin Esscher transformed Laplace
distribution is a better model than both the Esscher transformed Laplace distribu-
tion and the asymmetric Laplace distribution to the currency exchange data. We
check the goodness of fit, using the Kolmogrov distance measure also. For the
asymmetric Laplace model, the value of the distance measure is 0.0987, for the
Esscher transformation Laplace model, it is 0.07932 and for the Marshall–Olkin
Esscher transformed Laplace model, the distance measure is 0.0684. So we con-
clude that the Marshall–Olkin Esscher transformed Laplace distribution is a better
model compared to both the asymmetric Laplace model and the Esscher trans-
formed Laplace model for the currency exchange data.
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(a) (b)

(c)

Figure 7 P–P plot of (a) asymmetric Laplace distribution (b) Esscher transformed Laplace distri-
bution and (c) Marshall–Olkin Esscher transformed Laplace distribution.

7 Conclusion

Esscher transformation of a distribution provides a means for creating a regular
exponential family from a distribution whose cumulant generating function con-
verges in the regular sense. It can be seen that the class of p.d.f.s obtained by the
Escher transformation on the the standard Laplace distribution is a subclass of the
family of asymmetric Laplace distributions. Further, this family of distributions
belongs to a regular one parameter exponential family of distributions and, there-
fore, the most efficient estimator of the parameter involved in the transformation
can be obtained. This family exhibits asymmetry, sharp peakedness at zero and
has heavier tails than normal distribution, and is suitable for modeling financial
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data related to currency exchange rate, stock price changes, interest rate, etc. It is
illustrated that the Marshall–Olkin generalized family of distributions introduced
in this paper are appropriate to model much heavier-tailed data such as currency
exchange data.

Appendix

A.1 Proof of Theorem 3.1

The characteristic function of SN is

ψSN
(t) =

∞∑
k=1

[ψX(t)]kp(1 − p)k−1, where ψX(t) is given in (3.2)

=
[
1 + 1

pλ2 (t2 − 2itθ)

]−1

.

Hence it follows from (3.2) that

SN = X1 + X2 + X3 + · · · + XN ∼ MOETL(
√

pλ,κ) distribution.

A.2 Proof of Theorem 3.2

Assume that W follows an an exponential distribution with p.d.f.

f (w) =
{

β exp(−βw), w > 0,
0, otherwise.

Conditioning on W , we can express the characteristic function of the right-hand
side of (3.7) as follows:

φX(t) = EW

{
E

(
exp

[
it

(
2θ

1 − θ2 W +
√

2√
1 − θ2

√
WZ

)])∣∣∣W}

=
(

1 + 1

λ2 [t2 − 2itθ ]
)−1

,

which is the characteristic function of the MOETL(λ, κ) distribution given in (3.2).

A.3 Proof of Theorem 3.3

φX(t) = κ2

1 + κ2

[
1

1 + κit/λ

]
+ 1

1 + κ2

[
1

1 − it/(κλ)

]
,

where κ and λ are given in (3.4) and (3.3), respectively. Hence,

φX(t) =
(

1 + 1

λ2 [t2 − 2itθ ]
)−1

,

which is the characteristic function of the MOETL(λ, κ) given in (3.2).
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A.4 Proof of Theorem 3.4

The characteristic function given by (3.2) can be written as

ψ(t) =
[(

1 + itκ

λ

)−1/n(
1 − it

κλ

)−1/n]n

,

where κ and λ are given in (3.4) and (3.3). That is, ψ(t) = (ψn(t))
n for each integer

n ≥ 1, where ψn(t) is the characteristic function of the difference of two gamma

variables with means 1
nκλ

and κ
nλ

and variances 1
nκ2λ2 and κ2

nλ2 , respectively.

A.5 Proof of Theorem 3.5

Let gp be the characteristic function of X
(i)
p . Conditioning on γp , the characteristic

function of the right-hand side of (3.9) can be obtained as

E
[
eit

∑γp
i=1 X

(i)
p

] =
∞∑
i=1

E
[
eit

∑γp
i=1 X

(i)
p

]
(1 − p)n−1p

(A.1)

= pgp(t)

1 − (1 − p)gp(t)
.

Now substitute

gp(t) =
(

1 + 1

λ2 (pt2 − 2iptθ)

)−1

,

the characteristic function of MOETL(λ, κ) in (A.1), we get

E
[
eit

∑γp
i=1 X

(i)
p

] =
(

1 + 1

λ2 (t2 − 2itθ)

)−1

,

which is the characteristics function of X in (3.2).

A.6 Proof of Theorem 5.1

Let the characteristic function of Xn and εn be φXn(t), and φεn(t), respectively.
By (5.1), for all t,

φXn(t) = φεn(t)φXn−1(at). (A.2)

By the stationary property of (5.1), we have for all t,

φε(t) = φX(t)

φX(at)
= λ2 + a2t2 − 2iatθ

λ2 + t2 − 2itθ
.

If X0 is of MOETL(λ, κ) and εn has the characteristic function (3.2), then, for
n = 1, we have from (A.2)

φX1(t) =
(

1 + 1

λ2 [t2 − 2itθ ]
)−1

. (A.3)

The rest of the proof follows by mathematical induction, assuming that

Xn−1
d= MOETL(λ, κ).
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A.7 Proof of Theorem 5.2

Let the characteristic function of {Xn} be φXn(t) and that of {εn} be φεn(t).
From (5.6) for all t,

φXn(t) = φεn(t)

[
1

β
+

(
1 − 1

β

)
φXn−1(t)

]
.

Assuming stationarity, it becomes

φX(t) = φε(t)

[
1

β
+

(
1 − 1

β

)
φX(t)

]
and

(A.4)

φε(t) = φX(t)

1/β + (1 − 1/β)φX(t)
.

If

X ∼ ETL(θ),

then

φε(t) = [1 + λ2(t2 − 2itθ)]−1,

which is the characteristic function of MOETL(λ, κ), so that

εn ∼ MOETL(λ, κ).

Conversely, if {εn} is a sequence of i.i.d. MOETL(λ, κ) random variables and

X0
d= ETL(θ),

then from (A.4), when n = 1, we have

φX1(t) = 1

β

[
1 +

(
t2

1 − θ2 − 2itθ

1 − θ2

)]−1

+
(

1 − 1

β

)(
1 + t2

1 − θ2 − 2itθ

1 − θ2

)−1

[1 + λ2(t2 − 2itθ)]−1

=
(

1 + t2

1 − θ2 − 2itθ

1 − θ2

)−1

.

That is,

X1
d= ETL(θ).

Assuming

Xn−1
d= ETL(θ),

it follows by mathematical induction that {Xn} is a stationary process with Esscher
transformed Laplace marginal distribution.
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