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Acceptance sampling plans from truncated life tests based
on the Marshall–Olkin extended exponential distribution

for percentiles

G. Srinivasa Rao
Hamelmalo Agricultural College

Abstract. In this article, acceptance sampling plans are developed for the
Marshall–Olkin extended exponential distribution percentiles when the life
test is truncated at a pre-specified time. The minimum sample size necessary
to ensure the specified life percentile is obtained under a given customer’s
risk. The operating characteristic values (and curves) of the sampling plans
as well as the producer’s risk are presented. Two examples with real data sets
are also given as illustration.

1 Introduction

A typical application of acceptance sampling is as follows: a company receives a
shipment of product from a vendor. This product is often a component or raw ma-
terial used in the company’s manufacturing process. A sample is taken from the lot
and the relevant quality characteristic of the units in the sample is inspected. On
the basis of the information in this sample, a decision is made regarding lot dis-
position. Traditionally, when the life test indicates that the mean life of products
exceeds the specified one, the lot of products is accepted, otherwise it is rejected.
Accepted lots are put into production, while rejected lots may be returned to the
vendor or may be subjected to some other lot disposition action. While it is cus-
tomary to think of acceptance sampling as a receiving inspection activity, there
are also other uses. For example, frequently a manufacturer samples and inspects
its own product at various stages of production. Lots that are accepted are sent
forward for further processing, while rejected lots may be reworked or scrapped.
For the purpose of reducing the test time and cost, a truncated life test may be
conducted to determine the smallest sample size to ensure a certain mean life of
products when the life test is terminated at a preassigned time t0, and the number
of failures observed does not exceed a given acceptance number c.

A sampling inspection plans in the case that the sample observations are life-
times of products put to test aims at verifying that the actual population mean
exceeds a required minimum. The population mean stands for the mean lifetime
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of the product, say μ. If μ0 is a specified minimum value, then one would like to
verify that μ ≥ μ0, this means that the true unknown population mean lifetime of
the product exceeds the specified value. On the basis of a random sample of size n,
the lot is accepted, if by means of a suitable decision criterion, the acceptance sam-
pling plan decides in favor of μ ≥ μ0. Otherwise, the lot is rejected. The decision
criterion is naturally based on the number of observed failures in the sample of,
n products during a specified time t0 from which a lower bound for the unknown
mean lifetime is derived. If the observed number of failures is large, say larger than
a number c, the derived lower bound is smaller than μ0 and the hypothesis μ ≥ μ0
is not verified. Hence, the lot cannot be accepted. Such a sampling plan is named
Reliability test plan or Acceptance sampling plans on life tests.

A common practice in life testing is to terminate the life test by a pre-determined
time t0 and note the number of failures (assuming that a failure is well defined).
One of the objectives of these experiments is to set a lower confidence limit on
the mean life. It is then to establish a specified mean life with a given probability
of at least p∗ which provides protection to consumers. The decision to accept the
specified mean life occurs if and only if the number of observed failures at the end
of the fixed time t0 does not exceed a given number ‘c’—called the acceptance
number. The test may get terminated before the time t0 is reached when the number
of failures exceeds ‘c’ in which case the decision is to reject the lot. For such a
truncated life test and the associated decision rule; we are interested in obtaining
the smallest sample size to arrive at a decision.

In this paper, we assume that the lifetime of product follows a Marshall–
Olkin extended exponential distribution proposed and studied by Marshall and
Olkin (1997). Adamidis et al. (2005) studied the reliability applications of
Marshall–Olkin extended exponential distribution (they called as extension of the
exponential-geometric distribution) with two sets of real data exhibiting increasing
hazards. The first set of data involves results from an experiment concerning the
tensile fatigue characteristics of a polyester/viscose yarn; 100 observations were
obtained on the cycles to failure of a 100 cm yarn sample put to test under 2.3%
strain level. The second set of data consists of 107 failure times for right rear brakes
on D9G-66A caterpillar tractors. In addition to the exponential-geometric distri-
bution, the gamma and Weibull distributions with respective were fitted to each set
of data and they showed that exponential-geometric distribution better fitted than
the gamma and Weibull distributions. They have given this model used under the
concepts of population heterogeneity (through the process of compounding), the
“series system” with identical components (or the “initial defects situation” with
perfect repair) and the “parallel system” with identical components, appearing in
many biological organisms or industrial components and units. Various statisti-
cal properties of the distribution along with its reliability features are explored
and characterizations are given. The reliability applications of Marshall–Olkin ex-
tended exponential distribution was studied by Peña and Gupta (1990), Adamidis
and Loukas (1998), Meintanis (2007) and Nadarajah (2008). Rao et al. (2009b)
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developed an acceptance sampling procedure for the Marshall–Olkin extended
exponential distribution mean under a truncated life test. Some other studies re-
garding truncated life tests can be found in Epstein (1954), Sobel and Tischendrof
(1959), Goode and Kao (1961), Gupta and Groll (1961), Gupta (1962), Fertig and
Mann (1980), Kantam and Rosaiah (1998), Kantam et al. (2001), Baklizi (2003),
Wu and Tsai (2005), Rosaiah and Kantam (2005), Rosaiah et al. (2006), Tsai and
Wu (2006), Balakrishnan et al. (2007), Rao et al. (2008) and Rao et al. (2009a).

All these authors considered the design of acceptance sampling plans based
on the population mean or median under a truncated life test. Whereas Lio et al.
(2010) considered acceptance sampling plans from truncated life tests based on
the Birnbaum–Saunders distribution for Percentiles and Rao and Kantam (2010)
developed acceptance sampling plans from truncated life tests based on the log-
logistic distribution for Percentiles, they proposed that the acceptance sampling
plans based on mean may not satisfy the requirement of engineering on the spe-
cific percentile of strength or breaking stress. When the quality of a specified low
percentile is concerned, the acceptance sampling plans based on the population
mean could pass a lot which has the low percentile below the required standard of
consumers. Furthermore, a small decrease in the mean with a simultaneous small
increase in the variance can result in a significant downward shift in small per-
centiles of interest. This means that a lot of products could be accepted due to a
small decrease in the mean life after inspection. But the material strengths of prod-
ucts are deteriorated significantly and may not meet the consumer’s expectation.
Therefore, engineers pay more attention to the percentiles of lifetimes than the
mean life in life testing applications. Moreover, most of the employed life distribu-
tions are not symmetric. In viewing Marshall and Olkin (2007), the mean life may
not be adequate to describe the central tendency of the distribution. This reduces
the feasibility of acceptance sampling plans if they are developed based on the
mean life of products. Actually, percentiles provide more information regarding a
life distribution than the mean life does. When the life distribution is symmetric,
the 50th percentile or the median is equivalent to the mean life. Hence, developing
acceptance sampling plans based on percentiles of a life distribution can be treated
as a generalization of developing acceptance sampling plans based on the mean
life of items. Rao et al. (2009b) developed acceptance sampling plans based on the
mean of the Marshall–Olkin extended exponential distribution. Balakrishnan et al.
(2007) proposed the acceptance sampling plans could be used for the quantiles
and derived the formulae whereas Lio et al. (2010) developed for the acceptance
sampling plans for any other percentiles of the Birnbaum–Saunders (BS) model.
They have developed the acceptance sampling plans for percentile by replace the
scale parameter β by the 100qth percentile in the BS distribution function. Rao
and Kantam (2010) developed acceptance sampling plans from truncated life tests
based on the log-logistic distribution for Percentiles. These reasons motivate to
develop acceptance sampling plans based on the percentiles of the Marshall–Olkin
extended exponential distribution under a truncated life test.
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The rest of the article is organized as follows. The proposed sampling plans
are established for the Marshall–Olkin extended exponential percentiles under a
truncated life test, along with the operating characteristic (OC) and some relevant
tables, is given in Section 2. Two examples based on real fatigue life data sets are
provided for the illustration in Section 3 and discussion and some conclusions are
made in Section 4.

2 Acceptance sampling plans

Assume that the lifetime of a product follows the Marshall–Olkin extended expo-
nential distribution which has the following probability density function (p.d.f.)
and cumulative distribution function (c.d.f.), respectively;

f (t;α,σ) = (α/σ) exp(−t/σ )

[1 − ᾱ exp(−t/σ )]2 ; t > 0, α, σ > 0, ᾱ = 1 − α, (2.1)

and

F(t;α,σ) = 1 − exp(−t/σ )

1 − ᾱ exp(−t/σ )
; t > 0, α, σ > 0, (2.2)

where σ is the scale parameter and α is the shape parameter. Given 0 < q < 1 the
100qth percentile (or the qth quantile) is given by

tq = σ ln
[
(1 − ᾱq)/(1 − q)

]
. (2.3)

The tq is increasing with respect to α for q > 0.5 and decreasing with respect
to α for q < 0.5. Therefore, the 100qth percentile, tq , is depend upon α. When
q = 0.5, then t0.5 = σ ln(1 + α) and t0.5 is also the median of Marshall–Olkin
extended exponential distribution. Let η = ln[(1 − ᾱq)/(1 − q)]. Then, equation
(2.3) implies that

σ = tq/η. (2.4)

To develop acceptance sampling plans for the Marshall–Olkin extended exponen-
tial percentiles, the scale parameter σ in the Marshall–Olkin extended exponential
c.d.f. is replaced by equation (2.4) and the Marshall–Olkin extended exponential
c.d.f. is rewritten as

F(t) = 1 − exp[−t/(tq/η)]
1 − ᾱ exp[−t/(tq/η)] ; t > 0.

Letting δ = t/tq , F(t) can be rewritten emphasizing its dependence on δ as

F(t; δ) = 1 − exp(−δη)

1 − ᾱ exp(−δη)
; t > 0.



Acceptance sampling plans for percentiles 121

Taking partial derivative with respect to δ, we have

∂F (t; δ)
∂δ

= αη exp(−δη)

[1 − ᾱ exp(−δη)]2 ; t > 0.

A common practice in life testing is to terminate the life test by a pre-determined
time t , the probability of rejecting a bad lot be at least p∗, and the maximum
number of allowable bad items to accept the lot be c. The acceptance sampling plan
for percentiles under a truncated life test is to set up the minimum sample size n

for this given acceptance number c such that the consumer’s risk, the probability of
accepting a bad lot, does not exceed 1 − p∗. A bad lot means that the true 100qth
percentile, tq , is below the specified percentile, t0

q . Thus, the probability p∗ is a
confidence level in the sense that the chance of rejecting a bad lot with tq < t0

q is
at least equal to p∗. Therefore, for a given p∗, the proposed acceptance sampling
plan can be characterized by the triplet (n, c, t/t0

q ).

2.1 Minimum sample size

For a fixed p∗ our sampling plan is characterized by (n, c, t/t0
q ). Here we consider

sufficiently large sized lots so that the binomial distribution can be applied. The
problem is to determine for given values of p∗ (0 < p∗ < 1), t0

q and c, the smallest
positive integer, n required to assert that tq > t0

q must satisfy

c∑
i=0

(
n

i

)
pi

0(1 − p0)
n−i ≤ 1 − p∗, (2.5)

where p = F(t; δ0) is the probability of a failure during the time t given a
specified 100qth percentile of lifetime t0

q and depends only on δ0 = t/t0
q , since

∂F (t; δ)/∂δ > 0, F(t; δ) is a nondecreasing function of δ. Accordingly, we have

F(t, δ) < F(t, δ0) ⇔ δ ≤ δ0, or equivalently,

F (t, δ) ≤ F(t, δ0) ⇔ tq ≥ t0
q .

The smallest sample size n satisfying the inequality (2.5) can be obtained for any
given q , t/t0

q , p∗ and α. Whereas, the smallest sample size n calculation in Rao
et al. (2009b) only needs input values for t/σ0, p∗ and α. Hence, the proposed
process to find the smallest sample size in this case is the same as the procedure
provided by Rao et al. (2009b) for the Marshall–Olkin extended exponential model
except in place of t/σ0 replace by t/t0

q at q . To save space, only the results of small
sample sizes for q = 0.1, t/t0

q = 0.7, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5; p∗ = 0.75,
0.90, 0.95, 0.99; c = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and α = 2 are reported in
Table 1.

If p = F(t; δ0) is small and n is large, the binomial probability may be approx-
imated by Poisson probability with parameter λ = np so that the left side of (2.5)
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Table 1 Minimum sample sizes necessary to assert the 10th percentile to exceed a given values, t0
0.1,

with probability p∗ and the corresponding acceptance number, c, for the Marshall–Olkin extended
exponential distribution with α = 2 using the binomial approximation

t/t0
0.1

p∗ c 0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5

0.75 0 20 15 14 9 7 5 5 4
0.75 1 38 30 27 18 13 11 9 8
0.75 2 55 43 39 26 19 15 13 11
0.75 3 72 56 51 34 25 20 17 15
0.75 4 89 69 62 41 31 25 21 18
0.75 5 105 82 73 49 37 29 25 21
0.75 6 121 94 85 56 42 34 28 24
0.75 7 137 107 96 64 48 39 32 28
0.75 8 153 119 107 71 54 43 36 31
0.75 9 169 131 118 79 59 47 40 34
0.75 10 185 144 129 86 65 52 43 37

0.90 0 32 25 22 15 11 9 7 6
0.90 1 55 42 38 25 19 15 12 10
0.90 2 75 58 52 34 26 20 17 14
0.90 3 94 73 65 43 32 26 21 18
0.90 4 112 87 78 52 39 31 26 22
0.90 5 131 101 91 60 45 36 30 26
0.90 6 148 115 104 69 51 41 34 29
0.90 7 166 129 116 77 57 46 38 33
0.90 8 183 142 128 85 64 51 42 36
0.90 9 200 156 140 93 70 56 46 40
0.90 10 217 169 152 101 75 60 50 43

0.95 0 42 32 29 19 14 11 9 8
0.95 1 66 51 46 30 23 18 15 13
0.95 2 88 68 61 40 30 24 20 17
0.95 3 109 84 76 50 37 30 25 21
0.95 4 128 100 89 59 44 35 29 25
0.95 5 148 114 103 68 51 40 34 29
0.95 6 166 129 116 77 57 46 38 32
0.95 7 185 143 129 85 64 51 42 36
0.95 8 203 158 142 94 70 56 46 40
0.95 9 221 171 154 102 76 61 51 43
0.95 10 239 185 167 110 83 66 55 47

can be written as

c∑
i=0

λi

i! e
−λ ≤ 1 − p∗, (2.6)
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Table 1 (Continued)

t/t0
0.1

p∗ c 0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5

0.99 0 64 49 44 29 21 17 14 12
0.99 1 92 71 64 42 31 25 20 17
0.99 2 117 91 81 53 40 31 26 22
0.99 3 140 108 97 64 48 38 31 26
0.99 4 162 125 113 74 55 44 36 31
0.99 5 183 142 127 84 62 50 41 35
0.99 6 204 158 142 94 70 55 46 39
0.99 7 224 174 156 103 77 61 50 43
0.99 8 244 189 170 112 83 66 55 47
0.99 9 263 204 183 121 90 72 60 51
0.99 10 283 219 197 130 97 77 64 55

where λ = nF(t; δ0). The minimum values of n satisfying (2.6) are obtained for
the same combination of q , t/t0

q , p∗ and α values as those used for (2.5). The
results are reported in Table 2.

2.2 Operating characteristic of the sampling plan (n, c, t/t0
q )

The operating characteristic (OC) function of the sampling plan (n, c, t/t0
q ) is the

probability of accepting a lot. It is given as

L(p) =
c∑

i=0

(
n

i

)
pi(1 − p)n−i , (2.7)

where p = F(t; δ). It should be noticed that F(t; δ) can be represented as a
function of δ = t/tq . Therefore, p = F( t

t0
q

1
dq

) where dq = tq/t0
q . Using equa-

tion (2.7), the OC values and OC curves can be obtained for any sampling plan,
(n, c, t/t0

q ), and any α. To save space, we present Table 3 to show the OC val-

ues for the sampling plan (n, c = 5, t/t0
0.1) with α = 2. Figure 1 shows the OC

curves for the sampling plan (n, c, t/t0
0.1) with p∗ = 0.90 for δ0 = 1, α = 2, where

c = 0,1,2,3,4,5,6,7,8,9,10.

2.3 Producer’s risk

The producer’s risk is defined as the probability of rejecting the lot when tq > t0
q .

For a given value of the producer’s risk, say γ , we are interested in knowing the
value of dq to ensure the producer’s risk is less than or equal to γ if a sampling
plan (n, c, t/t0

q ) is developed at a specified confidence level p∗. Thus, one needs
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Table 2 Minimum sample sizes necessary to assert the 10th percentile to exceed a given values, t0
0.1,

with probability p∗ and the corresponding acceptance number, c, for the Marshall–Olkin extended
exponential distribution with α = 2 using the Poisson approximation

t/t0
0.1

p∗ c 0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5

0.75 0 20 16 14 10 8 6 5 5
0.75 1 32 25 23 15 12 10 8 7
0.75 2 54 42 38 26 20 16 13 12
0.75 3 73 57 51 34 26 21 18 16
0.75 4 90 70 63 42 32 26 22 19
0.75 5 106 83 75 50 38 31 26 22
0.75 6 123 96 86 58 44 35 30 26
0.75 7 139 108 97 65 49 40 34 29
0.75 8 155 120 109 73 55 44 37 33
0.75 9 170 133 120 80 61 49 41 36
0.75 10 186 145 131 88 66 53 45 39

0.90 0 33 26 24 16 12 10 8 7
0.90 1 52 40 36 25 19 15 13 11
0.90 2 75 59 53 36 27 22 18 16
0.90 3 95 74 67 45 34 28 23 20
0.90 4 114 89 80 54 41 33 28 24
0.90 5 133 103 93 63 47 38 32 28
0.90 6 151 117 106 71 54 43 37 32
0.90 7 168 131 118 79 60 48 41 35
0.90 8 186 145 130 87 66 53 45 39
0.90 9 203 158 143 96 72 58 49 43
0.90 10 220 172 155 104 78 63 53 46

0.95 0 43 34 30 21 16 13 11 9
0.95 1 65 51 46 31 23 19 16 14
0.95 2 90 70 63 42 32 26 22 19
0.95 3 111 86 78 52 40 32 27 23
0.95 4 131 102 92 62 47 38 32 28
0.95 5 150 117 106 71 54 43 36 32
0.95 6 169 132 119 80 60 49 41 36
0.95 7 188 146 132 89 67 54 45 39
0.95 8 206 161 145 97 73 59 50 43
0.95 9 224 175 158 106 80 64 54 47
0.95 10 242 189 170 114 86 70 59 51

to find the smallest value dq according to equation (2.7) as

c∑
i=0

(
n

i

)
pi(1 − p)n−i ≥ 1 − γ, (2.8)
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Table 2 (Continued)

t/t0
0.1

p∗ c 0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5

0.99 0 66 52 47 31 24 19 16 14
0.99 1 93 72 65 44 33 27 23 20
0.99 2 120 94 84 57 43 35 29 25
0.99 3 144 112 101 68 51 41 35 30
0.99 4 166 129 117 78 59 48 40 35
0.99 5 187 146 132 88 67 54 45 39
0.99 6 208 162 146 98 74 60 50 44
0.99 7 229 178 160 108 81 66 55 48
0.99 8 249 194 175 117 88 71 60 52
0.99 9 268 209 188 126 95 77 65 56
0.99 10 288 224 202 135 102 82 69 60

where p = F( t
t0
q

1
dq

), dq = tq/t0
q . To save space, based on sampling plans

(n, c, t/t0
q ) established in Table 1 the minimum ratios of d0.1 for the acceptability

of a lot under α = 2, at the producer’s risk of γ = 0.05 are presented in Table 4.

3 Illustrative examples

In this section, we consider two examples with real data sets are given to illus-
trate the proposed acceptance sampling plans. The first data set is of the data given
arisen in tests on endurance of deep groove ball bearings (Lawless, 1982, p. 28).
The data are the number of million revolutions before failure for each of the 23 ball
bearings in life test and they are: 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.40. The second
data set regarding the software reliability was presented by Wood (1996), analyzed
via the acceptance sampling viewpoint by Rosaiah and Kantam (2005), Balakrish-
nan et al. (2007), Rao et al. (2008), Rao et al. (2009a, 2009b), Lio et al. (2010) and
Rao and Kantam (2010). The software reliability data set was reported in hours
as 519, 968, 1430, 1893, 2490, 3058, 3625, 4422, and 5218. As the confidence
level is assured by this acceptance sampling plan only if the lifetimes are from
the Marshall–Olkin extended exponential distribution. Then, we should check if
it is reasonable to admit that the given sample comes from the Marshall–Olkin
extended exponential distribution by the goodness of fit test and model selection
criteria. The first data set was used by Sultan (2007) to demonstrate the goodness
of fit for generalized exponential distribution and Parikh et al. (2008) showed that
Marshall–Olkin extended exponential distribution is a suitable model for this data
set. Balakrishnan et al. (2007) compared the goodness of fits among the Rayleigh,
generalized BS, and BS distributions for the software reliability data set presented
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Table 3 Operating characteristic values of the sampling plan (n, c = 5, t/t0
0.1) for a given p∗ under

Marshall–Olkin extended exponential distribution with α = 2

t0.1/t0
0.1

p∗ n t/t0
0.1 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.75 105 0.7 0.2470 0.4587 0.6317 0.7539 0.8355 0.8889 0.9240 0.9471
0.75 82 0.9 0.2415 0.4541 0.6286 0.7521 0.8345 0.8884 0.9237 0.9470
0.75 73 1.0 0.2499 0.4647 0.6386 0.7603 0.8408 0.8932 0.9272 0.9496
0.75 49 1.5 0.2401 0.4574 0.6346 0.7586 0.8404 0.8933 0.9276 0.9501
0.75 37 2.0 0.2313 0.4509 0.6312 0.7573 0.8402 0.8937 0.9281 0.9506
0.75 29 2.5 0.2480 0.4741 0.6539 0.7763 0.8549 0.9047 0.9363 0.9566
0.75 25 3.0 0.2961 0.5305 0.7033 0.8145 0.8829 0.9248 0.9507 0.9669
0.75 21 3.5 0.2363 0.4666 0.6512 0.7765 0.8564 0.9065 0.9380 0.9581

0.90 131 0.7 0.0966 0.2501 0.4209 0.5705 0.6873 0.7736 0.8357 0.8801
0.90 101 0.9 0.0990 0.2559 0.4287 0.5787 0.6949 0.7802 0.8412 0.8845
0.90 91 1.0 0.0976 0.2542 0.4273 0.5778 0.6944 0.7799 0.8411 0.8844
0.90 60 1.5 0.0990 0.2603 0.4372 0.5890 0.7053 0.7895 0.8491 0.8910
0.90 45 2.0 0.0955 0.2576 0.4368 0.5905 0.7077 0.7922 0.8518 0.8934
0.90 36 2.5 0.0926 0.2557 0.4371 0.5926 0.7106 0.7953 0.8546 0.8959
0.90 30 3.0 0.0904 0.2545 0.4382 0.5953 0.7140 0.7987 0.8576 0.8985
0.90 26 3.5 0.0833 0.2440 0.4283 0.5876 0.7085 0.7950 0.8552 0.8969

0.95 148 0.7 0.0482 0.1570 0.3044 0.4528 0.5811 0.6837 0.7621 0.8210
0.95 114 0.9 0.0498 0.1618 0.3120 0.4618 0.5902 0.6920 0.7694 0.8271
0.95 103 1.0 0.0479 0.1582 0.3078 0.4577 0.5867 0.6891 0.7672 0.8254
0.95 68 1.5 0.0479 0.1609 0.3141 0.4666 0.5964 0.6986 0.7757 0.8328
0.95 51 2.0 0.0452 0.1575 0.3120 0.4663 0.5976 0.7006 0.7780 0.8351
0.95 40 2.5 0.0490 0.1689 0.3298 0.4869 0.6180 0.7189 0.7937 0.8481
0.95 34 3.0 0.0411 0.1525 0.3096 0.4675 0.6013 0.7056 0.7834 0.8402
0.95 29 3.5 0.0410 0.1543 0.3143 0.4741 0.6087 0.7127 0.7898 0.8457

0.99 183 0.7 0.0099 0.0526 0.1388 0.2538 0.3764 0.4913 0.5911 0.6739
0.99 142 0.9 0.0097 0.0522 0.1387 0.2545 0.3779 0.4933 0.5933 0.6762
0.99 127 1.0 0.0100 0.0536 0.1419 0.2593 0.3835 0.4992 0.5991 0.6815
0.99 84 1.5 0.0096 0.0535 0.1435 0.2632 0.3896 0.5065 0.6068 0.6891
0.99 62 2.0 0.0100 0.0564 0.1509 0.2750 0.4043 0.5223 0.6223 0.7034
0.99 50 2.5 0.0084 0.0514 0.1428 0.2658 0.3954 0.5147 0.6161 0.6986
0.99 41 3.0 0.0090 0.0549 0.1513 0.2790 0.4115 0.5316 0.6325 0.7136
0.99 35 3.5 0.0087 0.0546 0.1522 0.2817 0.4158 0.5369 0.6382 0.7191

here using probability plots and showed that the generalized BS model (R-square
(RS) = 0.97) was slightly better than the BS model (RS = 0.96) and both models
were much better than the Rayleigh model (RS = 0.87). However, the acceptance
sampling plans under the truncated life test based on the Marshall–Olkin extended
exponential distribution for percentiles has not yet been developed. We have ap-
plied QQ plot and RS method to test the goodness of fit for both data sets for
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Figure 1 OC curves for c = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively under p∗ = 0.90, δ0 = 1 and
α = 2, based on the 10th percentile, d = d0.1, of Marshall–Olkin extended exponential distribution.

Marshall–Olkin extended exponential distribution and we got RS = 0.9819 for
first data set and RS = 0.9834 for second data set. Hence, the Marshall–Olkin ex-
tended exponential distribution could also provide reasonable goodness of fits for
both data sets.

3.1 Example 1

Assume that the lifetime distribution is Marshall–Olkin extended exponential dis-
tribution with α = 2 and that the experimenter is interested to establish the true
unknown 10th percentile lifetime for the ball bearings to be at least 20 million rev-
olutions with confidence p∗ = 0.75 and the life test would be ended at 60 million
revolutions, which should have led to the ratio t/t0

0.1 = 3.0. Thus, for an accep-
tance number c = 5 and the confidence level p∗ = 0.75, the required sample size
n found from Table 1 should be at least 25. Therefore, in this case, the acceptance
sampling plan from truncated life tests for the Marshall–Olkin extended exponen-
tial distribution 10th percentile should be (n, c, t/t0

q ) = (25,5,3.0). Based on the
ball bearings data, the experimenter must have decided whether to accept or reject
the lot. The lot should be accepted only if the number of items of which lifetimes
were less than or equal to the scheduled test lifetime, 60 million revolutions, was at
most 5 among the first 25 observations. Since there were 4 items with a failure time
less than or equal to 60 million revolutions in the given sample of n = 25 observa-
tions, the experimenter would accept the lot, assuming the 10th percentile lifetime
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Table 4 Minimum ratio of true d0.1 for the acceptability of a lot for the Marshall–Olkin extended
exponential distribution with α = 2 and producer’s risk of 0.05

t/t0
0.1

p∗ c 0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5

0.75 0 26.5182 27.4801 26.5182 27.5634 24.5821 29.5334 27.5634 31.5856
0.75 1 7.5873 7.5873 7.5245 7.1685 7.5873 7.3421 7.5873 7.5245
0.75 2 4.6904 4.7148 4.6904 4.5269 4.4170 4.5725 4.4603 5.0839
0.75 3 3.6536 3.6982 3.6536 3.5537 3.5125 3.5537 3.6245 4.1545
0.75 4 3.1153 3.1046 3.0525 3.0525 3.0423 3.0423 3.0120 3.4329
0.75 5 2.7988 2.7563 2.7563 2.7480 2.6596 2.7315 2.6364 3.0221
0.75 6 2.5478 2.5549 2.4988 2.4783 2.4851 2.4254 2.3935 2.7397
0.75 7 2.3935 2.3810 2.3624 2.3381 2.3502 2.2910 2.3143 2.6441
0.75 8 2.2568 2.2512 2.2183 2.2292 2.1968 2.1863 2.1706 2.4783
0.75 9 2.1501 2.1501 2.1400 2.1101 2.0764 2.1004 2.0576 2.3563
0.75 10 2.0812 2.0670 2.0483 2.0437 2.0255 1.9857 1.9685 2.2512

0.90 0 44.1696 43.1220 44.1696 43.3276 44.1696 41.3565 41.3565 47.1476
0.90 1 10.5932 10.7181 10.4712 10.5932 10.4712 9.9010 9.5877 10.9769
0.90 2 6.3654 6.3211 6.1501 6.2344 5.9488 6.0277 5.7604 6.5963
0.90 3 4.7893 4.7148 4.6664 4.5956 4.6189 4.4385 4.4170 5.0277
0.90 4 3.9557 3.9216 3.9047 3.8715 3.8226 3.8066 3.7286 4.2717
0.90 5 3.4590 3.4590 3.3944 3.3693 3.3322 3.3080 3.3201 3.7908
0.90 6 3.1260 3.1368 3.1046 3.0321 3.0221 2.9824 2.9343 3.3568
0.90 7 2.8969 2.8877 2.8514 2.7902 2.7988 2.7480 2.7563 3.1586
0.90 8 2.6991 2.6991 2.6752 2.6596 2.6288 2.5767 2.5478 2.9155
0.90 9 2.5694 2.5549 2.5265 2.5195 2.4988 2.4384 2.4516 2.8074
0.90 10 2.4450 2.4450 2.4190 2.3747 2.3502 2.3321 2.3202 2.6518

0.95 0 56.5291 56.8828 55.8347 55.1572 54.1712 53.2198 55.1572 63.2111
0.95 1 13.0208 13.0208 12.6582 12.8370 12.4844 12.4844 12.6582 14.4718
0.95 2 7.4627 7.4627 7.2833 7.2254 7.2254 7.1685 7.0572 8.0580
0.95 3 5.5157 5.5494 5.4171 5.3220 5.3533 5.3220 5.2002 5.9102
0.95 4 4.5496 4.4823 4.4385 4.3745 4.3328 4.2717 4.2717 4.8662
0.95 5 3.9047 3.9216 3.8551 3.8226 3.7286 3.7750 3.7286 4.2517
0.95 6 3.5125 3.5125 3.4722 3.3944 3.4072 3.3445 3.2605 3.7286
0.95 7 3.2144 3.2144 3.1586 3.1476 3.1153 3.0525 3.0321 3.4590
0.95 8 3.0120 3.0021 2.9630 2.9155 2.8969 2.8337 2.8514 3.2605
0.95 9 2.8161 2.8161 2.7816 2.7397 2.7315 2.7152 2.6518 3.0321
0.95 10 2.6831 2.6911 2.6364 2.6364 2.5988 2.5767 2.5478 2.9155

t0.1 of at least 20 million revolutions with a confidence level of p∗ = 0.75. The
OC values for the acceptance sampling plan (n, c, t/t0

q ) = (25,5,3.0) and con-
fidence level p∗ = 0.75 under Marshall–Olkin extended exponential distribution
with α = 2 from Table 3 is as follows in Table 5.

This shows that if the true 10th percentile is equal to the required 10th percentile
(t0.1/t0

0.1 = 1.00) the producer’s risk is approximately 0.7039 (= 1 − 0.2961). The
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Table 4 (Continued)

t/t0
0.1

p∗ c 0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5

0.99 0 86.7303 86.7303 85.9107 82.7815 83.5422 82.7815 82.7815 94.8767
0.99 1 18.2482 18.2482 17.8891 17.5439 17.5439 16.8919 16.5837 19.0114
0.99 2 10.0100 9.9010 9.6899 9.6899 9.3897 9.3897 9.1996 10.5932
0.99 3 7.1124 7.1124 7.0028 6.9493 6.8446 6.6445 6.5020 7.4019
0.99 4 5.6883 5.7241 5.5835 5.5157 5.4825 5.3533 5.3533 6.1087
0.99 5 4.8662 4.8403 4.7893 4.6664 4.6904 4.5956 4.5496 5.2002
0.99 6 4.3122 4.3122 4.2517 4.1929 4.0984 4.0800 4.0080 4.5956
0.99 7 3.9216 3.9047 3.8388 3.8066 3.7439 3.6684 3.6536 4.1736
0.99 8 3.6101 3.6101 3.5398 3.4722 3.4329 3.4200 3.3818 3.8715
0.99 9 3.3693 3.3568 3.3080 3.2605 3.2373 3.2258 3.1696 3.6245
0.99 10 3.1807 3.1807 3.1260 3.0941 3.0525 3.0221 3.0120 3.4329

Table 5 The OC values for the acceptance sampling plan with plan (n, c, t/t0
q ) = (25,5,3.0)

t0.1/t0
0.1

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

OC 0.2961 0.5305 0.7033 0.8145 0.8829 0.9248 0.9507 0.9669

producer’s risk is almost equal to 0.0493 when the true 10th percentile is greater
than or equal to 2.5 times the specified 10th percentile.

From Table 4, the experimenter could get the values of d0.1 for different choices
of c and t/t0

0.1 in order to assert that the producer’s risk was less than 0.05. In this
example, the value of d0.1 should be 2.7563 for c = 5, t/t0

0.1 = 1.0 and p∗ = 0.75.
This means the product can have a 10th percentile life of 2.7563 times the required
10th percentile lifetime in order that under the above acceptance sampling plan the
product is accepted with probability of at least 0.95.

Alternatively, assume that products have a Marshall–Olkin extended exponen-
tial distribution with α = 2, and consumers wish to reject a bad lot with proba-
bility of p∗ = 0.75. What should the true 10th percentile life of products be so
that the producer’s risk is 0.05 if the acceptance sampling plan is based on an
acceptance number c = 3 and t/t0

0.1 = 0.7? From Table 4, we can find that the
entry for α = 2, p∗ = 0.75, c = 3, and t/t0

0.1 = 0.7 is d0.1 = 3.6536. Thus, the
manufacturer’s product should have a 10th percentile life at least 3.6536 times the
specified 10th percentile life in order for the products to be accepted with prob-
ability 0.75 under the above acceptance sampling plan. Table 1 indicates that the
number of products required to be tested is n = 72 so that the sampling plan is
(n, c, t/t0

0.1) = (72,3,0.7).
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3.2 Example 2

Suppose an experimenter would like to establish the true unknown 10th percentile
lifetime for the software mentioned above to be at least 150 h and the life test
would be ended at 450 h, which should have led to the ratio t/t0

0.1 = 3.0. The
goodness of fit test for these nine observations were verified and showed that
Marshall–Olkin extended exponential model as a reasonable goodness of fit for
these nine observations. Thus, with c = 0 and p∗ = 0.95, the experimenter should
find from Table 1 the sample size n must be at least 9 and the sampling plan to
be (n, c, t/t0

0.1) = (9,0,3.0). Since there were no items with a failure time less
than or equal to 450 h in the given sample of n = 9 observations, the experimenter
would accept the lot, assuming the 10th percentile lifetime t0.1 of at least 150 h
with a confidence level of p∗ = 0.95.

4 Discussion and conclusions

The sampling plans based on the Marshall–Olkin extended exponential population
mean developed by Rao et al. (2009b) to the Marshall–Olkin extended exponential
models with α = 2. It shows that the minimum sample sizes are smaller than those
reported in Tables 1 and 2 of this article for the 10th percentile for both binomial
and poisson approximation. Here, δ0 = t/t0

0.1 for the sampling plans based on 10th
percentile is replaced by δ0 = t/μ0 with μ0 as a specific population mean for the
acceptance plans based on the Marshall–Olkin extended exponential population
mean. Therefore, the acceptance sampling plans based on the Marshall–Olkin ex-
tended exponential population mean could have less chance to report a failure than
the acceptance sampling plans based on 10th percentile. The acceptance sampling
plans based on population mean could accept the lot of bad quality of the 10th per-
centiles. The minimum sample sizes are reported in Table 1 of this article for the
10th percentiles are compared with the minimum sample sizes are reported in Ta-
ble 1 of Lio et al. (2010) and Rao and Kantam (2010). It shows that the minimum
sample sizes using Marshall–Olkin extended exponential population are smaller
than those reported in Table 1 of Lio et al. (2010) and Rao and Kantam (2010)
population for the 10th percentile when δ0 ≤ 1.0 whereas, the minimum sample
sizes using Marshall–Olkin extended exponential population are larger than those
reported in Table 1 of Lio et al. (2010) and Rao and Kantam (2010) for Birnbaum–
Saunders and log-logistic populations respectively for the 10th percentile when
δ0 > 1.0.

This article has derived the acceptance sampling plans based on the Marshall–
Olkin extended exponential percentiles when the life test is truncated at a pre-fixed
time. The procedure is provided to construct the proposed sampling plans for the
percentiles of the Marshall–Olkin extended exponential distribution with known
parameter α = 2. To ensure that the life quality of products exceeds a specified



Acceptance sampling plans for percentiles 131

one in terms of the life percentile, the acceptance sampling plans based on per-
centiles should be used. Some useful tables are provided and applied to establish
acceptance sampling plans for two examples. The developed sampling plans are
the extension work for the acceptance sampling plan based on the Marshall–Olkin
extended exponential mean by Rao et al. (2009b).
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