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Abstract. We introduce two procedures for testing which are based on
pooling the posterior evidence for the null hypothesis provided by the full
Bayesian significance test and the posterior probability for the null hypothe-
sis. Although the proposed procedures can be used in more general situations,
we focus attention in tests for a precise null hypothesis. We prove that the pro-
posed procedure based on the linear operator is a Bayes rule. We also verify
that it does not lead to the Jeffreys–Lindley paradox. For a precise null hy-
pothesis, we prove that the procedure based on the logarithmic operator is
a generalization of Jeffreys test. We apply the results to some well-known
probability families. The empirical results show that the proposed procedures
present good performances. As a by-product we obtain tests for normality
under the skew-normal one.

1 Introduction

Suppose that it is of interest to test the hypotheses:

H0 : θ ∈ �0 versus H1 : θ ∈ �1, (1.1)

where {�0,�1} is a partition of � ⊆ R, the parametric space of θ . Assume that
the available data information is the observed value x of the random object X.

In Bayesian inference, decisions about such hypotheses are usually made by
taking into consideration the posterior probability of Hi , i = 0,1, that is given by

P(Hi |x) =
∫
�i

π(θ |x) dθ, (1.2)

where π(θ |x) is the posterior of θ . We decide for Hi , whenever P(Hi |x) is the
highest probability. This procedure is an intuitive and simple approach for test-
ing. However, if �0 is a subset of � having null Lebesgue measure, P(H0|x) is
not calculated straightforward. A solution for such a problem was provided by
Jeffreys (1961) who introduces a procedure for testing precise null hypotheses.
Jeffreys (1961) proves that the posteriors in these cases depend on the Bayes fac-
tor. Decisions are made as usual, say, considering P(Hi |x) or, equivalently, taking
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into consideration the Bayes factor. Using the Bayes factor, the decision is for H0,
whenever it assumes high value. Following Madruga et al. (2001), the procedure
presented by Jeffreys (1961) will be named the Jeffreys test.

More recently, Pereira and Stern (1999) introduced another measure of evidence
for H0. This measure of evidence is the region over the posterior obtained consid-
ering all points of the parametric space for which the posterior values are, at most,
as large as the supremum over the subset �0 of �. Therefore, the Pereira–Stern
measure of evidence for the null hypothesis, Ev(H0,x), is the posterior proba-
bility related to the less probable points of �. The decision is for H0, whenever
Ev(H0,x) is large. Originally, Pereira and Stern (1999) named such a test proce-
dure the full Bayesian significance test (FBST, for short). More recently, it has
been named the Pereira–Stern test by Madruga et al. (2001). One advantage of the
Pereira–Stern procedure is that it makes the test for the precise hypothesis simple.
A similar idea was considered by Box and Tiao (1973) when answering whether
or not a particular parameter point lies inside of a posterior highest density re-
gion. Although similar, Box and Tiao (1973) did not formalize such an idea as
a hypotheses tests procedure. For more details on Bayesian procedures for test-
ing see Bernardo (2011), Pereira et al. (2008), Dahl and Newton (2007), Scott
and Berger (2006), Moreno and Liseo (2003), Madruga et al. (2003), Berger and
Delampady (1987), Berger and Pericchi (1996), Robert (1993) and Lavine and
Schervish (1999), among many others.

The Jeffreys and Pereira–Stern procedures are both Bayesian tests for particular
loss functions. A Bayesian test is understood as the procedure which is the conse-
quence of the minimization, a posteriori, of the expected loss function (DeGroot,
1989; Madruga et al., 2001). That is, it is a coherent solution to the decision prob-
lem in (1.1).

The Jeffreys and Pereira–Stern measures of evidence are both useful posterior
summaries. In general, they lead to the same decision. However, some previous
works (Pereira and Stern, 2001; Madruga et al., 2003; Loschi et al., 2007, e.g.) have
shown that decisions made using such measures can differ. Different decisions
are expected whenever improper priors or conjugate priors with variance going to
infinity are elicited to describe the prior uncertainty about the parameter. Under
such priors, Jeffreys test can lead to the Jeffreys–Lindley paradox (Robert, 1993;
Tsao, 2006) which is overcome if the FBST is assumed (Pereira and Stern, 1999).

This paper aims at introducing two measures of evidence for H0 which consist
of pooling P(H0|x) and the one obtained in the FBST. To aggregate these two
measures of evidence, we consider the linear and the logarithmic operators. Such
operators have been widely used in Group Decision Theory in order to obtain
consensus probability measures. Thus, these proposed procedures are intermedi-
ate measures of evidence for H0. We verify the existence of a loss function which
renders decision theoretic aspects to the test procedure built assuming the linear
operator. That is, we prove that it is also a Bayesian test. We also verify that this
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procedure does not lead to the Jeffreys–Lindley paradox. We prove that the proce-
dure based on the logarithmic operator is a generalization of Jeffreys test. However,
we could not prove that it is a Bayesian test. All four procedures are applied to test
the precise null hypothesis in some probability families, including the skew-normal
one. The simulation studies show that the proposed procedures tend to be better.
It is noteworthy that in the skew-normal family, inference for the shape parameter
considering the usual maximum likelihood approach has some problems. Particu-
larly, the information matrix for the skew-normal distribution is singular whenever
the skewness parameter is zero, preventing the use of likelihood-based methods for
testing normality. Thus, as a by-product of the proposed methodologies, we obtain
normality tests under the standard skew-normal distribution [see Liseo and Loper-
fido (2006) and Bayes and Branco (2007) for analysis under reference priors].

The problem of combining evidence for the null hypothesis is not new. Tippet
(1931), Fisher (1932) and others introduced methods for pooling p-values. Re-
cently, this topic was also considered by Loughin (2004) and Goutis et al. (1996)
where a multivariate evidential measure is constructed from the independent uni-
variate ones.

This paper is organized as follows. Section 2 presents Jeffreys and the full
Bayesian significance tests. The connection between the FBST and the highest
posterior density regions is also provided. Section 3 presents two usual mathemat-
ical methods for combining or aggregating probability distributions—the linear
and the logarithmic operators. Some of their properties are also presented. Two
test procedures are introduced in Section 4. They are constructed using the linear
and the logarithmic operators. Some properties of the proposed tests are pointed
out. In Section 5 the proposed procedures are applied to some distribution fam-
ilies. To evaluate their efficiency, a Monte Carlo study is performed. In order to
fairly compare the test procedures, we introduce a criterion for a decision that is
based on the prior Bayes risks. In Section 6 we test the returns of some Latin
American emerging markets for asymmetry. Section 7 closes the paper with some
conclusions.

2 Bayesian procedures for testing

In this section we briefly review two Bayesian procedures for testing. The posterior
evidences for the null hypothesis provided by such procedures will be considered
in Section 4 to build two other procedures for testing. For one-sided tests, P(H0|x)

is obtained straightforward from (1.2). Thus, we focus our attention in precise null
hypothesis tests.

Suppose that we are interested in the hypotheses test in (1.1), where �0 =
{θ0} ⊂ � ⊆ R and θ0 is a known value.

The Jeffreys test is the most used Bayesian procedure for testing a precise null
hypothesis. For Jeffreys test, we elicit prior probabilities P(Hi) for the hypotheses
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Hi, i = 0,1, and compute the posterior probability of Hi through Bayes’s theorem.
Let p be the prior probability for H0. Assume that π(θ) is the prior distribution
for θ restricted to �1. Thus, the prior for θ is

π∗(θ) = p1{θ = θ0} + (1 − p)π(θ)1{θ �= θ0},
where 1{A} is the indicator function of event A. Consequently, using Bayes’ theo-
rem, it follows that the posterior for H0 is given by

P(H0|x) =
[
1 + 1 − p

p
BF(H1,H0)

]−1

, (2.1)

where BF(H0,H1) = f (x|θ0)/f (x|H1) = BF(H1,H0)
−1 is the Bayes factor and

f (x|H1) is the prior predictive distribution restricted to H1.
We accept H0 whenever its posterior probability is larger than the posterior

probability of H1. In fact, the Jeffreys test [more generally, the test based on
P(H0|x)] is a Bayesian test whenever the following loss function is assumed:{

L(Accept H0, θ) = ω11{θ ∈ �1},
L(Reject H0, θ) = ω01{θ ∈ �0}, (2.2)

where ωi > 0, i = 1,2. Notice that the loss function in (2.2) penalizes only the
wrong decisions. However, it is reasonable to assume high values for both ω0 and
ω1.

We decide for H0 if the posterior Bayes risk of accepting the null hypothesis is
the smallest. Consequently, we accept H0 whenever

P(H0|x) > ω1[ω1 + ω0]−1. (2.3)

The cutoff point for the acceptance of H0 depends on values ω0 and ω1 which
are subjective choices. They are the “prices” to be paid if wrong decisions are
made. For a detailed explanation of Jeffreys test see Jeffreys (1961), Bernardo
and Smith (1994), Migon and Gamerman (1999) and many others. For multiple
hypotheses tests, say, if �0 ⊆ Rq , see Goutis et al. (1996) for a way of obtaining
P(H0|x).

It is well known that the Jeffreys test can lead to the Jeffreys–Lindley paradox
(Tsao, 2006; Lindley, 1957). The Jeffreys–Lindley paradox is an inconvenience
for Bayesian theory, as it can be noticed in the following example shown in Robert
(1993). Assume that �0 = {0} in (1.1). If x|θ ∼ N(θ,1) and the prior for θ is the
normal distribution N(0, σ 2), then the posterior of H0 is given by

P(H0|x) =
[
1 + 1 − p

p

φ(x(1 + σ 2)−1/2)

(1 + σ 2)−1/2φ(x)

]−1

,

where φ(·) is the density function of a standard normal distribution. It can be
noticed that P(H0|x) goes to 1 as the prior variance σ 2 goes to infinity, no matter
what p and x are. Large values of σ 2 correspond to noninformative priors. Thus,
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the use of such priors is prohibited in the context of the hypothesis tests. The
result is a paradox since the use of noninformative priors cannot be avoided in
those practical situations (see also Hwang et al., 1992) where experts have no
prior knowledge about the parameter. The FBST was introduced in the literature
in order to overcome such a problem.

The Pereira–Stern test or the FBST does not introduce prior probabilities for the
hypotheses Hi and makes the test for the precise null hypothesis simple (Pereira
and Stern, 1999, 2001). To perform one and two-sided tests using the Pereira–Stern
approach, the only necessary information is the posterior distribution for θ . In this
case, H0 is accepted if θ0 is in a high posterior probability region of �.

Consider the highest relative surprise (HRS) set (Madruga et al., 2003), which
contains all points of the parametric space for which posterior values are larger
than the supremum over the subset �0, say,

T (x) =
{
θ ∈ � :π(θ |x) > sup

�0

{π(θ |x)}
}
. (2.4)

The posterior evidence for the null hypothesis is given by Ev(H0,x) = 1 −
Pr(θ ∈ T (x)|x). The null hypothesis H0 is accepted whenever Ev(H0,x) is large.
[See Madruga et al. (2003) for the FBST in its invariant formulation.]

Madruga et al. (2001) defined the following loss function which renders deci-
sion theoretic aspects to the FBST, say, it is a Bayesian test if the following loss
function is assumed:{

L(Accept H0, θ) = b + c1{θ ∈ T (x)},
L(Reject H0, θ) = a[1 − 1{θ ∈ T (x)}], (2.5)

where x is the observed sample, and a, b and c are real positive numbers, that
are subjectively chosen. The loss function in (2.5) depends on the observed data.
Loss functions depending on data have been previously used in the literature by
Bernardo and Smith (1994). According to Madruga et al. (2001), they are able “to
incorporate some psychological aspects from the individual’s preference order-
ing.”

In order to provide some ideas in how to chose a, b and c let us consider two
extreme situations. First assume that T (x) tends to the empty set. In this scenario,
�0 is in a high density region of the parametric space, say, we have evidence
favoring the null hypothesis. From (2.5) it follows that L(Accept H0, θ) → b and
L(Reject H0, θ) → a. Now, let us consider T (x) → � which means that �0 is in
the region of the posterior with low density. In this case the evidence is against
H0 and we must reject it. It follows from (2.5) that L(Accept H0, θ) → b + c and
L(Reject H0, θ) → 0. Notice that such loss function penalizes the right decision
of accepting the null hypothesis with a “price” b whenever it is a true one. Thus,
a reasonable proposal is to assume small values for b and high values for both a

and c.
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We decide for H0 if the posterior Bayes risk of accepting the null hypothesis is
the smallest. Consequently, we accept H0 whenever

Ev(H0,x) > [b + c][c + a]−1. (2.6)

Decisions depend on the values a, b and c. Notice that if a < b, then the decision
will be always to reject the null hypothesis. In this case, Ev(H0,x) is always up
to the cutoff point [b + c][c + a]−1. If a >> b and c is small, there is not needed
a large value of Ev(H0,x) to the acceptance of H0. See more in Madruga et al.
(2001).

There is also a useful relationship between the Pereira–Stern test and the deci-
sions made using the highest posterior density region (HPD region). A 100(1 −
γ )% HPD region for θ is the set R(x) = {θ ∈ � :π(θ |x) ≥ cγ } where cγ is the
largest constant such that P(θ ∈ R(x)|x) ≥ 1 − γ . It is usual to accept the null hy-
pothesis if the value of θ under test—say, θ0—belongs to R(x) Migon and Gamer-
man (1999). Consequently, decisions made considering the Pereira–Stern measure
of evidence and the HPD region are the same if γ = (b+c)(c+a)−1 or whenever

(i) γ < (b+c)(c+a)−1 < Ev(H0,x) or (b+c)(c+a)−1 < γ < Ev(H0,x), which
leads to the acceptance of H0;

(ii) (b+c)(c+a)−1 > γ > Ev(H0,x) or γ > (b+c)(c+a)−1 > Ev(H0,x), which
leads to the rejection of H0.

Otherwise, the Pereira–Stern procedure and the HPD region will lead to different
decisions.

It is remarkable that both P(H0|x) and Ev(H0,x) are evidential statistics as
defined in Goutis et al. (1996). They assume values in [0,1] and their large values
indicate that H0 is true and their small values indicate that H1 is true.

3 Pooling probabilities

Combination or aggregation of probabilities plays an important role in decision
problems in which a group of experts express their opinions about events of inter-
est. This subject has attracted attention in the literature for many years and many
pooling procedures have been proposed in order to obtain the group consensus
probability distribution. Two typical and well-known procedures for pooling prob-
abilities are the linear and the logarithmic operators. More details about them and
some other procedures for pooling probabilities can be found in French (1985),
Genest and Zidek (1986) and Genest et al. (1986), and, more recently, a discussion
is presented in the context of risk analysis by Clemen and Winkler (1999).

Denote by pi(θ), i = 1, . . . , n, the opinion of the ith expert about θ which can
be a mass function in the discrete case or a density function for the continuous case.
Let αi , i = 1, . . . , n, be nonnegative weights such that

∑n
i=1 αi = 1. The weight αi

is subjectively chosen and must reveal the confidence in the expert i opinion. The
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consensus probability distribution pL is obtained by the linear probability pool
whenever it is given by

pL(θ) =
n∑

i=1

αipi(θ). (3.1)

The linear probability pool given in (3.1) preserves unanimity, that is, pL(θ) = a

if pi(θ) = a, for all i. Consequently, it satisfies the zero preservation property
only if all experts unanimously declare pi(θ) = 0. On the other hand, it preserves
independency only if the group is dictatorial, say, αi = 1 for some i, and expert i

announces that the events of interest are independent.
Consider the same notation but, now, assume that αi > 0, i = 1, . . . , n. We say

that the consensus probability distribution pNL is obtained through the logarithmic
probability pool if it is of form

pNL(θ) =
∏n

i=1[pi(θ)]αi∫
�

∏n
i=1[pi(θ)]αi dθ

. (3.2)

The logarithmic probability pool in (3.2) also satisfies independency and zero
preservation properties. However, it is not necessary unanimity for observing zero
preservation property. In fact, such property follows whenever only one expert
elicit pi(θ) = 0. If we assume

∑n
i=1 αi = 1, the logarithmic probability pool also

follows the axiom of unanimity and, under this condition for the weights, the exter-
nal Bayesianity property is also satisfied, which means that, receiving extra infor-
mation relevant to θ after pi(θ), i = 1, . . . , n, has been declared, the new consen-
sus probability obtained by updating the original one is the same we obtain if we
firstly update each expert opinion pi(θ) and then combine them. For more details
on such properties see Genest and Zidek (1986), French (1985) and many others.

In the next section, we consider these two procedures for aggregating probabil-
ities to obtain new measures of evidence for H0.

4 Proposed procedures for testing

Since the evidences for H0, P(H0|x) and Ev(H0,x), assume values in the [0,1]
interval, we consider them as the opinions of two different experts about the same
event and aggregate them in order to obtain a consensus or intermediate measure
of evidence for H0.

Considering the linear probability pool given in (3.1), we have a new measure
of evidence for the null hypothesis that is given by

EvL(H0|x) = αEv(H0,x) + (1 − α)P (H0|x), (4.1)

where α ∈ [0,1] is the weight of the Pereira–Stern measure in the intermediate
measure generated by pooling Ev(H0,x) and P(H0|x). We decide for the null
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hypothesis H0 whenever EvL(H0|x) is large. This procedure is named throughout
this paper the linear-pool-based test.

Considering the logarithmic probability pool in (3.2), another consensus mea-
sure of evidence for H0 is obtained and assumes the following form:

EvNL(H0|x)
(4.2)

= [Ev(H0,x)]α[P(H0|x)]1−α

[Ev(H0,x)]α[P(H0|x)]1−α + [1 − Ev(H0,x)]α[P(H1|x)]1−α
,

where α ∈ [0,1]. Similarly, we decide for the null hypothesis H0 whenever
EvNL(H0|x) is large. We name this procedure the logarithmic-pool-based test.
Although it is not necessary, in (4.2) we assume α ∈ [0,1] because, under this
condition, the logarithmic probability pool follows the unanimity property.

The idea of combining evidences for H0 of different sources was previously
considered to aggregate p values (Fisher, 1932; Tippet, 1931; Goutis et al., 1996
and Wassmer, 2000, for instance). Goutis et al. (1996) also introduced a rule to
combine the posterior of H0 which generalizes the method introduced by Fisher
(1932) to combine p values. However, the focus of such works is to obtain
P(H0|x) or the p value for the joint null hypothesis, that is, H0 : (θ1, . . . , θk) ∈
�0 ⊆ Rk . Such measures of evidence for H0 are obtained by combining the indi-
vidual ones, that is, the p values or the P(H0|x) for each hypothesis H0 : θi ∈ �0i .
An interesting discussion about the use of such ideas in sequential tests can be
found in Wassmer (2000). More about multiple test problems can also be found in
Pigeot (2000).

If compared to such measures of evidence for H0, the ones introduced in (4.1)
and (4.2) are based on different foundations. The proposed measures combine ev-
idences for the same hypothesis provided by different test procedures. Despite
this, they can be extended straightforward to test a joint null hypothesis. More-
over, EvL(H0|x) and EvNL(H0|x) are evidential statistics as defined in Goutis et
al. (1996). EvL(H0|x) also generalizes the average method by assuming different
weights for “individual” measures of evidence (Goutis et al., 1996).

4.1 Some properties of EvNL(H0|x) and EvL(H0|x)

Firstly, we should notice that, for precise null hypothesis tests, EvNL(H0|x) gen-
eralizes the Jeffreys’s measure of evidence for H0 given in (2.1). After some cal-
culations, we have that

EvNL(H0|x) =
{

1 +
[

1 − Ev(H0,x)

Ev(H0,x)

]α[
1 − p

p
BF(H1,H0)

]1−α}−1

, (4.3)

which turns into expression (2.1) if α = 0.
EvL(H0|x) and EvNL(H0|x) are both nondecreasing in Ev(H0,x) as well as

in P(H0|x). Such measures also tend to 1 whenever Ev(H0,x) and P(H0|x) go
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to 1, simultaneously. Additionally, EvNL(H0|x) is zero if at least one procedure,
Ev(H0,x) or P(H0|x), provides strong evidence against H0. Such properties corre-
spond to some axioms established by Goutis et al. (1996) which must be followed
by the evidential statistics.

Besides, for the nontrivial case where α �= 0, if Ev(H0,x) �= 0 [even for
Ev(H0,x) very close to 0 which is strong evidence against the null hypothesis]
and P(H0|x) → 1, we have that EvNL(H0|x) → 1. A similar result is observed
for Ev(H0,x) → 1 and P(H0|x) �= 0. It is well known that the Jeffreys test can
lead to the Jeffreys–Lindley paradox (Lindley, 1957; Tsao, 2006; Robert, 1993).
Thus, the procedure in (4.2) can also lead to the Jeffreys–Lindley paradox since it
is enough having P(H0|x) → 1 to observe EvNL(H0|x) → 1. On the other hand,
EvL(H0|x) → 1 only if P(H0|x) and Ev(H0,x) tend both to 1. Since the Pereira–
Stern procedure overcomes the Jeffreys–Lindley paradox, the linear-pool-based
test overcomes it as well.

In the next section, we verify the existence of a loss function that confers a
decision theoretic aspect to the linear-pool-based test.

4.2 The Bayesianity of the linear-pool-based test

Let us assume the following loss function:{
L(Accept H0, θ) = (1 − α)γ 1(θ ∈ �1) + α

[
β + γ 1

(
θ ∈ T (x)

)]
,

L(Reject H0, θ) = (1 − α)ξ1(θ ∈ �0) + αξ
[
1 − 1

(
θ ∈ T (x)

)]
,

(4.4)

where α ∈ [0,1], β ≥ 0, ξ and γ are real, positive numbers that are subjectively
chosen. Notice that the loss function in (4.4) is a particular linear combination of
those in (2.2) and (2.5). Let us consider two limit situations to get some guidance
on how to choose the constants β , ξ and γ . Assume that H0 is true such that
T (x) tends to the empty set. From (4.4) it follows that L(Accept H0, θ) → αβ

and L(Reject H0, θ) → ξ . On the other hand, if H1 is true such that T (x) → �, it
follows from (4.4) that L(Accept H0, θ) → γ + αβ and L(Reject H0, θ) → 0. As
for the FBST, such loss function penalizes the right decision of accepting the null
hypothesis with a “price” αβ if H0 is true. In this case, L(Accept H0, θ) → 0 if
α → 0 or β → 0. The constant α is the weight of the Pereira–Stern measure in the
proposed measure. Thus, if we want to pool different evidence in favor of H0, it is
not reasonable to assume α close to zero nor close to one. Therefore, to penalize
wrong decisions properly, we should assume small values for β and high values
for both γ and ξ .

The combination of loss functions as (4.4) is named balanced loss function by
Jozani et al. (2010). Such authors use it in the Bayesian point estimation context.

The following theorem establishes that the linear-pool-based test is a Bayesian
test. It also provides the cutoff point for acceptance of H0 under such procedure.

Theorem. Minimization of the posterior expected loss function in (4.4) is the
linear-pool-based test.
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Proof. The posterior Bayes risk of accepting H0 is

Eπ(L(Accept H0, θ)|x)

=
∫
�

[
(1 − α)γ 1(θ ∈ �1) + α

[
β + γ 1

(
θ ∈ T (x)

)]]
π(θ |x)dθ

= (1 − α)γ

∫
�1

π(θ |x)dθ + αβ

∫
�

π(θ |x)dθ + αγ

∫
T (x)

π(θ |x)dθ

= (1 − α)γP (H1|x) + αβ + αγ
(
1 − Ev(H0, x)

)
= (1 − α)γ + α(β + γ ) − γ EvL(H0|x).

The posterior Bayes risk of rejection is

Eπ(L(Reject H0, θ)|x)

=
∫
�

[
(1 − α)ξ1(θ ∈ �0) + αξ [1 − 1(T (x))]]π(θ |x)dθ

= (1 − α)ξ

∫
�0

π(θ |x)dθ + αξ

∫
�

π(θ |x)dθ − αξ

∫
T (x)

π(θ |x)dθ

= (1 − α)ξP (H0|x) + αξEv(H0, x)

= ξEvL(H0|x).

The test is to accept the null hypothesis if, and only if,

Eπ(L(Accept H0, θ)|x) < Eπ(L(Reject H0, θ)|x)

(1 − α)γ + α(β + γ ) − γ EvL(H0|x) < ξEvL(H0|x) (4.5)

EvL(H0|x) > [γ + αβ][γ + ξ ]−1,

which concludes the proof. �

5 Simulation studies

The test procedures presented in the previous sections are applied to particular
families of distributions. A comparison among them is done throughout a Monte
Carlo study. From the Bayesian point of view, each inference problem is seen as
unique, that is, it is not treated in light of the sampling replications paradigm.
Consequently, a Monte Carlo study makes sense if it is understood as a way of
evaluating how the decisions of different experts, who have the same prior opinion,
are affected by the different sample evidences provided by the experiments they
perform.

Since the usual Bayesian procedures for testing and the linear-pool-based test
are all Bayesian tests, in order to fairly compare such procedures, we assume that
the prior risks of accepting (rejecting) the null hypothesis are equals for all three
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procedures and, thus, we define the cutoff points for acceptance given by (2.3),
(2.6) and (4.5). Denote respectively by Ev(H0) and EvL(H0) the prior evidences
for the null hypothesis provided by the Pereira–Stern and Linear-pool-based tests.
Assume that Ev(H0) ∈ (0,1) and EvL(H0) ∈ (0,1). By setting the prior risks of
the three procedures equal, it follows that

c = [ω1P(H1) − b][1 − Ev(H0)]−1,

γ = [ω1P(H1) − αβ][1 − EvL(H0)]−1,

a = [ω0P(H0)][Ev(H0)]−1,

ξ = [ω0P(H0) − αβ][EvL(H0)]−1.

The cutoff points are then defined by specifying b, β , ω0 and ω1. If Ev(H0) = 1, the
constant c is arbitrarily chosen and the expressions to obtain b and a are simplified.

Since we have not found a loss function which renders the test constructed using
the logarithmic operator (logarithmic-pool-based test), we can assume the same
cutoff point as in (4.5) whenever it is possible to assume P(H0) = Ev(H0) = p.
Because of the unanimity property, in this case, logarithmic and linear operators
provide equal measures of evidence for H0. Consequently, if p �= 0 we have that
ω0 = a = ξ and the other values are obtained as before. On the other hand, if
p = 0, it follows that ω0 = a = ξ , b = β = 0 and c and γ are arbitrarily chosen.

In this section, we apply the procedures to perform two-sided (H0 : θ = θ0) and
one-sided (H0 : θ ≤ θ0) tests under the normal family with a known variance. In
this case, we consider a conjugate prior for the mean, with a large variance, and
assume different values for α and P(H0). We also consider two asymmetric fam-
ilies of probability distributions: the exponential and the standard skew-normal
distributions. In these cases, we focus the attention on tests for a precise null hy-
pothesis. In both cases, we assume α = 0.5. The interest is to evaluate the effect
of the choice of different cutoff points (exponential case) and of informative and
few informative or flat priors (skew-normal case) in the decisions. In all cases, we
consider two sample sizes (n = 10 and 100). We generate 1000 samples of the
likelihood with parameter θTrue. Throughout this section, we assume that b and β

in expressions (2.5) and (4.4) are close to zero (b = β = 10−3). We also assume
that P(H0) is equal or very close to Ev(H0). Thus, for all test procedures, we will
accept the null hypothesis if the posterior evidence for H0 is higher than the cut-
off point k = ω1(ω1 + ω0)

−1. To establish notation, along this paper we denote
by φn(·;μ,�) and 
n(·;μ,�) (φn(·) and 
n(·)) the p.d.f. and the c.d.f., respec-
tively, of the n-variate normal distribution Nn(μ,�) (Nn(0, In)). The index n is
suppressed in the univariate case.

5.1 Tests under normal distribution

Let us consider X1, . . . ,Xn|μ i.i.d.∼ N(μ,σ 2), where σ 2 is known. Assume the
conjugate prior μ ∼ N(m,v), m ∈ R and v > 0. Thus, μ|x ∼ N(m∗, τ 2), where
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Figure 1 Empirical power function for Pereira and Stern (full line), usual (•), linear-pool-based
(dashed line), and logarithmic-pool-based (∗) procedures, one-sided test, n = 10 (left) and 100
(right), normal case.

m∗ = [v ∑n
i=1 xi + mσ 2][nv + σ 2]−1 and τ 2 = σ 2v[nv + σ 2]−1. The goal in this

section is to evaluate the performances of the test procedures in one-sided and
two-sided tests. In the later case, only tests for the precise null hypothesis are con-
sidered. We also assume different values for α and P(H0).

For the simulation studies (one and two-sided tests) we consider the low infor-
mative prior μ ∼ N(0,1000), and assume σ 2 = 1 and μ0 = 0. Thus, we have that
Ev(H0) = 1.0. We also assume the same cutoff point, k = 0.30, for all procedures.

5.1.1 One-sided test. The interest here is to test H0 :μ ≤ μ0 versus H1 :μ > μ0,
where μ0 ∈ R is known. In this case, P(H0|x) and the Pereira–Stern measure of
evidence for H0 are given, respectively, by

P(H0|x) = 
(μ0;m∗, τ 2),

Ev(H0,x) = 1 −
∫
T (x)

φ(μ;m∗, τ 2) dμ,

where T (x) = {μ ∈ R :φ(μ;m∗, τ 2) ≥ sup�0
φ(μ;m∗, τ 2)} and �0 = (−∞;μ0].

If μ0 ≥ m∗, then Ev(H0,x) = 1 since T (x) is an empty set. If μ0 < m∗, then
T (x) = {μ ∈ R : |μ − m∗| < |μ0 − m∗|}. In this case, Ev(H0,x) = 1 − 
(−(θ0 −
m∗)τ−1) + 
((θ0 − m∗)τ−1).

Figure 1 shows the percentage of rejection of H0 for different values of μ (called
throughout this paper the empirical power function), all test procedures and for
samples of size n = 10 and 100.

The proposed procedures for testing are both better than the one which consid-
ers P(H0|x) as the measure of evidence for H0 (in this subsection named “usual
test” to simplify the presentation), if the null hypothesis is true. For μ > μ0, the
usual test is the best and, in these cases, the proposed procedures present better
performance than the Pereira–Stern test. For the one-sided test the empirical power
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Figure 2 Empirical power function for Pereira and Stern (full line), Jeffreys (•), linear-pool-based
with α = 1/3 (dashed line) and α = 2/3 (square), and logarithmic-pool-based with α = 1/3 (∗) and
α = 2/3 (triangle) procedures, two-sided test, n = 10, p = 0.50 (left) and 0.95 (right), normal case.

function of the linear-based and the logarithmic-based tests are very close for both
sample sizes, that is, they have quite similar performance. For n = 100 we observe
an improvement in the results for all procedures. The empirical power functions of
all procedures are very close to the ideal one.

5.1.2 Two-sided test. Let H0 :μ = μ0 and H1 :μ �= μ0, where μ0 ∈ R is known.
In this case, to calculate P(H0|x), we consider the Jeffreys strategy discussed in
Section 2. The Bayes factor and the Pereira–Stern measure of evidence for H0 are
given, respectively, by

BF(H0,H1) = exp
{
− n

2σ 2 (x̄ − μ0)
2
}(

σ 2

vn + σ 2

)−1/2

exp
{

n(x̄ − m)2

2(vn + σ 2)

}
,

Ev(H0,x) = 1 −
∫
T (x)

φ(μ;m∗, τ 2) dμ,

where T (x) = {μ ∈ R : |μ − m∗| < |μ0 − m∗|}. If μ0 < m∗, it follows that
Ev(H0,x) = 1−
(−(θ0 −m∗)τ−1)+
((θ0 −m∗)τ−1). Similarly, we can obtain
Ev(H0,x) whenever μ0 > m∗.

As it was assumed for the one-sided test, we also assume μ ∼ N(0,1000) which
here can lead to the Jeffreys–Lindley paradox. The main goal is to evaluate the
effect of α, the weights of Ev(H0,x) in (4.1) and (4.2), and of p = P(H0) in the
posterior evidences for the null hypothesis.

Figures 2 and 3 present the empirical power function of all test procedures for
samples of size n = 10 and 100, respectively.

Opposite to what was observed for the one-sided test, the Pereira–Stern pro-
cedure is best for μ �= μ0 and the Jeffreys test is best for μ = μ0. The proposed
procedures are both better than the Pereira–Stern test if the null hypothesis is true.
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Figure 3 Empirical power function for Pereira and Stern (full line), Jeffreys (•), linear-pool-based
with α = 1/3 (dashed line) and α = 2/3 (square), and logarithmic-pool-based with α = 1/3 (∗) and
α = 2/3 (triangle) procedures, two-sided test, n = 100, p = 0.50 (left) and 0.95 (right), normal case.

They also have better performance than the Jeffreys test whenever the null hypoth-
esis is false.

It is also noticeable from Figures 2 and 3 that the Jeffreys test presents the worst
performance if the prior probability for the null hypothesis is high. The different
values of p affect the performance of the proposed procedures in a similar way for
both values of α. Comparing only the proposed procedures, the logarithmic-pool-
based test is the best. However, the weight α given to Ev(H0,x) also influences the
results. As expected, linear and logarithmic-pool-based tests present better perfor-
mance whenever α = 2/3. This behavior is expected since in the scenario consid-
ered here the Jeffreys test could wrongly lead to the acceptance of H0 more fre-
quently (Jeffreys–Lindley paradox). It is also noticeable that the empirical power
functions for the linear-pool-based test with α = 1/3 and the Jeffreys test are very
close, specially whenever p = 0.95. Similar conclusions can be drawn for n = 100.
In this case, the proposed procedures are much better than the Pereira–Stern test if
μ = μ0. Such procedures are comparable if p = 0.50 and μ �= μ0.

5.2 Tests under exponential distribution

Here we consider tests for the precise null hypothesis only, that is, H0 : θ = θ0.
The goal is to evaluate the performances of the test procedures whenever dif-
ferent cutoff points, say, penalties for wrong decisions, are assumed. We con-

sider the situation where X1, . . . ,Xn|θ i.i.d.∼ exp(θ), θ > 0. We also assume a con-
jugate prior for θ , say, θ ∼ Gamma(ψ, δ). Consequently, we have that θ |x ∼
Gamma(ψ +n, δ+∑n

i=1 xi). Under such a model the Bayes factor and the Pereira–
Stern measure of evidence for H0 are given, respectively, by

BF(H0,H1) = �(ψ)

(
δ +

n∑
i=1

xi

)ψ+n

[δψ�(ψ + n)]−1θ0e
−θ0

∑n
i=1 xi ,
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Figure 4 Empirical power function for Pereira and Stern (full line), Jeffreys (•), linear-pool-based
(dashed line) and logarithmic-pool-based (∗) tests, n = 10, and different cutoff points, k = 0.10 (top
left), 0.33 (top right), 0.67 (bottom left) and 0.90 (bottom right), exponential case.

Ev(H0,x) = 1 −
∫
T (x)

e−θ(δ+nx̄)θψ+n−1(δ + nx̄)ψ+n[�(ψ + n)]−1 dθ,

where T (x) = {θ ∈ R+ : (ψ + n − 1) log(θ/θ0) ≥ (δ + nx̄)(θ − θ0)}. Assume that
θ0 is smaller than the posterior mode. Since the Gamma distribution has a unique
mode, T (x) = {θ : θ0 ≤ θ ≤ a}, where a is such that log(θ0)−θ0(δ+∑n

i=1 xi)[ψ +
n−1]−1 = log(a)−a(δ +∑n

i=1 xi)[ψ +n−1]−1. Thus, denoting by �a(α, δ) the
c.d.f. of the Gamma distribution with parameters α and δ evaluated in a, it follows
that Ev(H0,x) = 1−�a(ψ +n, δ+∑n

i=1 xi)+�θ0(ψ +n, δ+∑n
i=1 xi). We obtain

Ev(H0,x) for θ0 greater than the posterior mode similarly.
Figures 4 and 5 provide the empirical power function of all tests for samples

of size n = 10 and 100, respectively. Different cutoff points k are considered. We
assume that θ0 = 1 and that, a priori, θ ∼ Gamma(0.001,0.001).

We have that Ev(H0) = P(H0) = 0.0063. If, compared to Jeffreys test, the pro-
posed test procedures are better whenever θTrue �= θ0, for θTrue = θ0 they tend to
have better performances than the FBST. The test based on the logarithmic op-
erator is better than the test constructed assuming the linear operator whenever
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Figure 5 Empirical power function for Pereira and Stern (full line), Jeffreys (•), linear-pool-based
(dashed line) and logarithmic-pool-based (∗) tests, n = 100, and different cutoff points, k = 0.10
(top left), 0.33 (top right), 0.67 (bottom left) and 0.90 (bottom right), exponential case.

θTrue �= θ0 and for k up to 0.33. For such cutoff points the test based on the linear
operator is better if the null hypothesis is true. For n = 100 we observe an improve-
ment in the results for all procedures mainly for small values of k. It is noteworthy
that the FBST presents better performance for θTrue close to θ0.

5.3 Tests under skew-normal distribution

The skew-normal distribution family considered here was introduced by Azzalini
(1985). Such a family includes the normal as a special case and also preserves some
nice properties of the normal family. However, inference for the shape or skewness
parameter λ using the usual maximum likelihood approach has some problems,
such as the existence of local maximum and also the maximum likelihood estima-
tor for λ can be infinite (Sartori, 2006). Moreover, if λ = 0, the Fisher information
matrix is singular which prevents the use of maximum likelihood-based proce-
dures for testing normality under the skew-normal family. Such a problem can be
overcome by the use of Bayesian tests. Bayesian inference for the skewness pa-
rameter λ has been considered, for instance, by Liseo and Loperfido (2006), Bayes



466 R. H. Loschi, C. C. Santos and R. B. Arellano-Valle

and Branco (2007) and Arellano-Valle et al. (2009). The Jeffreys test for λ was
firstly considered by Bayes and Branco (2007) that assume two centered student-t
prior distributions for λ, with small degrees of freedom—one of which shows to
be a good approximation for the reference prior introduced by Liseo and Loperfido
(2006).

In this section, the goals are to consider test procedures for the skewness pa-
rameter λ and to evaluate the effect of informative and low informative priors for
λ in the decisions. As a by-product we introduce Bayesian tests for normality un-
der the skew-normal family. We extend previous works by assuming different test
procedures for that and by assuming normal priors for the skewness parameter.

Suppose that, given λ ∈ R, the random variables X1, . . . ,Xn are i.i.d. with stan-
dard skew-normal distribution which has density f (x|λ) = 2nφn(x)
n(λx). As-
sume that λ ∼ N(m,v). As shown in Arellano-Valle et al. (2009), under such as-
sumptions, conjugacy is observed. Thus, the posterior is also a skewed distribution
which has p.d.f. π(λ|x) = φ(λ;m,v)
n(λx) [
n(mx;0, In + vxxt )]−1. We have
that the Bayes factor and the Pereira–Stern measure of evidence for H0 :λ = λ0
are given, respectively, by

BF(H0,H1) = 
n(λ0x)[
n(mx;0, In + vxxt )]−1,

Ev(H0,x) = 1 −
∫
T (x)

φ(λ;m,v)
n(λx)[
n(mx;0, In + vxxt )]−1 dλ,

where T (x) = {λ ∈ R :φ(λ;m,v)
n(λx) ≥ φ(λ0;m,v)
n(λ0x)}. Extensions for
skew-normal families with unknown location and scale parameters can be done
using some results presented in Arellano-Valle et al. (2009) and in Liseo and Lop-
erfido (2006).

In the Monte Carlo study in the following, we assume λ0 = 0, that is, we are
testing for normality, and assume prior distributions centered in m = 0. As a conse-
quence, the tangential set is given by T (x) = {λ ∈ R :λ2 ≤ 2v

∑n
i=1 log[2
(λxi)]}.

We assume two priors for λ, λ ∼ N(0,1) and λ ∼ N(0,50). Thus, the prior
evidence for H0 is Ev(H0) = 1.0. We also assume P(H0) = 0.95.

Figures 6 and 7 show the empirical power function for all test procedures for
samples of sizes 10 and 100, respectively.

All test procedures have better performance when we assume a less informative
prior for λ whatever k is. The chosen cutoff point also influences in performance
of the test procedures. They tend to have better performance for k = 0.67. The
Jeffreys test works poorly for more informative priors and k = 0.33. Similarly
to what was observed for the exponential case, the Jeffreys test is the best if the
null hypothesis is true and the Pereira–Stern test works better whenever the null
hypothesis is false. Also, the proposed procedures are better than the Pereira–Stern
(Jeffreys) test if H0 is true (false).

Comparing the proposed procedures, from Figures 6 and 7, we have that the
linear-pool-based test works better than the logarithmic-pool-based test whenever
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Figure 6 Empirical power function for Pereira and Stern (full line), Jeffreys (•), linear-pool-based
(dashed line) and logarithmic-pool-based (∗) tests, n = 10, Skew-normal case. Cut points k = 0.33
(top) and 0.67 (bottom) and variance v = 1 (left) and 50 (right).

we assume k = 0.67. The opposite is observed for k = 0.33. It is worthy that the
proposed procedures are much better than the Jeffreys test when we elicit a more
informative prior for λ and H0 is false, mainly, for k = 0.33. As expected, the em-
pirical power function is closer to the ideal one if a large sample size is considered
for all test procedures.

6 Application: Test for normality of Latin American emerging
markets returns

In this section we analyze the return series of the main stock indexes of four Latin
American markets, say, the MERVAL (Índice de Mercado de Valores de Buenos
Aires) of Argentina, the IBOVESPA (Índice da Bolsa de Valores do Estado de São
Paulo) of Brazil, the IPSA (Índice de Precios Selectivos de Acciones) of Chile
and the IPyC (Índice de Precios y Cotizaciones) of Mexico. The stock returns are
recorded weekly from October 31, 1995 to October 31, 2000.
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Figure 7 Empirical power function for Pereira and Stern (full line), Jeffreys (•), linear-pool-based
(dashed line) and logarithmic-pool-based (∗) tests, n = 100, Skew-normal case. Cut points k = 0.33
(top) and 0.67 (bottom) and variance v = 1 (left) and 50 (right).

It is well known that emerging markets are more susceptible to the political
scenario than developed markets. Thus, their indexes tend to present more atypi-
cal observations which lead the empirical distributions of such indexes to exhibit
skewness and tails that are lighter or heavier than a normal distribution. We assume
the skew normal distribution to model the data behavior. In order to be better fitted
by the standard skew-normal distribution, the return series r1, . . . , rn was trans-
formed using the expression yi = ri(r̄2)−0.5, i = 1, . . . , n, where r̄2 = ∑n

i=1 r2
i /n.

We assume that λ ∼ N(0,50), consequently, the Ev(H0) = 1.0. We also con-
sider two prior specifications for H0, a noninformative prior which establishes
that P(H0) = 0.5 and the other one that assumes that P(H0) is close to the prior
Pereira–Stern measure of evidence for the null hypothesis, that is, we assume
P(H0) = 0.99. Under the last prior, we can assume the same cutoff point k for
accepting H0 for all procedures, since in this case the linear and the logarithmic
operators have similar behavior.

Figure 8 presents the posteriors for the skewness parameters for the four in-
dexes. The area in grey represents the posterior Pereira–Stern measure of evidence
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Figure 8 Posteriors for the skewness parameters and posterior evidences Ev(H0, x) (area in grey).

Table 1 Posterior summaries for the skewness parameter

Mean Variance Mode

MERVAL 0.0838 0.0131 0.0838
IBOVESPA 0.0982 0.0130 0.0987
IPSA −0.0468 0.0133 −0.0455
IPyC 0.1442 0.0132 0.1436

for the null hypothesis. The posteriors of λ have unique modes and put most of
their mass in small values of λ, which means that we have evidence of small asym-
metry for all stock returns. The estimates for λ are very close to zero (see Table 1).
Thus, the assumption of normality can be reasonable for all stock market returns.
IPyC presents the highest asymmetry. The asymmetries for all indexes are positive,
except for IPSA.

Table 2 presents the posterior evidences for H0 for all procedures. For P(H0) =
0.99 and assuming that ω0 = ω1, which means that k = 0.50, the Pereira–Stern
test leads to the conclusion that the returns of IPSA are symmetric and that, for
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Table 2 Tests for the skewness parameter

Ev(Ho,x) P (H0|x) EvL(H0|x) EvNL(H0|x)

P (H0) = 0.99
MERVAL 0.4638 0.9893 0.7265 0.8994
IBOVESPA 0.3873 0.9998 0.6935 0.9809
IPSA 0.6919 0.9885 0.8401 0.9330
IPyC 0.2105 0.9996 0.6051 0.9650

P(H0) = 0.50
MERVAL 0.4802 0.4720 0.4720
IBOVESPA 0.9772 0.6822 0.8387
IPSA 0.4785 0.5851 0.5894
IPyC 0.9631 0.5868 0.7253

the other markets, they are asymmetric. All the other test procedures lead to the
conclusion that the returns for all indexes are distributed according to the standard
normal distribution. If we assume that 2ω0 = ω1, all test procedures indicate that
the returns of the indexes have symmetric behavior, except for IPyC whenever the
Pereira–Stern test is considered.

Assuming a strong prior evidence for H0, Jeffreys and the logarithmic-pool-
based tests are not able to update properly the information about the null hy-
pothesis. Notice, for instance, that the posterior of λ indicates weak evidence for
symmetry of IPyC returns. It is worthy that such procedures put strong evidences
for H0 for IBOVESPA and IPyC indexes. The opposite is observed if we con-
sider Pereira–Stern and linear-pool-based tests. A similar behavior is observed for
P(H0) = 0.50.

7 Final remarks

In this paper we introduced two Bayesian procedures for hypotheses testing which
are based on aggregating the posterior of the null hypothesis and the measure of
evidence for the null hypothesis provided by the FBST. These procedures were
constructed considering the linear and the logarithmic operators which are typical
procedures to obtain a consensus probability in Group Decision Theory. We per-
formed a Monte Carlo study in order to compare all the four procedures assuming
three distribution families, including the skew-normal. As a by-product, we ob-
tained test procedures for normality under skew-normal distribution for which the
usual likelihood procedures can not be used directly. We applied the procedures to
test the returns of some Latin American emerging stock markets for asymmetry.

From the simulation study we concluded that, in general, the proposed test pro-
cedures tend to be better than the Jeffreys test whenever the null hypothesis is false,
and they tend to have better performance than the Pereira–Stern test (FBST) when-
ever the null hypothesis is true. The logarithmic-pool-based (linear-pool-based)
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test tends to be better than the linear-pool-based (logarithmic-pool-based) one
whenever the null hypothesis is false and small (large) cutoff points are consid-
ered. In general, compared to the Pereira–Stern test (which tends to be the most
powerful test), the logarithmic-pool-based test greatly improves the power if the
null hypothesis is true without losing power whenever it is false.

The use of the proposed procedures is attractive for their simplicity. Overall,
the proposed procedures, mainly the logarithmic-pool-based test, bring some im-
provement and show themselves to be reasonable approaches for testing. They
also present nice properties. In the case of testing a precise null hypothesis, the
logarithmic-pool-based test generalizes the Jeffreys test and the linear-pool-based
test avoids the Jeffreys–Lindley paradox.
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