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Group selection in high-dimensional partially linear
additive models
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Abstract. We consider the problem of simultaneous variable selection and
estimation in partially linear additive models with a large number of grouped
variables in the linear part and a large number of nonparametric components.
In our problem, the number of grouped variables may be larger than the sam-
ple size, but the number of important groups is “small” relative to the sample
size. We apply the adaptive group Lasso to select the important groups, us-
ing spline bases to approximate the nonparametric components and the group
Lasso to obtain an initial consistent estimator. Under appropriate conditions,
it is shown that, the group Lasso selects the number of groups which is com-
parable with the underlying important groups and is estimation consistent,
the adaptive group Lasso selects the correct important groups with probabil-
ity converging to one as the sample size increases and is selection consistent.
The results of simulation studies show that the adaptive group Lasso proce-
dure works well with samples of moderate size. A real example is used to
illustrate the application of the proposed penalized method.

1 Introduction

Let (Yi,Xi, Ti), i = 1, . . . , n, be random vectors that are independently and iden-
tically distributed as (Y,X,T ), where Y is a response variable, X = (X1,X2, . . . ,

Xp)′ is a covariate vector with Xk being an dk × 1 vector corresponding to the kth
group in the linear part and T = (T1, . . . , TJ ) is a J -dimensional covariate vector
corresponding to the nonparametric additive components. Consider the partially
linear additive model with grouped variables (GPLAM)

Yi =
p∑

k=1

Xikβk +
J∑

j=1

gj (Tij ) + εi, (1.1)

where Xik is a dk × 1 covariate vector representing the kth group, βk is the dk × 1
vector of corresponding regression coefficients, gj ’s are unknown functions of Tij ,
and εi is an unobserved random variable with mean zero and finite variance σ 2.
In this model, the response variable Y is linearly related to covariates X, while its
relation with covariates T is not specified up to any finite number of parameters.
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This model combines the linear models with grouped variables and the flexibil-
ity of nonparametric additive models. When the relation between Y and X is of
main interest and can be approximated by a linear function, it offers more inter-
pretability than a purely nonparametric model. We proposed a penalized method
for simultaneous variable selection and estimation in GPLAM when p is large. We
allow the possibility that p is much larger than the sample size n, which we rep-
resent by letting p increase as n increases. But the number of important variables
is small relative to the sample size n. We show that under appropriate conditions,
the proposed penalized method can correctly select the important groups in the
parametric part with high probability.

There has been much work on penalized methods for variable selection and
estimation with high-dimensional data. Several approaches have been proposed,
including the least absolute shrinkage and selection operator (Lasso, Tibshirani
(1996)), the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li
(2001), Fan and Peng (2004)), the elastic net penalty (Zou and Hastie (2006)),
and the minimum concave penalty (Zhang (2007)). Much progress has been made
in understanding the statistical properties of these methods in both fixed p and
p � n settings. In particular, many authors have studied the variable selection, es-
timation and prediction properties of the Lasso in both low- and high-dimensional
settings. See, for example, Knight and Fu (2000), Greenshtein and Ritov (2004),
Meinshausen and Buhlmann (2006), Zhao and Yu (2006), van de Geer (2008) and
Zhang and Huang (2008), among others. All these authors assume a linear or non-
parametric model. In many applications, however, some variables are linear related
to the response variable, but some variables whose effects on the response variable
can be nonlinear. Then semiparametric model needs to be considered. Partially lin-
ear model (PLM) is a basic and one of the most studied semiparametric models. It
is a special case of GPLAM, which has only individual variables in the linear part
and only one nonparametric component g.

In PLM, for finite dimensional β , several approaches have been proposed to esti-
mate β and g. Examples include the partial spline estimator (Wahba (1984), Engle
et al. (1986) and Heckman (1986)) and the partial residual estimator (Robinson
(1988), Speckman (1988) and Chen (1988)). When p is large in the sense that
p → ∞ as the sample size n → ∞, but p < n, some penalized methods have been
proposed to estimate β and g, see, for example, SCAD penalized estimator (Xie
and Huang (2009)). They showed that under some regularity conditions, consis-
tency in terms of variable selection and estimation can be achieved simultaneously
for the linear and nonparametric component. However, all these studies did not
discuss variable selection and estimation in high-dimensional setting, in the sense
that p � n. Moreover, all these studies are concerned with only individual variable
selection in the linear part, group structure of variables is not considered.

In this paper, we consider a partially linear additive model with a large num-
ber of grouped variables in the linear part and a large number of nonparametric
components. We use the group Lasso method for variable selection in the linear
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part in GPLAM based on a polynomial spline approximation of the nonparamet-
ric components. With this spline approximation, each nonparametric component is
represented by a linear combination of spline basis functions. Consequently, by us-
ing partial residual method with B-spline bases, the problem of variable selection
and estimation in GPLAM becomes that of selecting and estimating of grouped
variables in a linear model. It is natural to apply the group Lasso method, since it
is taking into account of the group structure in the model. To achieve selection con-
sistency, we apply the group Lasso iteratively as follows. First, we use the group
Lasso to obtain an initial rate consistent estimator and reduce the dimension of the
problem. Then we use the adaptive group Lasso to select the final sets of grouped
variables. This approach follows the idea of the adaptive Lasso (Zou (2006)) in
the context of variable selection in linear regression. They considered a combi-
nation of Lasso and adaptive Lasso steps, and more generally, a multi-step Lasso
procedure.

We show that the group Lasso selects the number of variables in the parametric
part has the same order as the underlying model and is estimation consistent under
a sparse Riesz condition which is a relatively mild condition compared with the
strong irrepresentable condition (Meinshausen and Buhlmann (2006), Zhao and
Yu (2006) and Wainwright (2006)). Bach (2008) proved that the group Lasso is
selection consistent under the strong condition which requires the maximum of �2
norm of an off-diagonal designed matrix from the covariate matrix to be uniformly
less than 1. This strong condition is quite restrictive even for moderately large
group number. In this paper, we prove that by using the group Lasso result as the
initial estimator for the adaptive group Lasso, the adaptive group Lasso selects the
correct variables with high probability and is selection consistent. An important
aspect of our results is that p can be much larger than n. And the variables in the
parametric part do not necessarily to be individual variables, they can be grouped
variables, categorical or continuous.

The remainder of the paper is organized as the follows. Section 2 describes the
group Lasso and the adaptive group Lasso for variable selection and estimation.
Section 3 presents the asymptotic properties of these methods in “large p, small n”
settings. Technical proofs of the results are given in Section 6. Section 4 presents
the results of simulation studies to evaluate the finite sample performance of these
methods and an illustrative application. Section 5 gives a summary and discussion.

2 Penalized estimation in GPLAM with the adaptive group
Lasso penalty

In this section, we describe a two-step approach using the group Lasso for si-
multaneous consistent variable selection and estimation of β , then estimating the
nonparametric components gj ’s using the partial residual method based on the es-
timation of β and a spline approximation. In the first step, we use the group Lasso
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to achieve an initial estimation consistent estimator which gives a reduction of the
dimension of the model. In the second step, we use the adaptive group Lasso to
achieve consistent selection.

We use the polynomial splines to approximate each nonparametric component
gj , j = 1, . . . , J . Suppose that each Tj takes values in a compact interval [a, b],
where a < b are finite numbers. Let a = ξ0 < ξ1 < · · · < ξM < ξM+1 = b be a
partition of [a, b] into M + 1 subintervals IMt = [ξt , ξt+1), t = 0, . . . ,M − 1 and
IMM = [ξM, ξM+1], where M ≡ Mn = nυ with 0 < υ < 0.5 is a positive integer
such that hn � max1≤m≤M+1 |ξm − ξm−1| = O(n−υ). Let Sn be the space of poly-
nomial splines of degree l ≥ 1 with simple knots at the points ξ1, . . . , ξM . This
space consists of all functions s satisfying:

(1) The restriction of s to any interval IMt (0 ≤ t ≤ M) is a polynomial of degree l.
(2) For l ≥ 2, s is l − 2 times continuously differentiable on [a, b].
According to Corollary 4.10 in Schumaker (1981), there exists a normalized B-
spline basis {Bw,1 ≤ w ≤ mn} for Sn, where mn = M + l is the dimension of Sn.
Thus, for any function s ∈ Sn, we can write

s(t) =
mn∑

w=1

αwBw(t).

We try to find the s in Sn that is close to gj . Under reasonable smoothness assump-
tions, the gj ’s can be well approximated by functions in Sn. Thus, the problem of
estimating gj ’s becomes that of estimating coefficient vector α.

Let ‖b‖2 ≡ (
∑d

j=1 |bj |2)1/2 denote the �2 norm of any vector b ∈ R
d . Let αnj =

(αj1, . . . , αjmn)
′ and αn = (α′

n1, . . . , α
′
nJ )′. Let ωn = (ωn1, . . . ,ωnp)′ be a given

vector of weights, where 0 ≤ ωnk ≤ ∞, 1 ≤ k ≤ p. Consider the adaptive group
Lasso (AGL) penalized least square criterion

Ln(βn,αn;λn) =
n∑

i=1

[
Yi −

p∑
k=1

Xikβnk −
J∑

j=1

mn∑
w=1

αjwBw(Tij )

]2

+ λn

p∑
k=1

ωnk‖βnk‖2,

where λn is a penalty parameter.
Let Zij = (B1(Tij ), . . . ,Bmn(Tij ))

′, so Zij consists of values of the basis func-
tions at the ith observation for the j th nonparametric function gj . Let Zj =
(Z1j , . . . ,Znj )

′ be n × mn “design” matrix corresponding to the j th function gj .
The total “design” matrix is Z = (Z1, . . . ,ZJ ) which is n × Jmn-dimensional
matrix. With this notation, we can write

Ln(βn,αn;λn) = ‖Y − Xβn − Zαn‖2
2 + λn

p∑
k=1

ωnk‖βnk‖2. (2.1)
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Let

(β̂n, α̂n) = arg min
βn,αn

Ln(βn,αn;λn), (2.2)

subject to the constraint that
n∑

i=1

mn∑
w=1

αjwBw(Tij ) = 0, 1 ≤ j ≤ J. (2.3)

These centering constraints are to ensure unique identification of the gj ’s which
are analogs of the restriction Egj (Tj ) = 0, 1 ≤ j ≤ J . We can convert (2.2) and
(2.3) to an unconstrained optimization problem by centering the response and the
basis functions. For simplicity and without causing confusion, we still use (2.2) to
denote our unconstraint optimization problem. Then the AGL-GPLAM estimator
of β and gj , j = 1, . . . , J are β̂n and ĝnj (t) = ∑mn

w=1 Bw(t)α̂jw . Unlike the basis
pursuit in nonparametric regression, no penalty is imposed on the estimator of the
nonparametric part since our interest lies in the variable selection with regard to
the linear part.

For any βn, the αn that minimizes Ln necessarily satisfies

Z′Zαn = Z′(Y − Xβn). (2.4)

Assume the number of nonparametric components is not too large and Jmn ≤ n,
Z′Z is invertible (see Lemma 1). Let PZ = Z(Z′Z)−1Z′ be the projection matrix
of the column space of Z. Then

Ln(βn;λn) = ‖(I − PZ)(Y − Xβn)‖2 + λn

p∑
k=1

ωnk‖βnk‖2. (2.5)

We now describe the two-step approach for variable selection and estimation in
GPLAM.

Step 1. Compute the group Lasso estimator. Let

Ln1(βn;λn1) = ‖(I − PZ)(Y − Xβn)‖2 + λn1

p∑
k=1

‖βnk‖2.

This objective function is a special case of (2.5) that is obtained by set-
ting ωnk = 1, 1 ≤ k ≤ p. The group Lasso estimator is β̃n ≡ β̃n(λn1) =
arg minβn Ln1(βn;λn1). From (2.4), we have α̃n = (Z′Z)−1Z′(Y − Xβ̃n).

Step 2. Use the group Lasso estimator β̃n to obtain the weights by setting

ωnk =
{

‖β̃nk‖−1
2 , if ‖β̃nk‖2 > 0,

∞, if ‖β̃nk‖2 = 0.

The adaptive group Lasso objective function is

Ln2(βn;λn2) = ‖(I − PZ)(Y − Xβn)‖2 + λn2

p∑
k=1

ωnk‖βnk‖2.
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Here we define 0 · ∞ = 0. Thus, the variables not selected by the group
Lasso are not included in Step 2. The adaptive group Lasso estimator is
β̂n ≡ β̂n(λn2) = arg minβn Ln2(βn;λn2), α̂n = (Z′Z)−1Z′(Y − Xβ̂n).

Finally, the adaptive group Lasso estimator (AGL-GPLAM) of β and gj are

β̂n, ĝnj (t) =
mn∑

w=1

Bw(t)α̂jw, j = 1, . . . , J.

3 Asymptotic properties of the AGL-GPLAM estimator

In this section, we state the results of the asymptotic properties of the estimators
defined in Steps 1 and 2 of Section 2.

In GPLAM, without loss of generality, we suppose that the first q grouped
variables are nonzero which are important, that is ‖βk‖2 �= 0, 1 ≤ k ≤ q , but
‖βk‖2 ≡ 0, q + 1 ≤ k ≤ p. Let A1 = {1, . . . , q}, A0 = {q + 1, . . . , p}. Then∑

k∈A0
‖βk‖2 = 0. Let |A| denote the cardinality of any set A ⊂ {1, . . . , p},

βA = (β ′
k, k ∈ A)′ and XA = (Xk, k ∈ A).

Here βA is a
∑

k∈A dk ×1 coefficient vector and XA is a n×∑
k∈A dk sub-covariate

matrix. Define ‖g‖2 = [∫ b
a g2(x) dx]1/2 for any function g, whenever the integral

exists.
We assume the following conditions.

(A1) There exist absolute constants c > 0 and a ∈ (0,1] such that∣∣g(k)
j (s) − g

(k)
j (t)

∣∣ ≤ c|s − t |a for s, t ∈ [a, b],
where 0 ≤ k ≤ l−1 and E(gj (t)) = 0 for j = 1, . . . , J . Let sg = k+a > 0.5.

(A2) There is a constant bn > 0 such that min1≤k≤q ‖βnk‖2 ≥ bn.
(A3) Sparse Riesz Condition (SRC): there exist some constants q∗

x > 0, c∗ > 0
and c∗ > 0 where 0 < c∗ < c∗ < ∞ such that

c∗ ≤ ‖XAν‖2
2

n‖ν‖2
2

≤ c∗ ∀A with |A| = q∗
x , ν ∈ R

∑
k∈A dk .

(A4) The random variables ε1, . . . , εn are independent and identically distributed
with Eεi = 0 and Var(εi) = σ 2. Furthermore, their tail probability satisfy
P(|εi | > x) ≤ K exp(−Cx2), i = 1, . . . , n, for all x ≥ 0 and for some con-
stants C and K .

Let �A = X′
A(I −PZ)XA/n. When A = {1, . . . , p}, we simply write � = X′(I −

PZ)X/n. Define

γmin(m) = min|A|=m
min‖v‖=1

v′�Av, γmax(m) = max|A|=m
max‖v‖=1

v′�Av.

So if we take A = {1, . . . , p}, γmin(p) and γmax(p) are the smallest and largest
eigenvalues of �, respectively.
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3.1 Estimation consistency of the group Lasso

Let d∗ = max1≤k≤p dk , d∗ = min1≤k≤p dk , d = d∗/d∗ and N = ∑p
k=1 dk . Let q∗

be a fixed integer such that γn∗ = γmin(q
∗), γ ∗

n = γmax(q
∗). Define

γ̄ = γ ∗
n /γn∗ and M1 = 2 + 4dγ̄ , (3.1)

we have

(2 + 4γ̄ )q + 1 ≤ q∗. (3.2)

Below, for any two sequences {an, bn, n = 1,2, . . .}, we write an � bn if there
are constants 0 < c1 < c2 < ∞ such that c1 ≤ an/bn ≤ c2 for all n sufficiently
large, and write an �p bn if this inequality holds with probability converging to
one.

Define

λn,p = 2σ

√
8(1 + c0)d∗d2q∗γ̄ γ ∗

n n logN,

where c0 > 0. Note that for fixed q∗, λn,p �p

√
n logN . Let Ã1 = {k :‖β̃nk‖2 �=

0,1 ≤ k ≤ p} which is the set of indices of the groups selected by the group
Lasso.

Theorem 3.1. Suppose that conditions (A1) to (A4) and (3.2) hold and that
Jmn ≤ n, λn1 ≥ λnp , then

(i) With probability converging to 1, |Ã1| ≤ M1|A1| = M1q for M1 defined in
(3.1).

(ii) All the nonzero βk with ‖βk‖2 ≥ M2λn1/n are selected with probability con-
verging to one, where M2 = ([2/3 + 4dγ̄ (7 + 4γ̄ )]q/(γn∗γ ∗

n ))1/2d∗.

Theorem 3.1 says that the group Lasso selects the number of groups is a con-
stant multiple of the number of underlying nonzero groups, regardless of the large
number of the zero groups. The dimension of the selected model has the same or-
der as the underlying model. Furthermore, part (ii) of Theorem 3.1 implies that all
the groups with coefficients whose �2 norm are greater than the threshold given in
Theorem 3.1 are selected with high probability.

Theorem 3.2. Suppose all the conditions in Theorem 3.1 hold. Then the following
assertions hold with probability converging to 1,

(i)
p∑

k=1

‖β̃nk − βk‖2
2

= Op

(
qd∗γ̄ logN

nγn∗
+ Jm

−2sg
n

γn∗
+ λ2

n1q

n2γ 2
n∗

)
,
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(ii)
J∑

j=1

‖g̃nj − gj‖2
2

= Op

(
Jm

−2sg
n + Jmn log(Jmn)

n
+ Jmnq

2(d∗)2c∗γ̄ logN

nγn∗

+ J 2m
1−2sg
n qd∗

γn∗
+ Jmnq

2d∗c∗λ2
n1

n2γ 2
n∗

)
.

Theorem 3.2 is stated for a general result when all the conditions (A1) to (A4)
and (3.2) are satisfied. Part (i) of the theorem gives the rate of convergence of β

which is determined by three terms: the stochastic error in estimating the paramet-
ric part (the first term), the spline approximation error (the second term) and the
bias due to penalization (the third term). Part (ii) states the rate of convergence of
the group Lasso estimator for the nonparametric components.

Immediately from Theorem 3.2, we have the following corollary.

Corollary 3.1. Suppose all the conditions in Theorem 3.2 hold. Let {σ, c0, γ̄ , d}
be fixed and 1 ≤ q ≤ n ≤ p → ∞. If λn1 � √

n logN , then the following assertions
hold with probability converging to 1,

(i)
p∑

k=1

‖β̃nk − βk‖2
2 = Op

(
q logN

n
+ Jm

−2sg
n

)
,

(ii)
J∑

j=1

‖g̃nj − gj‖2
2

= Op

(
Jm

−2sg
n (1 + Jmnq) + Jmn

n
[log(Jmn) + q2 logN ]

)
.

Remark 3.1. If J is fixed, then the condition Jmn ≤ n in Theorem 3.1 follows
from M = o(nν) for some ν ∈ (0,0.5). In particular, if p = 0 and J,mn are fixed,
Corollary 3.1 implies the well-known result in nonparametric regression:

J∑
j=1

‖ĝnj − gj‖2
2 = Op(1/n).

Remark 3.2. If J = 0, GPLAM is simplified to a linear model with grouped vari-
ables. Theorem 3.1 and Theorem 3.2 are generalization of Corollary 2.1 and The-
orem 2.2 on the selection properties of the group Lasso obtain by Wei and Huang
(2010). In particular, when J = 0,

p∑
k=1

‖β̃nk − βnk‖2
2 = Op(q logN/n),
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which is the same as the result of Corollary 2.1 of Wei and Huang (2010).

Remark 3.3. If d1 = · · · = dp = 1, the grouped variables in GPLAM simplifies
to the individual variables, and Theorem 3.1, Theorem 3.2 and Corollary 3.1 is
a direct result for individual variable selection in high-dimensional partial linear
additive models.

3.2 Selection consistency of the adaptive group Lasso

As shown in the Section 3.1, the first step of the group Lasso selects a model with
the same order of dimension as that of the underlying model for the linear part.
However, there is still a chance of irrelevant variables being selected. In order to
achieve improved variable selection accuracy, we propose a second step, which
we call the adaptive group Lasso, in the spirit of the adaptive Lasso (Zou (2006)).
It adjusts the penalty on each term according to the consistent parameter estima-
tion from the first step. In this section, we first state a general asymptotic result
concerning the selection consistency of the adaptive group Lasso, under the as-
sumption that an initial rate consistent estimator is available. We than apply to the
special case when the group Lasso is used as the initial estimator.

In addition to conditions (A1) to (A4), we assume the following conditions.

(B1) The initial estimators β̃nk are consistent at zero with rate rn if

max
k∈A0

‖β̃nk‖2 = op(1), rn max
k∈A0

‖β̃nk‖2 = Op(1), rn → ∞
and there exists a constant cb > 0 such that

P
(

min
k∈A1

‖β̃nk‖2 ≥ cbbn

)
→ 1

for n sufficiently large.
(B2) Let sn = p − q be the number of zero groups. Suppose that

(a)
(d∗)1/2(logq)1/2

n1/2bn

+ λn2(d
∗)3/2q

nb2
n

= o(1),

(b)
n1/2d1/2 log sn

rnλn2
+ (d∗)5/2q2

rnbnd
1/2∗

= o(1).

Theorem 3.3. Suppose that conditions (B1), (B2) and (A1)–(A4) hold and
Jmn ≤ n. Then

P
(‖β̂nk‖2 > 0, k ∈ A1 and ‖β̂nk‖2 = 0, k ∈ A0

) → 1.

Therefore, the adaptive group Lasso is selection consistent if an initial estima-
tion consistent estimator is available and the conditions in Theorem 3.3 hold. Con-
dition (B1) assumes that an initial zero consistent estimator exists. It assumes that
we can consistently differentiate between important and nonimportant grouped
variables. For fixed p and dk , the ordinary least square estimator can be used
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as the initial estimator. However, when p > n, the least squares estimator is no
longer feasible. By Theorem 3.1 and Corollary 3.1, the group Lasso estimator is
zero consistent with rate

√
n/(q logN) + m

sg
n /

√
J .

Theorem 3.4. Suppose that all the conditions in Theorem 3.3 hold. Then the fol-
lowing assertions hold with probability converging to 1,

(i)
p∑

k=1

‖β̂nk − βk‖2
2 = Op

(
qd∗γ̄ log(qd∗)

nγn∗
+ Jm

−2sg
n

γn∗
+ λ2

n2q

n2γ 2
n∗

)
,

(ii)
J∑

j=1

‖ĝnj − gj‖2
2

= Op

(
Jm

−2sg
n + Jmn log(Jmn)

n
+ Jmnq

2(d∗)2c∗γ̄ log(qd∗)
nγn∗

+ J 2m
1−2sg
n qd∗

γn∗
+ Jmnq

2d∗c∗λ2
n2

n2γ 2
n∗

)
.

This theorem is concerned with the rate of convergence for both the parametric
and nonparametric parts. Condition (B2) can be further simplified if we have d, bn

be bounded and rn � √
n/(q logN)+m

sg
n /

√
J in the initial estimator, for example,

the group Lasso with λn1 � √
n logN . In this case, (B2) becomes

(logq)1/2

n1/2 + qλn2

n
= o(1) and

log sn

rnλn2
+ q2

rn
= o(1). (3.3)

We often have λn2 = nτ for some 0 < τ < 1/2. In this case, the number of non-
important groups can be as large as exp(n2τ /(q logq)) with the number of impor-
tant groups satisfying q5 logq/n → 0 and the numbers J,mn being fixed. From
the above discussion, we have the following corollary.

Corollary 3.2. Let the group Lasso estimator β̃n ≡ β̃n(λn1) be the initial estima-
tor in the adaptive group Lasso. Suppose that all the conditions in Theorem 3.1
hold. If λn2 ∼ O(nτ ) for some 0 < τ < 1/2 and satisfies (3.3), then the adaptive
group Lasso consistently selects the nonzero groups in (1.1), that is, Theorem 3.3
holds. In addition,

(i)
p∑

k=1

‖β̂nk − βk‖2
2 = Op

(
q logq

n
+ Jm

−2sg
n

)
,

(ii)
J∑

j=1

‖ĝnj − gj‖2
2

= Op

(
Jm

−2sg
n (1 + Jmnq) + Jmn

n
[log(Jmn) + q2 logq]

)
.
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This corollary follows directly from Theorems 3.3 and 3.4. It shows that the
iterated group Lasso procedure that uses a combination of the group Lasso and
the adaptive group Lasso is selection consistent. Moreover, the convergence rate is
improved compared with that of the group Lasso by choosing appropriate penalty
parameter λn2.

4 Numerical study

In this section, we use simulation to evaluate the finite sample performance of the
group Lasso and the adaptive group Lasso with regard to the variable selection and
estimation and use a real data example to illustrate the application of the proposed
method. We also compare them with the Lasso. The Lasso estimator is defined as
the value that minimizes

‖Y − Xβn − Zαn‖2
2 + λn

p∑
k=1

dk∑
j=1

|βkj |.

So the Lasso estimator does not take into account of the group structure of the
variables in the linear part compared with the group Lasso and the adaptive group
Lasso estimators. The penalty parameters for the group Lasso, the adaptive group
Lasso and the Lasso methods are all selected by EBIC (Chen and Chen (2008))
which is defined to minimize

log RSS + df
logn

n
+ τ · df

logp

n
,

where RSS represents residual sum of squares, df is the number of selected vari-
ables and τ is a tuning parameter which is chosen to be 0.5 according to Chen and
Chen (2008).

4.1 Simulation studies

The generating model of our simulation is

Yi =
p∑

k=1

Xikβk +
J∑

j=1

gj (Tij ) + εi, i = 1, . . . , n,

where n = 100, p = 500 and J = 4. In this simulation example, there are 500
groups and each group consists of 3 variables. To generate the covariates X, we
first simulate 1,500 random variables R1, . . . ,R1,500 independently from N(0,1).
Then we generate Zj , j = 1, . . . ,500,501, . . . ,504, from a multivariate normal
distribution with the mean zero and cov(Zj1 − Zj2) = 0.6|j1−j2|. The covariates
X1, . . . ,X1,500 are generated as

X3(k−1)+j = Zk + R3(k−1)+j√
2

, 1 ≤ k ≤ 500,1 ≤ j ≤ 3.
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Then to generate the covariates T , we let T1 = Z501, and

Tj = ρTj−1 + (1 − ρ2)1/2Zp+j , j = 2, . . . ,4,

where ρ = 0.5. For the nonparametric additive components, we consider the fol-
lowing four functions,

g1(t) = cos(2πt),

g2(t) = sin(2πt),

g3(t) = −3(t − 0.5)2,

g4(t) = t (1 − t) sin
(

2π(1 + 2(9−4s)/5)

x + 2(9−4s)/5

)
, s = 3.

The response variable Y is generated from y = ∑500
k=1 Xkβk + ∑4

j=1 gj (Tj ) + ε,
where the regression coefficients for covariates X are

β1 = (0.5,1,1.5), β2 = (1,0,−1), β3 = (−1.5,1,2),

β4 = (1,1,1), β5 = · · · = β500 = (0,0,0).

The random error ε ∼ N(0,2.842) to give a signal to noise ratio 3 : 1.
Besides n = 100, we also consider the cases for n = 50 and n = 200 respec-

tively when p = 500 and J = 4. The results are given in Table 1 based on 400
replications. The columns in the table include the average number of groups (NG)
being selected, model error (ER), percentage of occasions on which correct groups
are included in the selected model (%IN) and percentage of occasions on which
the exactly correct groups are selected (%CS) with standard error in parentheses.

Several observations can be made from Table 1. The adaptive group Lasso has
higher percentage of occasions on which correct models are selected than the group

Table 1 Simulation study. NG, number of selected groups; ER, model error; IN%, percentage of
occasions on which the correct variables are included in the selected model; CS%, percentage of
occasions on which exactly correct variables are selected, averaged over 400 replications. Enclosed
in parentheses are the corresponding standard errors

Results for high dimension cases, p = 500

Adaptive group Lasso Group Lasso Lasso

NG ER IN% CS% NG ER IN% CS% NG ER IN% CS%

n = 200 4.08 0.17 90 83 4.27 0.20 90 76 6.54 1.53 83 23
(0.31) (0.10) (0.28) (0.40) (0.51) (0.10) (0.28) (0.43) (3.25) (0.87) (0.38) (0.42)

n = 100 3.70 2.33 71 64 3.94 2.47 71 51 5.28 2.56 72 19
(0.52) (0.95) (0.46) (0.48) (0.74) (0.99) (0.46) (0.50) (1.75) (1.35) (0.45) (0.39)

n = 50 3.52 2.60 51 34 3.87 2.67 51 33 5.83 2.68 45 15
(0.69) (1.07) (0.50) (0.48) (0.95) (1.22) (0.50) (0.47) (1.47) (1.01) (0.51) (0.36)
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Figure 1 Adaptive group Lasso method. The estimated nonparametric components (dashed line)
and true component (solid line) functions in one run when n = 100.

Lasso and the Lasso. The group Lasso which gives the initial estimator for the
adaptive group Lasso includes the correct groups with high probability. When the
sample size decreases, the performance of all the methods becomes worse. This
is to be expected since selection in models with a small number of observations
is more difficult. Finally, the models selected by the group Lasso and the adap-
tive group Lasso have similar model error to those selected by the Lasso when the
sample size is small, but have higher percentage of correct selection. This shows
that it is important to take into account of the group structure when we consider
the problems of variable selection with grouped variables. The estimated nonpara-
metric components are plotted along with the true function components in Fig-
ure 1. Figure 1 is the result from the adaptive group Lasso method in one run when
n = 100.

These simulation results suggest that both the adaptive group Lasso and the
group Lasso are effective for variable selection in sparse, high-dimensional partial
linear additive models with grouped variables and the adaptive group Lasso can
considerably improve the selection results over the group Lasso.

4.2 Real data example

We use the data set reported in Scheetz et al. (2006) to illustrate the application of
the adaptive group Lasso in high-dimensional partial linear additive models. In this
data set, F1 animals were intercrossed and 120 twelve-week-old male offspring
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were selected for tissue harvesting from the eyes and microarray analysis. The
microarray used to analyze the RNA from the eyes of these F2 animals contain over
31,042 different probe sets (Affymetric GeneChip Rate Genome 230 2.0 Array).
The intensity values were normalized using the RMA (robust multi-chip averaging,
Irizzary et al. (2003)) method to obtain summary expression values for each probe
set. Gene expression levels were analyzed on a logarithmic scale. For the 31,042
probe sets on the array, we first excluded probes that were not expressed in the eye
or that lacked sufficient variation. The definition of expressed were based on the
empirical distribution of RMA normalized values. For a probe to be considered
expressed, the maximum expression value observed for that probe among the 120
F2 rates were required to be greater than the 25th percentile of the entire set of
RMA expression values. For a probe to be considered “sufficiently variable,” it had
to exhibit at least 2-fold variation in expression level among the 120 F2 animals.
A total of 18,976 probes met these two criteria.

We are interested in finding the genes whose expression are correlated with that
of gene TRIM32. This gene was recently found to cause Bardet–Biedl syndrome
(Chiang et al. (2006)), which is a genetically heterogeneous disease of multiple
organ systems including the retina. The probe from TRIM32 is 1389163_at , which
is one of the 18,976 probes that are sufficiently expressed and variate. We use
the proposed penalized approach to find the probes among the remaining 18,975
probes that are most related to TRIM32. Here the sample size n = 120 (i.e., there
are 120 arrays from 120 rats), and the number of probes is 18,975. It is expected
that only a few genes are related to TRIM32. We first standardize the probes so that
they have mean zero and standard deviation 1. We than do the following steps:

1. Select 5,000 probes with the largest variance;
2. Compute the marginal correlation coefficients of the 5,000 probes with the

probe corresponding to TRIM32, select the top 504 covariates with the largest
correlation coefficients. This is equivalent to selecting the covariates based on the
univariate regression, since the covariates are standardized. We use X1, . . . ,X504
to represent the top 504 covariates with the correlation coefficients with the probe
TRIM32 in decreasing order, that is

corr(X1,TRIM32) ≥ · · · ≥ corr(X504,TRIM32).

3. Let Yi and Xik , i = 1, . . . ,120, 1 ≤ k ≤ 504, denote the gene expression val-
ues of TRIM32 and the corresponding top 504 covariates, respectively. We assume
the following partial linear additive model

Yi =
504∑
k=5

(X3
ikβk1 + X2

ikβk2 + Xikβk3) +
4∑

j=1

gj (Xij ), i = 1, . . . ,120,

where we approximate the effect of covariates X5, . . . ,X504 on TRIM32 by a three
order polynomials, while the effect of covariates X1, . . . ,X4 on TRIM32 are un-
known nonparametric functions.
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Table 2 Probes selected by the group Lasso and the adaptive group
Lasso methods where

√
means probes being selected

Probes Group Lasso Adaptive group Lasso

1383110_at
√ √

1389584_at
√ √

1383673_at
√ √

1386683_at
√ √

1379971_at
√ √

1374106_at
√

1382517_at
√

1393817_at
√ √

1380091_at
√

1384466_at
√

1391039_at
√

1384204_at
√ √

1379597_at
√ √

1380033_at
√ √

1374131_at
√ √

1382835_at
√ √

1383996_at
√ √

1371194_at
√ √

1398594_at
√

1368271_at
√

1382633_at
√ √

The results are summarized in Table 2 to Table 4. Table 2 lists the probes that
are selected by the group Lasso and the adaptive group Lasso including the co-
variates X1, . . . ,X4 for both group Lasso and the adaptive group Lasso. Table 3
summarizes the number of selected probes and residual sum of squares for the
adaptive group Lasso, the group Lasso and the Lasso. The group Lasso selects 7
more probes than the adaptive group Lasso, Lasso selects much more probes than
the group Lasso and the adaptive group Lasso. To evaluate the performance of
the adaptive group Lasso relative to the group Lasso and the Lasso, we use 6-fold
cross validation and compare their model error and prediction error. Table 4 gives
the results when the number of covariates p = 100,200 and 500, respectively. We

Table 3 No. of probes means the number of probes being selected,
RSS is the residual sum of squares

No. of probes RSS

Adaptive group Lasso 10 0.12
Group Lasso 17 0.14
Lasso 52 0.41
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Table 4 Prediction results using cross-validation. NP means the average of how many probes being
selected, RSS means the average of residual sum of squares in the training set, PE is the average of
prediction mean square errors for the test set with standard deviation in the parentheses

Adaptive group Lasso Group Lasso Lasso

6-fold NP RSS PE NP RSS PE NP RSS PE

p = 100 11 0.11 1.63 19 0.13 1.71 48 0.24 2.18
(0.80) (0.05) (1.24) (0.93) (0.04) (1.53) (2.23) (0.09) (0.80)

p = 200 10 0.11 1.84 16 0.13 1.89 58 0.46 2.20
(0.70) (0.05) (1.66) (0.86) (0.04) (2.01) (2.31) (1.55) (1.65)

p = 500 15 0.11 1.89 20 0.14 1.90 68 0.55 2.31
(0.62) (0.10) (1.04) (0.69) (0.09) (0.73) (3.15) (1.29) (1.86)

randomly partition the data set into 6 subsets, consider 5 of them as a training set
and the rest subset as a test set. Then the training set consists of 5/6 observations
and the test set consists of 1/6 observations. We then follow step 3 above to fit
the model with the training set, calculate the prediction mean square error for the
testing set. For every partition, we repeat this process 6 times considering every
subset as a testing set for one time. We then repeat this whole process 400 times,
each time a new partition is made. The results in Table 4 are from 400 random par-
titions. In the table, NP is the average number of probes being selected, RSS is the
average model error, and PE is the average prediction error with standard deviation
in the parentheses. Overall, we can see that adaptive group Lasso performs better
than the group Lasso and the Lasso in terms of model error and prediction error.
Notably, the number of probes selected by the adaptive group Lasso and the group
Lasso are fewer than that selected by the Lasso, yet the model error and prediction
error are smaller. This implies that the effect of genes correlated to the gene TRIM
32 may not be linear. It is important to take into account of the nonlinearity in the
regression model.

5 Concluding remarks

In this paper, we have studied the asymptotic properties of the group Lasso and
the adaptive group Lasso for variable selection and estimation in partially linear
additive models when p is large. Two important conditions required in our results
are that the number of important groups is small and the number of nonparametric
additive components J is not too big relative to the sample size n. While these con-
ditions are often satisfied in applications, there are important settings in which they
are violated. For example, in studies with microarray data as covariate measure-
ments, the number of genes (covariates) is typically much greater than the sample
size, and among those genes, a lot of them may have nonlinear effect on some dis-
ease. It is an interesting topic of future research to identify conditions under which
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the AGL-GPLAM estimator achieves consistent variable selection and estimation
even when p � n and J � n.

Moreover, we have only considered the partially linear additive models which
can be considered as a particular case of a generalized additive model (Hastie and
Tibshirani (1986, 1990)). The adaptive group Lasso can be applied to a regular
generalized additive model and other classes of semiparametric models. However,
more work is needed to understand the properties of this approach in those more
complicated models.

6 Proofs

We first prove the following lemmas.

Lemma 1. Let �Z = n−1Z′Z and ρmin(�Z), ρmax(�Z) be the smallest and
biggest eigenvalues of �Z . Let mn = O(nν) where 0 < ν < 0.5 and h ≡ hn � m−1

n .
Then under conditions (A1) and (A3), with probability converging to one,

c1hn ≤ ρmin(�Z) ≤ ρmax(�Z) ≤ c2hn,

where c1 and c2 are two positive constants and

c∗ ≤ γmin(q
∗) < γmax(q

∗) ≤ c∗ for 1 ≤ m ≤ q∗.

Proof. Let �j = n−1Z′
jZj . By Lemma 6.2 of Zhou, Shen and Wolf (1998), we

have

c3h ≤ ρmin(�j ) ≤ ρmax(�j ) ≤ c4h, j = 1, . . . , J.

Let a = (a′
1, . . . , a

′
J )′, where aj ∈ Rmn . Z = (Z1, . . . ,ZJ ), by Lemma 3 of Stone

(1985),

‖Z1a1 + · · · + ZJ aJ ‖2 ≥ c5(‖Z1a1‖2 + · · · + ‖ZJ aJ ‖2)

for a certain constant c5 > 0. By the triangle inequality,

c5(‖Z1a1‖2 + · · · + ‖ZJ aJ ‖2) ≤ ‖Za‖2 ≤ ‖Z1a1‖2 + · · · + ‖ZJ aJ ‖2.

Therefore,

c2
5(‖Z1a1‖2

2 + · · · + ‖ZJ aj‖2
2) ≤ ‖Za‖2

2 ≤ 2(‖Z1a1‖2
2 + · · · + ‖ZJ aJ ‖2

2).

Since � = n−1Z′Z, it follows that

c2
5(a

′
1�1a1 + · · · + a′

J �J aJ ) ≤ a′�a ≤ 2(a′
1�1a1 + · · · + a′

J �J aJ ).

Therefore,

a′
1�1a1

‖a‖2
2

+ · · · + a′
J �J aJ

‖a‖2
2

≥ ρmin(�1)
‖a1‖2

2

‖a‖2
2

+ · · · + ρmin(�J )
‖aJ ‖2

2

‖a‖2
2

≥ c3h.
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Similarly,

a′
1�1a1

‖a‖2
2

+ · · · + a′
J �J aJ

‖a‖2
2

≤ c4h.

Thus, we have

c2
5c3h ≤ a′�a

a′a
≤ 2c4h.

Since PZ = Z(Z′Z)−1Z′, (I − PZ) is idempotent, then the eigenvalues of (I −
PZ) are 0 or 1 and the rank of (I − PZ) is Jmn. Then there exists a constant q∗,
such that q∗ ≤ q∗

x ,

Jmn ≤ ∑
k∈A

dk for |A| = q∗.

Then from condition (A3), we have

c∗ ≤ γmin(q
∗) < γmax(q

∗) ≤ c∗.

This complete the proof of Lemma 1. �

Lemma 2. Suppose that nonparametric function g satisfies condition (A1). If we
choose mn = O(n1/(2sg+1)), then

‖gn − g‖2 = Op(m
−sg
n ).

Lemma 2 can be obtained from Lemma 9 of Stone (1986). We omit the proof
here. �

Lemma 3. Suppose that conditions (A1), (A3) and (A4) hold. Let Tkj =
n−1/2X′

kj (I −PZ)εn, 1 ≤ k ≤ p, 1 ≤ j ≤ dk . Let Tn = max1≤k≤p,1≤j≤dk
Tkj . Then

E(Tn) = O(γ ∗
n logN).

Proof. Let

s2
nkj = n−1X′

kj (I − PZ)Xkj and s2
n = max

1≤k≤p,1≤j≤dk

snkj .

Conditional on Xkj ’s, Tjk ∼ N(0, s2
nkj ). By the maximal inequality for sub-

Gaussian random variables,

E
(

max
1≤k≤p,1≤j≤dk

|Tij |
)

≤ C1sn

√
logN

for some constant C1 > 0. Since sn ≤ √
γ ∗
n , then E(Tn) = O(

√
γ ∗
n logN). This

completes the proof of Lemma 3. �
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Lemma 4. Suppose that conditions (A1), (A3) and (A4) hold. Let Gj(t) =
B(t)′(Z′

jZj )
−1Z′

j εn and Uj(t) = B(t)′(Z′
jZj )

−1Z′
jX, j = 1, . . . , J . Then

E(Gj(t)) = O

(√
mn log(Jmn)

n

)
and E(Uj (t)) = O

(√
mnqd∗c∗)

for j = 1, . . . , J .

Proof. Since

‖Gj(t)‖2
2 = ‖B(t)′(Z′

jZj )
−1Z′

j εn‖2
2

from Lemma 6.1 of Zhou, Shen and Wolfe (1998) and Lemma 1,

‖Gj(t)‖2
2 ≤ C2m

−1
n · n−2m2

n‖Z′
j εn‖2

2

for some constant C2 > 0. Similar as the proof of Lemma 3, we have

‖Gj(t)‖2
2 ≤ C2mnn

−2mnnm−1
n log(Jmn) = O

(
mn log(Jmn)

n

)
.

Similar as the proof for Gj(t),

‖Uj(t)‖2
2 ≤ C2mnn

−2‖Z′
jX‖2

2 ≤ C2mnn
−2mnq max

1≤j≤J,1≤k≤mn,1≤i≤q
‖Z′

jkXi‖2
2

≤ C2m
2
nn

−2qd∗ max
1≤j≤J,1≤k≤mn,1≤i≤q,1≤l≤di

|Z′
jkXil|2

≤ C2m
2
nn

−2qd∗n2m−1
n c∗ = O(mnqd∗c∗).

This completes the proof of Lemma 4. �

Proof of Theorem 3.1. The proof of part (i) essentially follows the proof of Wei
and Huang (2010). The only change that must be made here is that we need to
consider the spline approximation error of the regression functions gj ’s.

Specifically, let δn = εn + ρn, where ρn = (ρn1, . . . , ρnn)
′ with ρni =∑J

j=1(gj (Tij ) − gnj (Tij )). Since ‖gj − gnj‖2 = O(n−sg/(2sg+1)) for mn =
n1/(2sg+1), we have

‖ρn‖2 ≤ C3

√
nJ 2m

−2sg
n = C3Jn1/4sg+2

for some constant C3 > 0. For any integer t , let

χm = max|A|=m
max‖UAk

‖2=1,1≤k≤m

δ′
nVA

‖VA‖2
and χ∗

m = max|A|=m
max‖UAk

‖2=1,1≤k≤m

ε′
nVA

‖VA‖2
,

where VA = XA(X′
AXA)−1SA − (I − PA)Xβ , XA = (I − PZ)XA, PA =

XA(X′
AXA)−1

X
′
A for |A| = q1 = m ≥ 0, SA = (S′

A1
, . . . , S′

Am
)′, SAk

= λ
√

dAk
UAk

and ‖UAk
‖ = 1.
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For a sufficiently large constant C4 > 0, define

�m0 = {
(X, εn) : χm ≤ σC4

√
(m ∨ 1)d∗ log(pd∗)

} ∀m ≥ m0,

�∗
m0

= {
(X, εn) : χ∗

m ≤ σC4

√
(m ∨ 1)d∗ log(pd∗)

} ∀m ≥ m0,

where m0 ≥ 0.
As in the proof of Theorem 1 of Wei and Huang (2010),

(X, εn) ∈ �q ⇒ |Ã1| ≤ M1(λn1)q.

By the triangle and Cauchy–Schwarz inequalities,

|δ′
nVA|

‖VA‖2
= |ε′

nVA + ρ′
nVA|

‖VA‖2
≤ |ε′

nVA|
‖VA‖2

+ ‖ρn‖2.

In the proof of Theorem 1 of Wei and Huang (2010), it is shown that P((X, εn) ∈
�∗

0) → 1.
Since

|ρ′
nVA|

‖VA‖2
≤ ‖ρn‖2 ≤ C3Jn1/(4sg+2)

and mn = O(n1/(2sg+1)), then we have for all m ≥ 0 and n sufficiently large,

‖ρn‖2 ≤ C1Jn1/2(2sg+1) ≤ σC4

√
(m ∨ 1)mn log(p).

It follows from that P((X, εn) ∈ �0) → 1.
This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2. Let Y = (I − PZ)Y and X = (I − PZ)X, then by the
definition of β̃n,

‖Y − Xβ̃n‖2
2 + λn1

p∑
k=1

‖β̃nk‖2 ≤ ‖Y − Xβn‖2
2 + λn1

p∑
k=1

‖βnk‖2.

Let A2 = {k :‖βnk‖2 �= 0 or ‖β̃nk‖2 �= 0} and qn2 = |A2|. From part (i), qn2 =
Op(q). By the definition of A2,

‖Y − XA2 β̃nA2‖2
2 + λn1

∑
k∈A2

‖β̃nk‖2 ≤ ‖Y − XA2βnA2‖2
2 + λn1

∑
k∈A2

‖βnk‖2.

Let δn = Y − Xβn = Y − Xβn − Zαn. Write

Y − XA2 β̃nA2 = Y − Xβn − XA2(β̃nA2 − βnA2) = δn − XA2(β̃nA2 − βnA2).

We have

‖Y − XA2 β̃nA2‖2
2 = ‖XA2(β̃nA2 − βnA2)‖2

2 − 2δ′
nXA2(β̃nA2 − βnA2) + δ′

nδn.
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We can rewrite

‖XA2(β̃nA2 − βnA2)‖2
2 − 2δ′

nXA2(β̃nA2 − βnA2)

≤ λn1
∑
k∈A1

‖βnk‖2 − λn1
∑
k∈A1

‖β̃nk‖2.

Now ∣∣∣∣ ∑
k∈A1

‖βnk‖2 − ∑
k∈A1

‖β̃nk‖2

∣∣∣∣ ≤ √|A1| · ‖β̃nA1 − βnA1‖2

≤ √|A2| · ‖β̃nA2 − βnA2‖2.

Let νn = XA2(β̃nA2 − βnA2),

‖νn‖2
2 − 2δ′

nνn ≤ λn1
√|A1| · ‖β̃nA2 − βnA2‖2.

Let δ∗
n = XA2(X

′
A2

XA2)
−1

XA2δn, by the Cauchy–Schwarz inequality,

2|δ′
nνn| ≤ 2‖δ∗

n‖2 · ‖νn‖2 ≤ 2‖δ∗
n‖2

2 + 1

2
‖νn‖2

2.

We have

‖νn‖2
2 ≤ 4‖δ∗

n‖2
2 + 2λn1

√|A1| · ‖β̃nA2 − βnA2‖2.

γ∗(qn2) be the smallest eigenvalue of X
′
A2

XA2/n. Since ‖νn‖2
2 ≥ nγ∗(qn2)‖β̃nA2 −

βnA2‖2
2 and 2ab ≤ a2 + b2,

nγ∗(qn2)‖β̃nA2 − βnA2‖2
2 ≤ 4‖δ∗

n‖2
2 + (2λn1

√|A1|)2

2nγ∗(qn2)

+ 1

2
nγ∗(qn2)‖β̃nA2 − βnA2‖2

2.

It follows that

‖β̃nA2 − βnA2‖2
2 ≤ 8‖δ∗

n‖2
2

nγ∗(qn2)
+ 4λ2

n1|A1|
n2γ 2∗ (qn2)

. (6.1)

Let g(Ti) = ∑J
j=1 gj (Tij ). Write

δi = Yi − XiβnA2 = Yi − XiβnA2 − g(Ti) + g(Ti) − Ziαn = εi + g(Ti) − gn(Ti).

Since ‖gj − gnj‖∞ = O(m
−sg
n ) from Lemma 2, we have

‖δ∗
n‖2

2 ≤ 2‖ε∗
n‖2

2 + O(nJm
−2sg
n ),

where ε∗
n is the projection of εn to the span of XA2 . We have

‖ε∗
n‖2

2 = ‖(X′
A2

XA2)
−1/2

X
′
A2

εn‖2
2 ≤ 1

nγ∗(qn2)
‖XA2εn‖2

2.
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Now

max
A:|A|≤qn2

‖X
′
Aεn‖2

2 = max
A:|A|≤qn2

∑
k∈A

‖X
′
kεn‖2

2

≤ qn2d
∗n max

1≤k≤p,1≤j≤dk

|n−1/2X′
kj (I − PZ)εn|2.

By Lemma 3, we have

max
1≤k≤p,1≤j≤dk

|n−1/2X′
kj (I − PZ)εn|2 = Op((γ ∗

n ) logN).

Then from (6.1), we have

‖β̃nA2 − βnA2‖2
2 = Op

(
qd∗γ̄ logN

nγn∗

)
+ Op

(
Jm

−2sg
n

γn∗

)
+ Op

(
λ2

n1q

n2γ 2
n∗

)
.

The nonparametric component gj ’s at a point t ∈ [a, b] is estimated by

g̃nj (t) =
mn∑

w=1

Bw(t)α̃jw = B ′(t)(Z′
jZj )

−1Z′
j (Y − Xβ̃n).

With probability going to 1,

g̃nj (t) − gj (t) = B ′(t)(Z′
jZj )

−1Z′
j (Y − Xβ̃n) − gj (t)

= B ′(t)(Z′
jZj )

−1Z′
j (Y − Xβn) − gj (t)

− B ′(t)(Z′
jZj )

−1Z′
jX(β̃n − βn)

= B ′(t)(Z′
jZj )

−1Z′
j g(T ) − gj (t)

+ B ′(t)(Z′
jZj )

−1Z′
j εn

− B ′(t)(Z′
jZj )

−1Z′
jX(β̃n − βn)

� In1 + In2 + In3.

Consider ‖g̃nj − gj‖2
T = ∫ [g̃nj (t) − gj (t)]2fT (t) dt . By Lemma 2,

‖In1‖2
T = Op(m

−2sg
n ).

By Lemma 4,

‖In2‖2
2 = Op(mn log(Jmn)/n).

‖In3‖2
2 ≤ ‖B ′(t)(Z′

jZj )
−1Z′

jX‖2
2‖β̃n − βn‖2

2

≤ [Op(mnqd∗c∗)]
[
Op

(
qd∗γ̄ logN

nγn∗

)
+ Op

(
Jm

−2sg
n

γn∗

)
+ Op

(
λ2

n1q

n2γ 2
n∗

)]
.
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To sum up, we have

‖g̃n − g‖2
2

= Op

(
Jm

−2sg
n + Jmn log(Jmn)

n
+ Jmnq

2(d∗)2c∗γ̄ logN

nγn∗

+ J 2m
1−2sg
n qd∗

γn∗
+ Jmnq

2d∗c∗λ2
n1

n2γ 2
n∗

)
.

This complete the proof the Theorem 3.2. �

Proofs of Theorems 3.3 and 3.4. Theorem 3.3 can be obtained directly from
Theorem 3 of Wei and Huang (2010), thus we omit the proof here.

As in the proof of Theorem 3.2, we let δ∗
n1 = XA1(X

′
A1

XA1)
−1

XA1δ, and ε∗
n1 be

the projection of εn to the span of XA1 . We have

‖δ∗
n1‖2

2 ≤ 2‖ε∗
n1‖2

2 + O(nJm
−2sg
n ),

‖ε∗
n1‖2

2 ≤ 1

nγ∗(q)
‖X

′
A1

εn‖2
2 = Op

(
qd∗γ ∗

n log(
∑q

k=1 dk)

γn∗

)
.

Then we get

‖β̂nA1 − βnA1‖2
2 = Op

(
qd∗γ̄ log(

∑q
k=1 dk)

nγn∗

)
+ Op

(
Jm

−2sg
n

γn∗

)
+ Op

(
λ2

n2q

n2γ 2
n∗

)
,

‖g̃n − g‖2
T = Op

(
Jm

−2sg
n + Jmn log(Jmn)

n

+ Jmnq
2(d∗)2c∗γ̄ log(

∑q
k=1 dk)

nγn∗

+ J 2m
1−2sg
n qd∗

γn∗
+ Jmnq

2d∗c∗λ2
n2

n2γ 2
n∗

)
.

This complete the proof the Theorem 3.4. �
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