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Abstract. In this work, we propose a heteroscedastic Von Bertalanffy growth
model considering a multiplicative heteroscedastic dispersion matrix. All es-
timates were obtained using a sampling based approach, which allows infor-
mation to be input beforehand with lower computational effort. Simulations
were carried out in order to verify some frequentist properties of the estima-
tion procedure in the presence of small and moderate sample sizes.

The methodology is illustrated on a real Kubbard female chicken corpo-
real weight dataset.

1 Introduction

Sigmoidal growth models have been widely used for modeling animals and plant
growths. Khamis et al. (2005) presented 12 nonlinear growth models for oil palm
yield growth. Ersoy et al. (2006), established growth curve parameters of American
bronze turkeys. Sengul et al. (2005), used four different nonlinear models to define
growth curves of large white turkeys. Among the S-shaped pattern models which
are used to explain animal and plant growth, we can mention the Brody, Richards,
Gompertz, logistic, Von Bertalanffy, Weibull and Morgan–Mercer–Flodin growth
models. Usually, inferences in the parameter models are based on the classi-
cal approach, which consists of obtaining estimators via least squares or max-
imum likelihood methods in a homoscedastic error asymptotic normal distribu-
tion.

Although assuming that homoscedasticity leads, at least in principle, to a sta-
tistically feasible procedure, the presence of heteroscedasticy in growth datasets is
not uncommon in practice. For instance, consider the dataset consisting of mea-
sures of corporeal weights of 13 Kubbard female chickens, fed on a comercial diet
at the Empresa Brasileira de Pesquisa Agropecuária (Freitas, 2005). In this experi-
ment, the birds were identified by a numbered aluminum ring placed on their right
wing. All birds were weighed weekly for a period of seven weeks. The evalua-
tions were always done at the same time and on the same weekday. The individual
weights of the birds are shown in Table 1 where the weekly bird average weight
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Table 1 Corporeal weights (in grams) with the average weekly bird weights and their standard
deviations

Week

Chicken 1 2 3 4 5 6 7

1 122 291 500 712 1041 1430 1760
2 129 314 551 830 1096 1485 1820
3 133 308 563 857 1085 1422 1660
4 135 348 584 854 1109 1493 1760
5 110 286 556 782 1105 1538 1870
6 130 302 518 740 1009 1337 1630
7 133 336 630 831 1108 1514 1760
8 138 337 618 937 1144 1570 1820
9 153 352 637 830 1052 1464 1820

10 138 332 484 767 1132 1548 1870
11 137 329 576 844 1127 1391 1660
12 133 298 464 670 988 1387 1720
13 142 345 598 844 1172 1570 1860

Average 133.310 321.380 559.920 807.540 1089.850 1473.000 1770.000
S.D. 2.800 6.290 15.390 19.690 14.880 20.880 22.950

and their respective standard deviations are also found. It can be observed that
the weekly standard deviations increase with time. However, fitting one of those
models described above by considering the standard classical approach it can be
assumed that the error terms are identically distributed which is definitely not the
female chicken data case.

Testing for heteroscedasticity in sigmoidal growth models can be conducted
using the Goldfeld-Quandt test (Goldfeld et al., 1965). Recently, Lin and Wei
(2003, 2004) discussed tests for nonconstant variance and/or correlation in the
framework of nonlinear regression models. Cook and Weisberg (1983) discussed a
graphic procedure for checking the assumption of homoscedasticity for the usual
regression model. This procedure consists of plotting the ordinary least squares
residuals against fitted values or an explanatory variable. This procedure can be
also used in the case of sigmoidal growth model. In these cases, there is evidence
that variance depends on the time if the graph has a megaphone shaped pattern.
As we shall see later in the paper, this is the case for the Kubbard female chicken
dataset.

In order to accommodate the presence of heteroscedasticy in growth datasets,
in this paper we propose a heteroscedastic sigmoidal growth model, in which the
deterministic component is given by the Von Bertalanffy model (Von Bertalanffy,
1957). The main idea is to consider a heteroscedastic multiplicative error in the
modelling. The choice of the Von Bertalanffy sigmoidal growth model is partly
based on its interpretative appeal. This model was proposed as a mechanistic model
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for animal growth, considering the difference between the metabolic forces of an-
abolism and catabolism. However, our approach is general and, in principle, may
be extended to other sigmoidal growth models.

The paper is organized as follows. Section 2 presents the model formulation.
The Inferential procedure and model comparison are presented in Section 3. Sec-
tion 4 presents the results of a simulation study performed in order to analyze the
frequentist properties of the estimation procedure based on our resampling scheme,
as well as, to examine the coverage probabilities (CPs) of the asymptotic confi-
dence intervals for the parameters. In Section 5, our methodology is illustrated
on the real female chicken dataset presented above. Final comments in Section 6
conclude the paper.

2 Model formulation

The well-known Von Bertalanffy model is given by (Von Bertalanffy, 1957),

yt = α
(
1 − β exp(−γ t)

)3 + εt , (2.1)

where α is the asymptote of the curve, β determines the intercept, γ determines
the growth rate and ε is a vector n × 1 of i.i.d. normal errors with mean zero and
specified variance–covariance matrix, n is the number of time observation, t , and
yt is the animal averaged weight in time t . Following Lester, Shute and Abrams
(2004) the Von Bertalanffy model is a three parameter sigmoidal growth model
which provides a good description of somatic growth after animal maturity. Its
parameters are simple functions of age at maturity and reproductive investment.

Usually, the inference in the parameters is based on a homoscedastic error term
model. In this case, ε1, ε2, . . . , εn are independent and identically distributed nor-
mal random variables with mean zero and unknown variance σ 2. However, when
there is a need to explain the phenomenon of growth in the presence of hetero-
geneity, a heteroscedastic structure for the error terms in the model should be
introduced.

In this article, we consider the multiplicative heteroscedasticity model discussed
by Harvey (1976). This choice of heteroscedasticity consists of expressing the vari-
ance σ 2 in the form

σ 2
i = σ 2tλ, (2.2)

where λ is an unknown parameter which determines the degree of heteroscedas-
ticity. Although we may express the heteroscedasticity in different ways, the
form (2.2) seems to be a natural choice, since it represents a log-linear relation-
ship between log(σ 2

i ) and log(t), with intercept parameter equals to log(σ 2) and
slope parameter equals to λ. Moreover, in our case, from the practical point of
view, the multiplicative error in the modelling can be empirically justified for
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the Kubbard female chicken dataset as will be pointed out in the application sec-
tion.

Under the conditions stated above, the error terms εi are assumed to be

εi ∼ N(0, σ 2tλ).

3 Inference

Concerning inference, we adopted a full Bayesian approach. The likelihood func-
tion, prior distributions for the parameters in the model, details of the MCMC
algorithm and the model comparison are described in this section.

The likelihood function of θ and σ , where θ = (α,β, γ,λ), given the sample
vectors t = (1,2, . . . , n)′ and y = (y1, y2, . . . , yn)

′ is obtained by the product of
the error density functions, that is,

L(θ , σ |t,y) = (2πσ 2)−n/2
n∏

t=1

t−λ/2

(3.1)

× exp

{
− 1

2σ 2

n∑
t=1

t−λ[
yt − α

(
1 − β exp(−γ t)

)3]2
}
.

The target distribution for inference is the posterior of the parameters of inter-
est α,β, γ,λ and σ . For this, we need to obtain the marginal posterior densities,
which are obtained by integrating the joint posterior density with respect to each
parameter. The posterior distribution is proper considering proper prior distribu-
tion (Ibrahim et al., 2001). However, regardless of the prior distribution chosen,
the joint posterior distribution for the proposed model is analytically intractable.
As an alternative we used one of Markov chain Monte Carlo methods (MCMC),
for example, Gibbs Sampling and the Metropolis–Hastings algorithm (Chib and
Greenberg, 1995).

Although not required for our development, since each parameter of the model
has a direct interpretation in the context of the recurrent event data, available ex-
pert opinions may be expressed in terms of a prior distribution for each parameter
separately. Thus, one approach is to encapsulate expert opinions on the model
parameters α,β, γ,λ and σ , as a set of independent marginal distributions. We as-
sume a prior density given by π(α,β, γ,λ, σ ) = π(α)π(β)π(γ )π(λ)π(σ ). This
is by no means the only approach available in this setting, but it is a natural first
step which has the advantage of simplifying the computation results.

A gamma distribution can be considered for α,β and γ , an inverse-gamma
distribution can be considered for σ 2 and an uniform distribution can be consid-
ered for λ such that π(α) ∝ αa1−1 exp(−b1α), α > 0, π(β) ∝ βa2−1 exp(−b2β),

β > 0, π(γ ) ∝ γ a3−1 exp(−b3γ ), γ > 0, π(σ ) ∝ (σ 2)−(a4+1) exp(−b4/σ
2),

σ 2 > 0, and π(λ) ∝ c, c constant.
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The posterior distribution for the parameter vector, θ = (α,β, γ,λ, σ ), consid-
ering independence among α,β, γ , λ and σ , is given by

π(α,β, γ, σ,λ|t,y)

∝ αa1−1βa2−1γ a3−1(σ 2)−(a4+1+n/2)

(3.2)

× exp(−b1α − b2β − b3γ )

n∏
t=1

t−λ/2

× exp

{
− 1

σ 2

(
b4 + 1

2

n∑
t=1

t−λ[
yt − α

(
1 − β exp(−γ t)

)3]2
)}

,

where a1, b1, a2, b2, a3 and b3 are the hyperparameters for the gamma prior distri-
butions, and a4 and b4 the hyperparameters for the inverse-gamma prior distribu-
tion. Integrating the posterior π(α,β, γ, σ,λ|t,y) with respect to σ we obtain the
joint a posteriori distribution for α,β , γ and λ, given by

π(α,β, γ,λ|t,y)

∝ αa1−1βa2−1γ a3−1
n∏

t=1

t−λ/2 exp(−b1α − b2β − b3γ ) (3.3)

×
(
b4 + 1

2

n∑
t=1

t−λ[
yt − α

(
1 − β exp(−γ t)

)3]2
)−(a4+n/2)

.

The algorithm needs the complete conditional densities of each parameter. The
full conditional distribution of σ 2 is IG(a4 + n

2 , b4 + 1
2

∑n
t=1 t−λ[yt − α(1 −

β exp(−γ t))3]2) which is well known and easy to take samples from. We can
therefore perform Gibbs updates on this. The full conditionals of the parameters
α,β, γ , and λ are given by

π(α|β,γ,λ, t,y)

∝ αa1−1e−b1α

(
b4 + 1

2

n∑
t=1

t−λ[
yt − α

(
1 − β exp(−γ t)

)3]2
)−(a4+n/2)

,

π(β|α,γ,λ, t,y)

∝ βa2−1e−b2β

(
b4 + 1

2

n∑
t=1

[
yt − α

(
1 − β exp(−γ t)

)3]2
)−(a4+n/2)

,

π(γ |α,β,λ, t,y)

∝ γ a3−1e−b3γ

(
b4 + 1

2

n∑
t=1

t−λ[
yt − α

(
1 − β exp(−γ t)

)3]2
)−(a4+n/2)

,
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π(λ|α,β, γ, t,y)

∝
n∏

t=1

t−λ/2

(
b4 + 1

2

n∑
t=1

t−λ[
yt − α

(
1 − β exp(−γ )

)3]2
)−(a4+n/2)

.

These conditional densities do not refer to any known distribution. However,
the Metropolis–Hastings algorithm can generate samples for α,β, γ and λ using
complete conditional distributions of unknown parameters. The steps are described
as follows. We start with θ (0) = (α(0), β(0), γ (0), λ(0)), and generating α̃ from the
prior π(α), described previously, and u from uniform distribution U(0,1). Then,
we make the following comparison, if u ≤ min{1, π(α̃|β(0), γ (0), λ(0),D)/π(α(0)|
β(0), γ (0), λ(0), D)} then we update α(1) by α̃. Otherwise we stay with α(0), that
is, α(1) = α(0). Next we do a similar process to obtain β(0), γ (0) and λ(0), always
updating the starting values. We repeat the algorithm steps until a stationary sample
is obtained.

In order to verify the Metropolis–Hastings algorithm convergence, Geweke
(1992) suggests graphic techniques, while Gelman and Rubin (1992) propose a
statistical criterion, the so-called

√
R̂ statistics, which shall be considered here;√

R̂ statistics value close to 1 indicates convergence of the chain.

4 Coverage probability

A small-scale simulation study was performed in order to analyze the frequentist
properties of the estimation procedure based on our resampling scheme. To ex-
amine the frequentist properties we constructed the credible intervals for all the
parameters and calculated their coverage probabilities (CP). We considered differ-
ent sample sizes, 20,50 and 100, and different degrees of heteroscedasticy, λ = 0
(no heteroscedasticity) λ = 0,5 (weak heteroscedasticity) and λ = 2 (strong het-
eroscedasticity). We assumed the following true parameter values α = 22, β = 0,4
and γ = 1, and without losing generality, the variance σ 2 was assumed to be one.

The hyperparameter values were chosen subjectively, but ensuring non-informa-
tiveness. According to the specified priors in Section 3, we considered a gamma
distribution G(0.001; 0.001), with a mean and variance equal to 1 and 1000 respec-
tively, and an inverse-gamma distribution IG(3,60), which has mean and variance
equal to 30 and 900 respectively. Thus, the use of these distributions express a very
weak knowledge concerning α,β, γ and σ 2.

Overall, nine setups were considered, defined by the different sample sizes and
different λ values. For each setup, we generated 300 data sets (a high computa-
tional time motivated our choice to keep the simulation size fixed at 300). For
each generated sample, we considered two chains of 5500 iterations. The first 500
were ignored to avoid the influence of the first values. The remaining ones were
selected with thinning by 20 to avoid series correlation. The convergence of the
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Table 2 Coverage probabilities of the 95% credibility
intervals for different sample sizes

λ value Sample size 20 50 100

λ = 0 α 0.990 0.977 0.950
β 0.970 0.963 0.967
γ 0.980 0.973 0.967

λ = 0.5 α 0.980 0.970 0.973
β 0.940 0.967 0.967
γ 0.957 0.970 0.977
λ 0.990 0.973 0.973

λ = 2 α 0.970 0.953 0.970
β 0.993 0.977 0.963
γ 0.967 0.970 0.960
λ 0.990 0.980 0.970

chains were monitored using the method proposed by Gelman and Rubin (1992)
and the graphic analysis proposed by Geweke (1992).

In order to obtain the CP of the credibility intervals, for all samples we cal-
culated the parameter 95% credibility intervals and verified if they contained the
true parameter values. The empirical CP results for different sample sizes are sum-
marized in Table 2. The results enable us to conclude that small and moderate
numbers of observations do not harm the empirical CPs.

For the sake of illustration, from the frequentist point of view, large sample in-
ference for the parameters can be based, in principle, on the maximum likelihood
estimates (MLEs) and their estimated standard errors assuming an asymptotic nor-
mal distribution for the MLEs (Cox and Hinkley, 1974), with the MLEs having
been obtained via direct maximization of (3.1) and the estimate of the asymptotic
covariance matrix of (̂θ , σ̂ ) obtained through the inverse of the observed Fisher
information matrix. However, in animal growth studies, it is common to find small
or moderate datasets. In order to check the behavior of the asymptotic theory for
small and moderate size samples, we replicated the small-scale simulation study
performed above to examine the coverage probabilities of the asymptotical confi-
dence intervals for the parameters. Table 3 presents the empirical CPs. The degree
of heteroscedasticy severely affects the CPs by lowering them, particularly in the
presence of small samples, which is the case of the Kubbard female chicken data
considered here. These findings are evidence for the need of a more adequate pro-
cedure for small or moderate sized samples such as the Bayesian approach devel-
oped here. The empirical CPs of the credible intervals obtained via our approach
(Table 2) are very close to the nominal one even in the presence of a small or
moderate number of observations.



78 C. A. R. Diniz, F. Louzada-Neto and L. H. M. Morita

Table 3 Coverage probabilities of the 95% confidence
intervals for different samples sizes

λ value Sample size 20 50 100

λ = 0 α 0.943 0.953 0.933
β 0.927 0.943 0.940
γ 0.927 0.957 0.943

λ = 0.5 α 0.927 0.930 0.957
β 0.727 0.890 0.930
γ 0.830 0.930 0.947
λ 0.777 0.897 0.930

λ = 2 α 0.807 0.923 0.940
β 0.890 0.930 0.937
γ 0.690 0.937 0.953
λ 0.737 0.893 0.920

5 Kubbard female chicken data

In this section our methodology is illustrated on the real female chicken dataset
presented in Section 1. The Von Bertalanffy model in its homoscedastic and het-
eroscedastic versions, were fitted to the data.

Prior distributions were equal to the ones specified in Section 4. We considered
two chains of 5500 iterations. The first 500 were ignored to avoid the influence of
first values. The remaining ones were selected with thinning by 20 to avoid series
correlation. The convergence of the chains were monitored using the method pro-
posed by Gelman and Rubin (1992) and the graphic analysis proposed by Geweke
(1992). All statistics

√
R̂ are close to 1, which indicates the convergence of the

chains.
Table 4 presents the posterior means, together with their 95% asymptotical cred-

ibility intervals, for the asymptote α, the coordinates of the inflection point (XI ,
YI ), the variance σ 2 and the heteroscedasticity parameter λ. The coordinates of the
inflection point (XI , YI ) have an important biological interpretability (Seber and
Wild, 1989). The inflection point is the moment in which the animal switch from
the progressive growth phase to the regressive one, that is, the growth rate begins
to decrease due to many factors which inhibit the growth progressively. As pointed
out in the introduction section we note that the homoscedasticity assumption is not
satisfied for this dataset since the credibility intervals for the heteroscedasticity pa-
rameter λ do not include the zero value. This result is corroborated by the AIC,
BIC and DIC criterion values. These results provide strong evidence in favour of
the heteroscedastic Von Bertalanffy model.

The posterior means of the asymptote α and the coordinates (XI , YI ) are larger
in the model in its homoscedasticity version than in its heteroscedasticity version
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Table 4 The posterior means and 95% credibility intervals (CI), for α, the coordinates of the in-
flection point (XI , YI ), σ 2 and λ. Moreover, the AIC, BIC and DIC criterion values for the model in
its homoscedastic and heteroscedastic versions

λ Parameter Mean 95% CI DIC AIC BIC

λ = 0 α 5940.06 [5939.36; 5940.76] 1007.38 1007.38 1009.64
XI 6.95 [6.87; 7.02]
YI 1760.02 [1759.81; 1760.22]
σ 2 3519.61 [2483.17; 4556.06]

λ �= 0 α 4676.25 [3668.43; 5684.06] 970.99 970.99 973.79
XI 5.81 [4.90; 6.72]
YI 1385.56 [1090.91; 1680.20]
σ 2 152.87 [34.24; 271.51]
λ 2.20 [1.61; 2.79]

(Table 4). Overall, the model in its heteroscedasticity version seems to be appeal-
ing from the practical point of view, while maintaining coherence in the posterior
mean obtained values. If the model in its homoscedastic version is considered, the
chickens should be slaughtered in 6.9 weeks (the coordinate XI in Table 4), while
considering the model in its heteroscedastic version, which is the adequate one,
they may be slaughtered much earlier in 5.8 weeks. This would mean saving time
of approximately 16%. Of course, this comparison is crude, since the homoscedas-
tic Von Bertalanffy model is not the appropriate one for the present example. Fig-
ure 1 shows the sampling corporeal weights for a period of seven weeks, with
the homoscedastic (left panel) and heteroscedastic (right panel) Von Bertalanffy
model fitting the 95% lower and upper limit confidence bounds. Denying the pres-
ence of heteroscedasticity leads to a false impression of a smaller confidence inter-
val amplitude. Furthermore, Figure 2 shows the residuals for the Kubbard female

Figure 1 Left panel: Sample corporeal weights for a period of seven weeks, the homoscedasticity
Von Bertalanffy model fitting (− − −) with the 95% lower and upper limit (− − −) confidence
bounds. Right panel: Sample corporeal weights for a period of seven weeks, the heteroscedastic Von
Bertalanffy model fitting (− − −) with the 95% lower and upper limit (− − −) confidence bounds.
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Figure 2 Kubbard female chicken data—homoscedastic Von Bertalanffy ordinary least squares
residuals against time.

chicken data when the homoscedastic Von Bertalanffy model was fitted to the data.
The megaphone-shaped pattern is a characteristic of a heteroscedastic model. In
fact, this pattern indicates that the variances of the error terms tend to increase as
times x′

is increase, which justify the multiplicative error in the modelling (2.2),
which was assumed here. The Goldfeld-Quandt statistic is F[36,36] = 4.169 with
p-value< 0.000, which is strong evidence in favour of the heteroscedastic hypoth-
esis.

6 Final remarks

In this paper, we presented the known sigmoidal growth model, namely the Von
Bertalanffy model, in its heteroscedastic version by considering a multiplicative
heteroscedastic structure. Parameter estimates are obtained using a sampling based
approach, which allows information to be input beforehand having small compu-
tational effort. The simulation results allow us to conclude that small and mod-
erate numbers of observations do not harm the empirical coverage probabilities
of the credible intervals. We applied the methodology to a real dataset involving
corporeal weights of Kubbard female chickens from which we observed that the
amplitude of the chicken weight credible intervals are affected by the presence
of heteroscedasticity in the data as the age of the chicken increases. However, an
economical advantage comes out by considering it.

Although we focused our study on the Von Bertalanffy model with a multiplica-
tive heteroscedastic structure, our methodology is general and, in principle, may be
extended to other sigmoidal growth models with other heteroscedastic structures.
This would however introduce extra difficulties in the analysis, but needs further
work.
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