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Abstract. The general theory of prediction-based estimating functions for
stochastic process models is reviewed and extended. Particular attention is
given to optimal estimation, asymptotic theory and Gaussian processes. Sev-
eral examples of applications are presented. In particular, partial observation
of a system of stochastic differential equations is discussed. This includes
diffusions observed with measurement errors, integrated diffusions, stochas-
tic volatility models, and hypoelliptic stochastic differential equations. The
Pearson diffusions, for which explicit optimal prediction-based estimating
functions can be found, are briefly presented.

1 Introduction

Prediction-based estimating functions were proposed in Sørensen (2000) as a gen-
eralization of martingale estimating functions. While martingale estimating func-
tions provide a simple and often quite efficient estimation method for Markovian
models (see, e.g., Sørensen (2009, 2011)), they can usually not be applied to non-
Markovian models such as stochastic volatility models, compartment models and
other partially observed systems. The reason is that in most cases it is impossible
to find tractable martingales. The prediction-based estimating functions provide a
useful alternative to the martingale estimating functions for non-Markovian mod-
els.

A prediction-based estimating function is essentially a sum of weighted predic-
tion errors. An estimator is given as the parameter value for which the prediction
errors are small in a particular sense. The methodology is closely related to the
method of prediction error estimation that is used in the stochastic control litera-
ture; see, for example, Ljung and Caines (1979). In the present paper we review
the theory of prediction-based estimating functions developed over the last decade
and extend the theory. In particular, the asymptotic theory is extended, and results
for Gaussian processes are derived.
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In Section 2, general prediction-based estimating functions are presented with
particular emphasis on finite-dimensional predictor-spaces, which is the most use-
ful type in practice. The estimating functions considered in the present paper are
slightly more general than those in the original paper in order to provide more flex-
ibility in applications. Optimal prediction-based estimating functions are derived
in Section 3, and Section 4 presents the asymptotic statistical theory for prediction-
based estimating functions. The asymptotic results presented here are stronger than
those in Sørensen (2000). The theory covers the more general estimating functions
considered in this paper and includes a result on asymptotic uniqueness of the
estimator. A general theory for Gaussian models is presented in Section 5. The
results in this section are new. In Section 6 we briefly present the class of Pear-
son diffusions. This is a versatile class of stochastic differential equation models
for which explicit optimal prediction-based estimating functions can be found. Fi-
nally, a number of applications of the methodology to partially observed systems
of stochastic differential equations are discussed in Section 7. The examples in-
clude diffusion processes observed with measurement errors, sums of diffusion
processes, integrated diffusions, and stochastic volatility models. It is shown how
explicit prediction-based estimating functions can be obtained if Pearson diffu-
sions are used as basic building blocks in these models.

2 Prediction-based estimating functions

Prediction-based estimating functions provide a versatile method for paramet-
ric inference that is applicable to observations Y1, Y2, . . . , Yn from general d-
dimensional stochastic processes. We assume that the data are observations from
a class of stochastic process models parametrized by a p-dimensional parameter
θ ∈ � ⊆ R

p , which we wish to estimate. Expectation under the model with param-
eter θ will be denoted by Eθ(·).

First we give a couple of examples to illustrate the scope of the methodology.

Example 2.1. Let X be a D-dimensional diffusion process given as the solution
to the stochastic differential equation

dXt = b(Xt ; θ) dt + σ(Xt ; θ) dWt, (2.1)

where σ is a D ×D-matrix and W a D-dimensional standard Wiener process. One
type of data is partial observations of the system at discrete time points t1 < t2 <

· · · < tn:

Yi = k(Xti ) + Zi, i = 1, . . . , n, (2.2)

where k is a function with values in R
d , d ≤ D, and where the d-dimensional

measurement errors Zi are independent and identically distributed and indepen-
dent of X. Another type of data is

Yi =
∫ ti

ti−1

k(Xs) ds + Zi, i = 1, . . . , n, (2.3)
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with t0 = 0. In both cases typical examples of the function k are k(x) = x1 or
k(x) = x1 + · · · + xD , where xi denotes the ith coordinate of x. For both types
of data, the observed process is non-Markovian, which makes likelihood inference
complicated and martingale estimating functions infeasible in practice.

An estimating function is a p-dimensional function Gn(θ) that depends on the
parameter, θ , as well as on the observations. The dependence on the data is usu-
ally suppressed in the notation. An estimator is obtained by solving the equation
Gn(θ) = 0 with respect to θ , provided of course that a solution exists (0 denotes
the p-dimensional zero-vector). In the statistics literature the theory of estimat-
ing functions dates back to the papers by Godambe (1960) and Durbin (1960).
A modern survey of the statistical theory of estimating functions can be found in
Heyde (1997). There has been a parallel development in the econometrics litera-
ture, where the foundation was laid in Hansen (1982) and Hansen (1985). A dis-
cussion of links between the econometrics and statistics literature can be found in
Hansen (2000) and Sørensen (2011).

A prediction-based estimating function is essentially a sum of weighted pre-
diction errors, and the idea is to choose as the estimator the parameter value that
eliminates this sum of prediction errors. What is predicted are N real-valued func-
tions of s + 1 consecutive observations (s ≥ 0) and the parameter θ ,

fj (Yi, . . . , Yi−s; θ), j = 1, . . . ,N,

satisfying that

Eθ(fj (Yi, . . . , Yi−s; θ)2) < ∞
for all θ ∈ �. These functions can be chosen freely. When possible, they will be
chosen in such a way that the moments needed to find the best predictor and the op-
timal prediction-based estimating function can be calculated. In general, the func-
tions are allowed to depend on several observations and on the parameter, but in
many cases it is convenient to choose functions that are independent of θ , and often
power functions of a single observation, fj (Yi) = Y

νj

i , νj ∈ N, are sufficient.
The predictors of fj (Yi, . . . , Yi−s; θ) are functions of observations before

time i. Let Hθ
i denote the space of all real-valued functions of the first i observa-

tions, h(Y1, Y2, . . . , Yi), for which Eθ(h(Y1, Y2, . . . , Yi)
2) < ∞. This is a Hilbert-

space with inner product given by

〈h1, h2〉θ = Eθ(h1(Y1, . . . , Yi)h2(Y1, . . . , Yi)) (2.4)

for h1, h2 ∈ Hθ
i . To construct our estimating function, we choose, for each i and j ,

a set of predictors P θ
i−1,j , which is a closed linear subspace of Hθ

i−1. The predictor-
spaces P θ

i−1,j can be chosen freely, but are usually chosen to be finite-dimensional
in order to obtain tractable estimating functions. We shall later consider the case
of finite-dimensional predictor-spaces in detail.
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A general prediction-based estimating function has the form

Gn(θ) =
n∑

i=s+1

N∑
j=1

�
(i−1)
j (θ)

{
fj (Yi, . . . , Yi−s; θ) − π̆

(i−1)
j (θ)

}
. (2.5)

Here �
(i−1)
j (θ) = (π

(i−1)
1,j (θ), . . . , π

(i−1)
p,j (θ))T is a p-dimensional data-dependent

vector (T denotes transposition of matrices and vectors) with coordinates belong-
ing to the predictor-space P θ

i−1,j , and π̆
(i−1)
j (θ) is the minimum mean square

error predictor of fj (Yi, . . . , Yi−s; θ) in P θ
i−1,j . As is well known, the predictor

π̆
(i−1)
j (θ) is the orthogonal projection of fj (Yi, . . . , Yi−s; θ) onto P θ

i−1,j with re-
spect to the inner product (2.4) in Hθ

i . The projection exists and is uniquely deter-
mined by the normal equations

Eθ

(
π

{
fj (Yi, . . . , Yi−s; θ) − π̆

(i−1)
j (θ)

}) = 0 (2.6)

for all π ∈ P θ
i−1,j ; see, for example, Karlin and Taylor (1975). It follows from (2.6)

that the prediction-based estimating function (2.5) is an unbiased estimating func-
tion, that is, that

Eθ(Gn(θ)) = 0 (2.7)

for all θ ∈ �. This ensures, under additional regularity conditions given in Sec-
tion 4, that a consistent estimator can be obtained by solving the estimating equa-
tion Gn(θ) = 0.

Example 2.2. If we choose as our predictor-space the space of all functions
h(Y1, Y2, . . . , Yi−1) satisfying that Eθ(h(Y1, Y2, . . . , Yi−1)

2) < ∞, that is, if

P θ
i−1,j = Hθ

i−1,

then the minimum mean square error predictor of fj (Yi, . . . , Yi−s; θ) in P θ
i−1,j is

the conditional expectation

π̆
(i−1)
j (θ) = Eθ(fj (Yi, . . . , Yi−s; θ)|Y1, Y2, . . . , Yi−1);

see, for example, Karlin and Taylor (1975). Hence Gn(θ) is a Pθ -martingale with
respect to the filtration generated by the observed process, that is,Gn(θ) is a mar-
tingale estimating function; see Heyde (1997) or Sørensen (2011). Thus the martin-
gale estimating functions form a subclass of the prediction-based estimating func-
tions. Unfortunately it is, for most non-Markovian models, not practically feasible
to calculate the expectations conditionally on the entire past. Therefore martin-
gale estimating functions are mainly useful in the case of Markov processes (with
s = 1), where the conditional expectations depend only on Yi−1.
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The idea behind the prediction-based estimating functions is to use a smaller
and more tractable predictor-space than Hθ

i−1. We can interpret the minimum mean
square error predictor in the smaller space as an approximation to the conditional
expectation of fj (Yi, . . . , Yi−s; θ) given X1, . . . ,Xi−1. Thus a prediction-based
estimating function can be thought of as an approximation to a martingale estimat-
ing function.

Example 2.3. One possibility is that we choose the predictor-space P θ
i−1,j

as the space of all functions h(Yi−1, . . . , Yi−r ) (r ≥ s) which satisfy that
Eθ(h(Yi−1, . . . , Yi−r )

2) < ∞. Then the minimum mean square error predictor of
fj (Yi, . . . , Yi−s; θ) is

π̆
(i−1)
j (θ) = Eθ(fj (Yi, . . . , Yi−s; θ)|Yi−1, . . . , Yi−r ).

This makes good sense if the observed process Y is exponentially ρ-mixing (see
Doukhan (1994) for a definition) because in this case the dependence on the past
decreases quickly. However, except for Gaussian processes and the case r = 1, it
is not practically feasible to calculate expectations conditional on Yi−1, . . . , Yi−r

either.

Example 2.4. Suppose that the observations are one-dimensional and that N = 1
with f (x) = x (j = 1 is suppressed in the notation when N = 1). We assume,
moreover, that the observed process Yi is stationary. We choose the space of pre-
dictors as

P θ
i−1 = {a0 + a1Yi−1 + · · · + aqi

Yi−qi
|aj ∈ R, j = 0,1, . . . , qi},

where qi ≤ i − 1, and i = 2,3, . . . . Define P θ
0 = R, the space of constant predic-

tors.
Let C(i−1)(θ) denote the covariance matrix of the stochastic vector Z(i−1) =

(Yi−1, . . . , Yi−qi
)T , and define the vector of covariances

b(i−1)(θ) = (Covθ (Yi, Yi−1), . . . ,Covθ (Yi, Yi−qi
))T .

Here and later Covθ denotes the covariance under the model with parameter
value θ . By solving the normal equations (2.6) we find that the minimum mean
square error predictor is given by

π̆ (i−1)(θ) = ă
(i−1)
0 (θ) + ă(i−1)(θ)T Z(i−1),

where ă(i−1)(θ) is the qi -dimensional vector given by

ă(i−1)(θ) = C(i−1)(θ)−1b(i−1)(θ),

and where

ă
(i−1)
0 (θ) = Eθ(Y1)

{
1 − (

ă(i−1)(θ)1 + · · · + ă(i−1)(θ)qi

)}
.
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Natural choices for the dimension of the predictor-spaces are qi = i − 1 or qi =
min(i − 1, q) for some fixed q ≥ 1. The latter choice is a natural simplification
when the observed process Y is exponentially ρ-mixing, because in this case the
coefficients ă(i−1)(θ)k will decrease exponentially to zero as k increases, that is,
the dependence on observations in the far past is negligible. Therefore it is enough
to use a bounded number of lagged values of the observed process.

2.1 Finite-dimensional predictor-spaces

To obtain estimators that can relatively easily be calculated in practice, we will now
consider predictor-spaces, P θ

i−1,j , that are finite-dimensional. A simple example
of this was given in Example 2.4. In the rest of this section we assume that the
observed process Yi is stationary. Finite-dimensional predictor-spaces can also be
used for nonstationary processes, but this is computationally more complicated
because the coefficients of the minimum mean square error predictors will be time
dependent.

Let hjk, j = 1, . . . ,N, k = 0, . . . , qj , be functions from R
r into R (r ≥ s), and

define for i ≥ r + 1

Z
(i−1)
jk = hjk(Yi−1, Yi−2, . . . , Yi−r ).

We assume that Eθ((Z
(i−1)
jk )2) < ∞ for all θ ∈ �, and let Pi−1,j denote the sub-

space of Hθ
i−1 spanned by Z

(i−1)
j0 , . . . ,Z

(i−1)
jqj

. Note that Pi−1,j does not depend
on θ . We set hj0 = 1 and make the following natural assumption.

Condition 2.5. The functions hj0, . . . , hjqj
are linearly independent.

We write the elements of Pi−1,j in the form aT Z
(i−1)
j , where aT = (a0, . . . , aqj

)

and

Z
(i−1)
j = (

Z
(i−1)
j0 , . . . ,Z

(i−1)
jqj

)T
are (qj + 1)-dimensional vectors. With this specification of the predictor-spaces,
the predictors are defined for i ≥ r + 1 only, so the estimating function can only
include terms with i ≥ r + 1:

Gn(θ) =
n∑

i=r+1

N∑
j=1

�
(i−1)
j (θ)

[
fj (Yi, . . . , Yi−s; θ) − π̆

(i−1)
j (θ)

]
. (2.8)

The minimum mean square error predictor, π̆
(i−1)
j (θ), is found by solv-

ing the normal equations (2.6). Define Cj(θ) as the covariance matrix of

(Z
(r)
j1 , . . . ,Z

(r)
jqj

)T under Pθ , and bj (θ) as the vector for which the kth coordinate
is

bj (θ)k = Covθ

(
Z

(r)
jk , fj (Yr+1, . . . , Yr+1−s; θ)

)
, (2.9)
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k = 1, . . . , qj . Then we have

π̆
(i−1)
j (θ) = ăj (θ)T Z

(i−1)
j , (2.10)

where ăj (θ)T = (ăj0(θ), ăj∗(θ)T ) with

ăj∗(θ) = Cj(θ)−1bj (θ) (2.11)

and

ăj0(θ) = Eθ(fj (Ys+1, . . . , Y1; θ)) −
qj∑

k=1

ăjk(θ)Eθ

(
Z

(r)
jk

)
. (2.12)

That Cj(θ) is invertible follows from Condition 2.5.
Quite often the vector of coefficients ăj can be found by means of the N -

dimensional Durbin–Levinson algorithm; see Brockwell and Davis (1991, p. 422).
This is the case when the functions fj do not depend on θ , and

Z
(i−1)
j = (1,F T

i−1, . . . ,F
T
i−u)

T (2.13)

for all j and for some fixed u ∈ N. Here the stationary N -dimensional process {Fi}
is defined by

FT
i = (f1(Yi, . . . , Yi−s), . . . , fN(Yi, . . . , Yi−s)), (2.14)

i = s + 1, s + 2, . . . . In this situation r = s + u and qj = q = Nu. The vector of
coefficients ăj∗(θ)T in the minimum mean square error predictor is equal to the
j th row of the N × q-matrix

(	u,1(θ), . . . ,	u,u(θ)), (2.15)

where the N ×N -matrices 	u,k(θ) can be found by running the Durbin–Levinson
algorithm for 
 = 1, . . . , u as described below. The coefficients ăj0 can be found
from (2.12), which here simplifies to⎛

⎜⎝
ă10(θ)

...

ăN0(θ)

⎞
⎟⎠ =

(
IN −

u∑
k=1

	u,k(θ)

)
Eθ(Fs+1), (2.16)

where IN denotes the N × N identity matrix.
Define the N × N matrices of autocovariances

�i(θ) = Eθ(Fs+1F
T
s+1+i ). (2.17)

The stationary process {Yt } can be extended to be defined for time points t ≤ 0,
so that Fi is defined for integers i ≤ s and �i(θ) for i < 0. Generally, �−i (θ) =
�i(θ)T . This can also be taken as the definition of �i(θ) for i < 0. If the process
{Fi} is time-reversible, then �i(θ) is symmetric, so �−i(θ) = �i(θ) for all i ∈ N.
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The Durbin–Levinson algorithm is given by the following iteratively defined
N × N -matrices:

	
,
(θ) = �
−1(θ)Ṽ −1

−1(θ), (2.18)

	̃
,
(θ) = �̃
−1(θ)V −1

−1(θ), (2.19)

	
,k(θ) = 	
−1,k(θ) − 	
,
(θ)	̃
−1,
−k(θ), k = 1, . . . , 
 − 1, (2.20)

	̃
,k(θ) = 	̃
−1,k(θ) − 	̃
,
(θ)	
−1,
−k(θ), k = 1, . . . , 
 − 1, (2.21)

where V0 = Ṽ0 = �0(θ) and �0 = �̃T
0 = �1(θ), and for 
 ∈ N

V
(θ) = �0(θ) − 	
,1(θ)�1(θ)T − · · · − 	
,
(θ)�
(θ)T , (2.22)

Ṽ
(θ) = �0(θ) − 	̃
,1(θ)�1(θ) − · · · − 	̃
,
(θ)�
(θ), (2.23)

�
(θ) = �
+1(θ) − 	
,1(θ)�
(θ) − · · · − 	
,
(θ)�1(θ), (2.24)

�̃
(θ) = �
+1(θ)T − 	̃
,1(θ)�
(θ)T − · · · − 	̃
,
(θ)�1(θ)T . (2.25)

The Durbin–Levinson algorithm requires that the autocovariances �i(θ) are
available. In general, these quantities must be determined by simulation. However,
for the class of prediction-based estimating functions presented in the following
example, the autocovariances can be calculated explicitly for a number of very
useful models, including those presented in Section 6.

Example 2.6. An important particular case when d = 1 is the class of polynomial
prediction-based estimating functions. For these

fj (y) = yνj , j = 1, . . . ,N,

where νj ∈ N. For each i = r + 1, . . . , n and j = 1, . . . ,N , we let {Z(i−1)
jk |k =

0, . . . , qj } be a subset of {Yκ
i−
|
 = 1, . . . , r, κ = 0, . . . , νj }, where Z

(i−1)
j0 is always

equal to 1. Here we need to assume that Eθ(Y
2ν̄
i ) < ∞ for all θ ∈ �, where ν̄ =

max{ν1, . . . , νN }. To find π̆
(i−1)
j (θ), j = 1, . . . ,N , by means of (2.11) and (2.12)

(or by the Durbin–Levinson algorithm), we must calculate moments of the form

Eθ(Y
κ
1 Y

j
k ), 0 ≤ κ ≤ j ≤ ν̄, k = 1, . . . , r + 1. (2.26)

Suppose the observed process Y is exponentially ρ-mixing; see Doukhan (1994)
for a definition. Then constants K > 0 and λ > 0 exist such that |Covθ (Y

κ
1 , Y

j
k )| ≤

Ke−λk . Therefore a small value of r can usually be used.
In many situations it is reasonable to choose N = 2, ν1 = 1 and ν2 = 2

with the following simple predictor sets where q1 = q2 = 2r . For j = 1,2, the

predictor-spaces are spanned by Z
(i−1)
j0 = 1, Z

(i−1)
jk = Yi−k , k = 1, . . . , r , and

Z
(i−1)
jk = Y 2

i+r−k , k = r + 1, . . . ,2r . As explained above, the minimum mean
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square error predictors of Yi and Y 2
i can in this case be found by applying the

two-dimensional Durbin–Levinson algorithm to the process Fi = (Yi, Y
2
i )T . How-

ever, it might also be of relevance to include in the predictor terms of the form
Yi−kYi−k−
 for a number of lags 
.

3 Optimal estimating functions

A main issue in the theory of estimating functions is to find the optimal element
in a class of estimating functions. A detailed exposition can be found in Heyde
(1997), and a short review is given in Sørensen (2011). The optimal element in
a class of estimating functions is the one that is closest to the score function (the
vector of partial derivatives of the log-likelihood function) in a mean-square sense.
If the estimators obtained from the estimating functions in the class are asymptot-
ically normal, then the optimal estimating function is the one for which the cor-
responding estimator has the smallest asymptotic variance. Conditions ensuring
asymptotic normality are given in the next section.

In this section we find the optimal estimating function in a class of prediction-
based estimating functions with finite-dimensional predictor-spaces P θ

ij . This is
the type of estimating functions presented in Section 2.1. As there, we assume that
the observed process Yi is stationary.

First we introduce a more compact notation. The 
th coordinate of the p-
dimensional vector �

(i−1)
j (θ) in (2.8) can be written as

π
(i−1)

,j (θ) =

qj∑
k=0

a
jk(θ)Z
(i−1)
jk , 
 = 1, . . . , p.

With this notation, (2.8) can be written in the form

Gn(θ) = A(θ)

n∑
i=r+1

H(i)(θ), (3.1)

where

A(θ) =
⎛
⎜⎝

a110(θ) · · · a11q1(θ) · · · · · · a1N0(θ) · · · a1NqN
(θ)

...
...

...
...

ap10(θ) · · · ap1q1(θ) · · · · · · apN0(θ) · · · apNqN
(θ)

⎞
⎟⎠

and

H(i)(θ) = Z(i−1)(F (Yi, . . . , Yi−s; θ) − π̆ (i−1)(θ)) (3.2)

with F = (f1, . . . , fN)T , π̆ (i−1)(θ) = (π̆
(i−1)
1 (θ), . . . , π̆

(i−1)
N (θ))T and

Z(i−1) =

⎛
⎜⎜⎜⎜⎜⎝

Z
(i−1)
1 0q1+1 · · · 0q1+1

0q2+1 Z
(i−1)
2 · · · 0q2+1

...
...

...

0qN+1 0qN+1 · · · Z
(i−1)
N

⎞
⎟⎟⎟⎟⎟⎠ . (3.3)
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Here 0qj+1 denotes the (qj + 1)-dimensional zero-vector. When we have chosen
the functions fj and the predictor-spaces, the quantities H(i)(θ) are completely
determined, whereas we are free to choose the matrix A(θ) in an optimal way, that
is, such that the asymptotic covariance matrix of the estimators is minimized.

We can slightly more explicitly write

Gn(θ) = A(θ)

n∑
i=r+1

(
Z(i−1)F (Yi, . . . , Yi−s; θ) − Z(i−1)(Z(i−1))T ă(θ)

)
,

where

ă(θ) = (ă10(θ), . . . , ă1q1(θ), . . . , ăN0(θ), . . . , ăNqN
(θ))T . (3.4)

The quantities ăjk define the minimum mean square error predictors; cf. (2.10).

Condition 3.1. (1) The coordinates of F(y1, . . . , ys+1; θ) and ă(θ) are continu-
ously differentiable functions of θ .

(2) p ≤ p̄ = N + q1 + · · · + qN .
(3) The p̄ × p-matrix ∂θT ᾰ(θ) has rank p.
(4) The functions 1, f1, . . . , fN are linearly independent (for fixed θ ) on the

support of the conditional distribution of (Yr+1, . . . , Yr+1−s) given (Yr , . . . , Y1).
(5) The p̄ × p-matrix

U(θ)T = Eθ

(
Z(r) ∂θT F (Yr+1, . . . , Yr+1−s; θ)

)
(3.5)

exists.

Proposition 3.2. Suppose Condition 3.1 is satisfied for all θ ∈ �. Then the Go-
dambe optimal estimating function in the class of estimating functions of the
form (3.1) is given by

G∗
n(θ) = A∗

n(θ)

n∑
i=r+1

Z(i−1)(F(Yi, . . . , Yi−s; θ) − π̆ (i−1)(θ)
)
, (3.6)

where

A∗
n(θ) = S(θ)M̄n(θ)−1. (3.7)

Here

S(θ) = U(θ) − ∂θ ă(θ)T D(θ) (3.8)

with D(θ) denoting the p̄ × p̄-matrix

D(θ) = Eθ

(
Z(r)(Z(r))T )

, (3.9)
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and

M̄n(θ) = Eθ

(
H(r+1)(θ)H (r+1)(θ)T

)

+
n−r−1∑
k=1

(n − r − k)

(n − r)

{
Eθ

(
H(r+1)(θ)H (r+1+k)(θ)T

)
(3.10)

+ Eθ

(
H(r+1+k)(θ)H(r+1)(θ)T

)}
.

When the function F does not depend on θ , the expression for A∗
n(θ) simplifies

slightly as in this case U(θ) = 0.

Proof of Proposition 3.2. By Theorem 2.1 in Heyde (1997), G∗ is optimal if and
only if

Eθ(∂θT Gn(θ))−1Eθ(Gn(θ)G∗
n(θ)T ) = Eθ(∂θT G∗

n(θ))−1Eθ(G
∗
n(θ)G∗

n(θ)T )

for all G of the form (3.1), which is the case when

Eθ(Gn(θ)G∗
n(θ)T ) = Eθ(∂θT Gn(θ))

for all G of the form (3.1). This equation obviously holds when A∗
n(θ) is given

by (3.7), because

Eθ (Gn(θ)G∗
n(θ)T ) = (n − r)A(θ)M̄n(θ)A∗

n(θ)T

and

Eθ(∂θT Gn(θ)) = (n − r)A(θ)[U(θ)T − D(θ) ∂θT ă(θ)].
The matrix M̄n(θ), which is the covariance matrix of

√
n − rHn(θ) under the prob-

ability measure Pθ , where

Hn(θ) = (n − r)−1
n∑

i=r+1

H(i)(θ), (3.11)

is invertible under Condition 3.1(4); see Sørensen (2000). �

If the process Y is sufficiently mixing, then the matrix M̄n(θ) converges by the
ergodic theorem to a matrix M(θ) as n → ∞; see Section 4. The matrix M(θ) is
given by (4.2). The asymptotic covariance matrix of the prediction-based estimator
does not depend on whether we use the weight matrix given by (3.7) or the one
given by by

A∗(θ) = S(θ)M(θ)−1. (3.12)

Both estimators are optimal, and they are usually almost identical. In practice
the matrices M̄n(θ) and M(θ) can often most easily be calculated by simulating
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√
n − rHn(θ) a large number of times under Pθ and then calculating the empir-

ical covariance matrix. Alternatively, M(θ) can be calculated by truncating the
series (4.2), and M̄n(θ) by including only the significant terms in the sum (3.10).
If the observed process is geometrically ρ-mixing, the terms in both formulae will
decrease rapidly to zero.

The matrix (3.7) or (3.12) is the computationally most demanding part of the op-
timal prediction-based estimating function. The time used to calculate the optimal
estimator can therefore be reduced very considerably if A∗

n(θ) or A∗(θ) is calcu-
lated for one parameter value only. This can be achieved by replacing A∗(θ) by
A∗(θ̃n) (or A∗

n(θ) by A∗
n(θ̃n)), where θ̃n is a consistent estimator. Under the Con-

ditions 4.1 and 4.2, the estimating function obtained by this simplification gives
an estimator with the same asymptotic variance as the original optimal estimating
function. A consistent estimator can, for instance, be obtained from the estimating
function that we get by using only p coordinates of Hn(θ) (without a weight ma-
trix). This is possible because p̄ ≥ p. Under the Conditions 4.1 and 4.2, this sim-
ple estimating function gives a consistent estimator. Note that in this case Condi-
tion 4.2(3) is automatically satisfied because here An(θ) equals the p-dimensional
identity matrix.

Example 3.3. Consider again the polynomial prediction-based estimating func-
tions discussed in Example 2.6. In order to calculate (3.10), we need mixed mo-
ments of the form

Eθ [Y k1
t1

Y
k2
t2

Y
k3
t3

Y
k4
t4

] (3.13)

for 1 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ r +1 and k1 +k2 +k3 +k4 ≤ 4ν̄, where ki, i = 1, . . . ,4,
are nonnegative integers.

For prediction-based estimating functions where the fj ’s do not depend on θ

and the predictor-space is given by (2.13) and (2.14), the derivatives ∂θ ăjk(θ),
j = 1, . . . ,N , k = 1, . . . , q , in (3.4) can be found from the autocovariance matri-
ces (2.17) and their derivatives with respect to θ by the following algorithm that is
obtained by differentiating the Durbin–Levinson algorithm given by (2.18)–(2.25)
with respect to θi for every i = 1, . . . , p. The vector ∂θi

ăj∗(θ)T is the j th row of
the matrix

(∂θi
	u,1(θ), . . . , ∂θi

	u,u(θ)),

where ∂θi
	u,k(θ) is obtained by the following algorithm:

∂θi
	
,
(θ) = ∂θi

�
−1(θ)Ṽ −1

−1(θ) + �
−1(θ)W̃
−1(θ),

∂θi
	̃
,
(θ) = ∂θi

�̃
−1(θ)V −1

−1(θ) + �̃
−1(θ)W
−1(θ)

and for k = 1, . . . , 
 − 1

∂θi
	
,k(θ) = ∂θi

	
−1,k(θ) − ∂θi
	
,
(θ)	̃
−1,
−k(θ) − 	
,
(θ) ∂θi

	̃
−1,
−k(θ),

∂θi
	̃
,k(θ) = ∂θi

	̃
−1,k(θ) − ∂θi
	̃
,
(θ)	
−1,
−k(θ) − 	̃
,
(θ) ∂θi

	
−1,
−k(θ),
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where

W
(θ) = −V
(θ)−1 ∂θi
V
(θ)V
(θ)−1,

W̃
(θ) = −Ṽ
(θ)−1 ∂θi
Ṽ
(θ)Ṽ
(θ)−1,

V0 = Ṽ0 = �0(θ) and �0 = �̃T
0 = �1(θ). For 
 ∈ N

∂θi
V
(θ) = ∂θi

�0(θ) − ∂θi
	
,1(θ)�1(θ)T − · · · − ∂θi

	
,
(θ)�
(θ)T

− 	
,1(θ) ∂θi
�1(θ)T − · · · − 	
,
(θ) ∂θi

�
(θ)T ,

∂θi
Ṽ
(θ) = ∂θi

�0(θ) − ∂θi
	̃
,1(θ)�1(θ) − · · · − ∂θi

	̃
,
(θ)�
(θ)

− 	̃
,1(θ) ∂θi
�1(θ) − · · · − 	̃
,
(θ) ∂θi

�
(θ),

∂θi
�
(θ) = ∂θi

�
+1(θ) − ∂θi
	
,1(θ)�
(θ) − · · · − ∂θi

	
,
(θ)�1(θ)

− 	
,1(θ) ∂θi
�
(θ) − · · · − 	
,
(θ) ∂θi

�1(θ),

∂θi
�̃
(θ) = ∂θi

�
+1(θ)T − ∂θi
	̃
,1(θ)�
(θ)T − · · · − ∂θi

	̃
,
(θ)�1(θ)T

− 	̃
,1(θ) ∂θi
�
(θ)T − · · · − 	̃
,
(θ) ∂θi

�1(θ)T .

The matrices 	
,k(θ) and 	̃
,k(θ), k = 1, . . . , 
, are given by (2.18)–(2.21), and
V
(θ), Ṽ
(θ), �
(θ) and �̃
(θ) by (2.22)–(2.25).

4 Asymptotic theory

In this section we give conditions ensuring that a prediction-based estimating func-
tion gives an estimator that is consistent, asymptotically normal, and ultimately
unique. The result is based on general asymptotic statistical theory for stochastic
processes, which is presented in a generality suitable for our purpose in Sørensen
(1999) and Jacod and Sørensen (2011). We give asymptotic results only for esti-
mating functions of the form

Gn(θ) = An(θ)

n∑
i=r+1

H(i)(θ), (4.1)

which is the most useful case in practice. Here An(θ) is a (possibly data-
dependent) p × p̄-matrix (p̄ = q1 + · · · + qN + N ), and H(i)(θ) is given by (3.2).
In this case the conditions for the asymptotic theory are particularly simple.

We assume the following conditions, where θ0 is the true parameter value. We
denote the state space of the observed process Y by Y .

Condition 4.1. (1) The observed process Y is stationary and geometrically α-
mixing.
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(2) There exists a δ > 0 such that

Eθ0(|hjk(Yr, . . . , Y1)fj (Yr+1, . . . , Yr+1−s; θ0)|2+δ) < ∞
and

Eθ0(|hjk(Yr, . . . , Y1)hj
(Yr , . . . , Y1)|2+δ) < ∞
for j = 1, . . . ,N, k, 
 = 0, . . . , qj .

For a definition of the concept of α-mixing, see Doukhan (1994). Condition 4.1
ensures that we can apply a central limit theorem to the estimating function.

Let Q denote the distribution of (Y1, . . . , Ys+1). A function f : Y s+1 × � �→ R

is called locally dominated integrable with respect to Q if for each θ ′ ∈ �

there exists a neighbourhood Uθ ′ of θ ′ and a nonnegative Q-integrable func-
tion hθ ′ : Y s+1 �→ R such that |f (y1, . . . , ys+1; θ)| ≤ hθ ′(y1, . . . , ys+1) for all
(y1, . . . , ys+1, θ) ∈ Y s+1 × Uθ ′ .

Condition 4.2. (1) The components of F(y1, . . . , ys+1; θ), An(θ) and ă(θ), given
by (3.4), are continuously differentiable functions of θ .

(2) The functions ‖∂θfj (y1, . . . , ys+1; θ)‖, j = 1, . . . ,N , are locally domi-
nated integrable with respect to Q.

(3) There exists a nonrandom matrix A(θ) such that for any compact subset
K ⊆ �

An(θ)
Pθ0−→ A(θ), ∂θAn(θ)

Pθ0−→ ∂θA(θ)

uniformly for θ ∈ K as n → ∞.
(4) The matrix

W = A(θ0)S(θ0)
T = A(θ0)

(
U(θ0)

T − D(θ0) ∂θT ă(θ0)
)

has full rank p. The matrices S(θ), U(θ) and D(θ) are given by (3.8), (3.5)
and (3.9).

(5)

A(θ)
(
Eθ0

(
Z(r)F (Yr+1, . . . , Yr+1−s; θ)

) − D(θ0)ă(θ)
) �= 0

for all θ �= θ0.

Theorem 4.3. Assume that the true parameter value θ0 belongs to the interior of
the parameter space �, and that the Conditions 4.1 and 4.2 are satisfied. Then a
consistent estimator θ̂n exists that, with a probability tending to one as n → ∞,
solves the estimating equation Gn(θ̂n) = 0 and is unique in any compact subset
K ⊆ � for which θ0 ∈ intK . Moreover,

√
n(θ̂n − θ0)

D−→ Np(0,W−1A(θ0)M(θ0)A(θ0)
T WT −1

)
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as n → ∞, where

M(θ) = Eθ

(
H(r+1)(θ)H (r+1)(θ)T

)
(4.2)

+
∞∑

k=1

{
Eθ

(
H(r+1)(θ)H (r+1+k)(θ)T

) + Eθ

(
H(r+1+k)(θ)H(r+1)(θ)T

)}
.

Proof. Consider Hn(θ) given by (3.11). Condition 4.2(1) and (2) implies that for
any compact K ⊆ �

sup
θ∈K

‖Hn(θ) − W̃ (θ)‖ Pθ0−→ 0,

sup
θ∈K

‖∂θT Hn(θ) − W̃ ′(θ)‖ Pθ0−→ 0,

where

W̃ (θ) = Eθ0

(
Z(r)F (Yr+1, . . . , Yr+1−s; θ)

) − D(θ0)ă(θ),

W̃ ′(θ) = Eθ0

(
Z(r) ∂θT F (Yr+1, . . . , Yr+1−s; θ)

) − D(θ0) ∂θT ă(θ).

The components of W̃ (θ) and W̃ ′(θ) are continuous functions of θ . Define

W(θ) = ∂θT A(θ)W̃ (θ) + A(θ)W̃ ′(θ).

From the unbiasedness of Gn (cf. (2.7)), we see that W̃ (θ0) = 0, so W(θ0) =
A(θ0)W̃

′(θ0) = W , which is assumed to be an invertible matrix. By using that

‖(n − r)−1 ∂θT Gn(θ) − W(θ)‖
≤ ∥∥(

∂θT An(θ) − ∂θT A(θ)
)((

Hn(θ) − W̃ (θ)
) + W̃ (θ)

)∥∥
+ ∥∥(

An(θ) − A(θ)
)((

∂θT Hn(θ) − W̃ ′(θ)
) + W̃ ′(θ)

)∥∥
+ ∥∥∂θT A(θ)

(
Hn(θ) − W̃ (θ)

)∥∥ + ∥∥A(θ)
(
∂θT Hn(θ) − W̃ ′(θ)

)∥∥,
it follows that there exists a constant C > 0 such that

sup
θ∈K

‖(n − r)−1 ∂θT Gn(θ) − W(θ)‖

≤ C
(

sup
θ∈K

‖∂θT An(θ) − ∂θT A(θ)‖ + sup
θ∈K

‖An(θ) − A(θ)‖

+ sup
θ∈K

‖Hn(θ) − W̃ (θ)‖ + sup
θ∈K

‖∂θT Hn(θ) − W̃ ′(θ)‖
)
,

where the right-hand side goes to zero in probability under Pθ0 as n → ∞. This
together with the observation that

n−1Gn(θ0)
Pθ0−→ A(θ0)W̃ (θ0) = 0
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imply the existence of a consistent estimator that ultimately solves the estimating
equation. For details of this and the following arguments, see Jacod and Sørensen
(2011). The uniqueness of the estimator follows from the fact that by Condi-
tion 4.2(5) the continuous function A(θ)W̃ (θ) (the limit of n−1Gn(θ)) is bounded
away from zero on K \ B for any compact K ⊆ � with θ0 ∈ intK and any open
neighbourhood B of θ0.

Condition 4.1 ensures that the central limit theorem for α-mixing processes can
be applied to the estimating function Gn(θ0) (see Doukhan (1994, Section 1.5)).
Specifically, Condition 4.1 and Condition 4.2(3) imply that

1√
n
Gn(θ0)

D−→ N(0,A(θ0)M(θ0)A(θ0)
T ).

This implies the asymptotic normality of θ̂n by standard arguments. �

For the optimal estimator A(θ) = A∗(θ) = S(θ)M(θ)−1, so

W = S(θ0)M(θ0)
−1S(θ0)

T

and the asymptotic variance simplifies to
√

n(θ̂n − θ0)
D−→ Np(0,W−1).

If the matrix An(θ) does not depend on n, then Condition 4.2(3) is trivially
satisfied. This is, for instance, the case if the asymptotic optimal matrix A∗(θ)

given by (3.12) is used. If An(θ) = A(θ̃n) for some matrix A(θ) independent of n,
for example, A∗(θ), and some consistent estimator θ̃n, then Condition 4.2(3) is
satisfied if A(θ) is a continuous function of θ .

In most applications the functions fj do not depend on θ . If this is the case,
Condition 4.2(2) is trivially satisfied, and U(θ) = 0 in Condition 4.2(4).

Suppose the functions fj do not depend on θ , and that the predictor-space
is given by the natural specification (2.13) and (2.14). Suppose, moreover, that
An(θ) = A(θ̃n) for some consistent estimator θ̃n and some matrix A(θ) indepen-
dent of n. Then Conditions 4.1 and 4.2 are implied by the following simpler con-
dition.

Condition 4.4. (1) The observed process Y is stationary and geometrically α-
mixing.

(2) There exists a δ > 0 such that

Eθ0(|fj (Ys+u+1, . . . , Yu+1)fk(Ys+u+1−v, . . . , Yu+1−v; θ0)|2+δ) < ∞
for j, k = 1, . . . ,N, v = 1, . . . , u.

(3) The components of ă(θ), given by (3.4), are continuously differentiable
functions of θ , and the components of A(θ) are continuous functions of θ .
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(4) The matrix W = −A(θ0)D(θ0) ∂θT ă(θ0) has full rank p. The matrix D(θ)

is given by (3.9).
(5)

A(θ0)
(
Eθ0

(
Z(s+u)F (Ys+u+1, . . . , Yu+1)

) − D(θ0)ă(θ)
) �= 0

for all θ �= θ0.

Similar asymptotic results can be given for general prediction-based estimat-
ing functions, provided that the predictor-spaces are subsets of the space of all
functions h(Yi−1, . . . , Yi−r ) (for a fixed r ≥ s) satisfying that Eθ(h(Yi−1, . . . ,

Yi−r )
2) < ∞. If predictors can depend on all past observations, the situation is

much more complicated, and it is an open question how to prove general asymp-
totic results. The situation is similar to that for hidden Markov models, which is a
particular case.

5 Gaussian models

In this section we consider prediction-based estimating functions when the ob-
served process Y is a one-dimensional stationary and geometrically and α-mixing
Gaussian process. We simplify the exposition by assuming that the expectation
of Yi is zero. The following theory can easily be modified to cover the case of a
nonzero mean.

The distribution of Y is determined by the autocovariances

Ki(θ) = Eθ(Y1Y1+i ), i ∈ N0, (5.1)

which depend on the p-dimensional parameter θ ∈ �. We define K−i(θ) =
Ki(θ) for all i ∈ N. A natural estimator is obtained by maximizing the pseudo-
likelihood function defined as the product of the conditional densities of Yi given
Yi−1, . . . , Yi−s for i = s + 1, . . . , n. Here s will typically be relatively small. This
pseudo-likelihood function was proposed by Sørensen (2003) in connection with
stochastic volatility models, but the idea is more widely applicable. To calculate
the pseudo-likelihood function, we define the s-dimensional vector

κ(θ) = (K1(θ), . . . ,Ks(θ))T

and the s × s-matrix

K(θ) = {Ki−j (θ)}i,j=1,...,s .

The matrix K(θ) is the covariance matrix of the vector of the s consecutive ob-
servations, for instance (Y1, . . . , Ys). We will make the very weak assumption that
K(θ) is invertible. The conditional distribution of the observation Yi given the s

previous observations Yi−s, . . . , Yi−1 is the normal distribution with expectation



Prediction-based estimating functions 379

φ(θ)T Yi−1:i−s and variance v(θ), where Yi:j = (Yi, . . . , Yj )
T , i > j ≥ 1, φ(θ) is

the s-dimensional vector given by

φ(θ) = K(θ)−1κ(θ),

and

v(θ) = K0(θ) − κ(θ)T K(θ)−1κ(θ).

The vector φ(θ) and the conditional variance v(θ) can be found by means of
the Durbin–Levinson algorithm; see Section 2.

The pseudo-likelihood is given by

Ln(θ) =
n∏

i=s+1

[
1√

2πv(θ)
exp

(
− 1

2v(θ)

(
Yi − φ(θ)T Yi−1:i−s

)2
)]

. (5.2)

If we assume that the autocovariances Kθ(i), i = 0,1, . . . , are continuously
differentiable with respect to θ , we obtain the pseudo-score function as the vector
of partial derivatives of logLn(θ) with respect to the coordinates of θ :

G◦
n(θ) = ∂θ logLn(θ)

=
n∑

i=s+1

{
∂θφ(θ)T Yi−1:i−s

v(θ)

(
Yi − φ(θ)T Yi−1:i−s

)
(5.3)

+ ∂θv(θ)

2v(θ)2

n∑
i=s+1

[(
Yi − φ(θ)T Yi−1:i−s

)2 − v(θ)
]}

.

The derivatives ∂θφ(θ) and ∂θv(θ) can be found from the autocovariances
Ki(θ) and their derivatives with respect to θ by the algorithm that is obtained
by differentiating the Durbin–Levinson algorithm; see Section 3.

The minimum mean square error linear predictors of Yi and (Yi − φ(θ)T ×
Yi−1:i−s)

2 given Yi−1:i−s are φ(θ)T Yi−1:i−s and v(θ), respectively. This is because
for Gaussian processes the two conditional expectations are linear in Yi−1:i−s .
Hence the pseudo-score function (5.3) is a prediction-based estimating function.
Specifically, it is of the form

Gn(θ) = A(θ)

n∑
i=s+1

H(i)(θ),

where A(θ) is a p × (s + 1)-matrix of weights that can depend on the parameter,
but not on the data, and

H(i)(θ) = Z(i)

(
Yi − φ(θ)T Yi−1:i−s(

Yi − φ(θ)T Yi−1:i−s

)2 − v(θ)

)

with

Z(i) =
(

YT
i−1:i−s 0
0 · · ·0 1

)T

,
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i = s + 1, . . . , n. The pseudo-score, G◦
n(θ), is obtained if the weight matrix A(θ)

is chosen as

Ã(θ) =
(

∂θφ(θ)T

v(θ)
,
∂θv(θ)

2v(θ)2

)
.

The asymptotic optimal weight matrix is given by

A∗(θ) = S(θ)M(θ)−1,

where the matrix M(θ) is given by (4.2) with r = s, and

S(θ)T = Eθ

(
∂θT H (i)(θ)

) = −
( K(θ) ∂θT φ(θ)

∂θT v(θ)

)
.

In the expression for M(θ) the first term is given by

M(1)(θ) = Eθ

(
H(s+1)(θ)H (s+1)(θ)T

) =
(

v(θ)K(θ) Os,1

O1,s 2v(θ)2

)

with Oj1,j2 denoting the j1 × j2-matrix of zeros. The optimal matrix A∗
n(θ) is

given by a similar expression where M(θ) is replaced by the matrix (3.10). The
pseudo-score function, G◦

n(θ), is not equal to the optimal prediction-based esti-
mating function. In fact,

Ã(θ) = −S(θ)M(1)(θ)−1.

The class of estimating functions considered here is not the full class of
prediction-based estimating function to which the pseudo-score (5.3) belongs. The
full class is obtained by replacing A(θ) by a p × 2(s + 1)-matrix and H(i)(θ) by
the 2(s + 1)-dimensional vectors H̆ (i)(θ) obtained when Z(i) is replaced by the
2(s + 1) × 2-matrix

Z̆(i) =
(

YT
i−1:i−s 0 1 O1,s

O1,s 1 0 YT
i−1:i−s

)T

in the definition of H(i)(θ). In this way H(i)(θ) is extended by s + 1 extra co-
ordinates. Using that all moments of an odd order of a centered multivariate nor-
mal distribution equal zero, we see that the extra s + 1 coordinates of H̆ (i)(θ)

have expectation zero under the true probability measure irrespectively of the
value of the parameter θ . Therefore they cannot be expected to be a useful ad-
dition to H(i)(θ). The extra coordinates might, however, be correlated with the
coordinates of H(i)(θ), and might thus be used to reduce the variance of the es-
timating function. To see that this is not the case, the optimal estimating function
based on H̆ (i)(θ) can be calculated. The covariance matrix of the random vec-
tor

∑n
i=s+1 H̆ (i)(θ)/

√
n − s can be shown to be a block-diagonal matrix with two

(s + 1) × (s + 1)-blocks, the first of which equals M̄n(θ) given by (3.10). Here
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we use again that moments of an odd order of a centered multivariate Gaussian
distribution equal zero. Since

Eθ

(
∂θT H̆ (i)(θ)

) = −
⎛
⎝ K(θ) ∂θT φ(θ)

∂θT v(θ)

Os+1,p

⎞
⎠ ,

it follows that the asymptotic optimal weight-matrix in the full class is

Ă∗
n(θ) = (A∗

n(θ) Op,s+1 ) .

Thus the optimal prediction-based estimating function obtained from H̆ (i)(θ)

equals the optimal estimating function obtained from H(i)(θ). It is therefore suffi-
cient to consider the smaller class of prediction-based estimating functions above.

We have generally assumed that the observed process is geometrically α-mixing,
so the Conditions 4.1 and 4.2 ensuring the asymptotic results in Theorem 4.3 are
implied by the following condition:

Condition 5.1. (a) The functions Ki(θ) and A(θ) are twice continuously differen-
tiable with respect to θ .

(b) The p × (s + 1)-matrix (∂θφ
T (θ), ∂θv(θ)) has rank p (in particular,

s + 1 ≥ p).
(c) A(θ)K̄(φ̄(θ0) − φ̄(θ)) = 0 if and only if θ = θ0, where

K̄ =
( K(θ0) Os,1

O1,s 1

)

and

φ̄(θ) =
(

φ(θ)

v(θ) + 2φ(θ)T κ(θ0) − φ(θ)T K(θ0)φ(θ)

)
.

Example 5.2. Consider the stochastic delay differential equation

dYt = −β

(∫ 0

−c
Yt+s ds

)
dt + σ dWt,

where Y is one-dimensional, c > 0, σ > 0. According to Reiß (2002), a stationary
solution exists exactly when 0 < β < 1

2π2/c2. The stationary solution is an ex-
ponentially β-mixing Gaussian process with expectation zero and auto-covariance
function

Kt(θ) = Eθ(Y1, Y1+t ) = σ 2 sin(c
√

2β(1/2 − t))

2c
√

2β cos(c
√

β/2)
+ σ 2

2βc2 ; 0 ≤ t ≤ c,

see Reiß (2002). Küchler and Sørensen (2009) studied prediction-based estimating
functions for more general affine stochastic delay differential equations.
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6 Pearson diffusions

The Pearson diffusions (see Wong (1964) and Forman and Sørensen (2008)) is
a widely applicable class of diffusion models for which explicit expressions are
available for the mixed moments (2.26) and (3.13) needed to calculate polynomial
prediction-based estimating functions.

A Pearson diffusion is a stationary solution to a stochastic differential equation
of the form

dXt = −β(Xt − α)dt +
√

2β(aX2
t + bXt + c) dWt, (6.1)

where β > 0, and a, b and c are such that the square root is well defined when Xt is
in the state space. A list of all possible cases is given below. The parameter β > 0
is a scaling of time that determines how fast the diffusion moves. The parameters
α, a, b and c determine the state space of the diffusion as well as the shape of the
invariant distribution. In particular, α is the expectation of the invariant distribu-
tion. The Pearson diffusions are ergodic and ρ-mixing with exponentially decay-
ing mixing coefficients. This follows from Genon-Catalot, Jeantheau and Laredo
(2000, Theorem 2.6).

The moments of the Pearson diffusions can, when they exist, be found explicitly.
It can be shown that for κ > 1, E(|Xt |κ) < ∞ if and only if a < (κ − 1)−1. Thus
if a ≤ 0 all moments exist, while for a > 0 only the moments satisfying that κ <

a−1 + 1 exist. In particular, the expectation always exists. The moments of the
invariant distribution can be found by the recursion

E(Xn
t ) = a−1

n {bn · E(Xn−1
t ) + cn · E(Xn−2

t )}, n = 2,3, . . . , (6.2)

where

an = n{1 − (n − 1)a}β, bn = n{α + (n − 1)b}β, cn = n(n − 1)cβ

for n = 0,1,2, . . . . The initial conditions are E(X0
t ) = 1 and E(Xt) = α. To see

this, note that by Ito’s formula

dXn
t = −βnXn−1

t (Xt − α)dt + βn(n − 1)Xn−2
t (aX2

t + bXt + c) dt

+ nXn−1
t σ (Xt) dWt,

and use that if E(X2n
t ) is finite, that is, if a < (2n − 1)−1, then the last term is a

martingale with expectation zero.
Explicit formulae for the conditional moments of a Pearson diffusion are given

by

E(Xn
t |X0 = x) =

n∑
k=0

(
n∑


=0

qn,k,
e
−a
t

)
xk, (6.3)
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where qn,k,n = pn,k , qn,n,
 = 0 for 
 ≤ n − 1, and

qn,k,
 = −
n−1∑

j=k∨


pn,j qj,k,


for k, 
 = 0, . . . , n − 1. Here pn,n = 1, pn,n+1 = 0 and {pn,j }j=0,...,n−1, solve the
linear system of equations

(aj − an)pn,j = bj+1pn,j+1 + cj+2pn,j+2.

This equation defines a simple recursive formula if an − aj �= 0 for all j =
0,1, . . . , n − 1. Note that an − aj = 0 if and only if there exists an integer
n−1 ≤ m < 2n−1 such that a = m−1 and j = m−n+1. In particular, an−aj = 0
cannot occur if a < (n − 1)−1, that is, if the nth moment exists. Note also that an

is positive if and only if a < (n − 1)−1. The formula (6.3) can be proved by using
that explicit polynomial eigenfunctions are available for the Pearson diffusions;
for details see Wong (1964) or Forman and Sørensen (2008).

From a modeling point of view, it is important that the class of stationary distri-
butions equals the full Pearson system of distributions. Thus a very wide spectrum
of standard distributions is available as marginal distributions ranging from distri-
butions with compact support to heavy-tailed distributions with tails of the Pareto
type. The density μ of the stationary distribution of the process given by (6.1)
solves the differential equation

μ′(x) = −(2a + 1)x − α + b

ax2 + bx + c
μ(x),

and the Pearson system is defined as the class of probability densities obtained by
solving a differential equation of this form; see Pearson (1895).

The following list of the possible Pearson diffusions shows that all distributions
in the Pearson system can be obtained as invariant distributions for a model in the
class of Pearson diffusions. Note that if Xt solves (6.1), then X̃t = γXt + δ is also
a Pearson diffusion with parameters ã = a, b̃ = bγ − 2aδ, c̃ = cγ 2 − bγ δ + aδ2,
β̃ = β , and α̃ = γα + δ. Up to affine transformations, the Pearson diffusions can
take the following forms.

Case 1: σ 2(x) = 2β . This is the Ornstein–Uhlenbeck process with invariant dis-
tribution equal to the normal distribution with mean α and variance 1.

Case 2: σ 2(x) = 2βx. This is the square root process (CIR process) with state
space (0,∞). For α > 0 the invariant distribution is the gamma distribution with
scale parameter 1 and shape parameter α.

Case 3: a > 0 and σ 2(x) = 2βa(x2 + 1). The state space is the real line. The
solution is ergodic for all a > 0 and all α ∈ R. The invariant density is given by
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μ(x) ∝ (x2 + 1)−1/(2a)−1 exp(α
a

tan−1 x). If α = 0, the invariant distribution is a
scaled t-distribution with ν = 1 + a−1 degrees of freedom and scale parameter
ν−1/2. If α �= 0, the invariant distribution is skew and has tails decaying at the
same rate as the t-distribution with 1 + a−1 degrees of freedom. This distribution
is a skew t-distribution known as Pearson’s type IV distribution. Because of its
skew and heavy tailed marginal distribution, the class of diffusions with α �= 0 is
potentially very useful in many applications, for example, finance. It was studied
and fitted to financial data by Nagahara (1996).

Case 4: a > 0 and σ 2(x) = 2βax2. The state space is (0,∞) and the process
is ergodic if and only if α > 0. The invariant distribution is the inverse gamma
distribution with shape parameter 1 + 1

a
and scale parameter a

α
. This process is

sometimes referred to as the GARCH diffusion model.

Case 5: a > 0 and σ 2(x) = 2βax(x + 1). The state space is (0,∞). For a > 0
and α > 0, the invariant distribution is a scaled F-distribution with 2α

a
and 2

a
+ 2

degrees of freedom and scale parameter α
1+a

.

Case 6: a < 0 and σ 2(x) = 2βax(x − 1). This is a Jacobi diffusion with state
space (0,1). For all a < 0 and all α ∈ (0,1) the invariant distribution is the Beta
distribution with shape parameters α

−a
and 1−α

−a
.

Let X be a Pearson diffusion. If we define a new diffusion by the transformation
Yt = T (Xt), where T is an invertible and twice continuously differentiable real
function, then we can find the moments and conditional moments of T −1(Yt ).
Thus we can find estimating functions based on predictions of powers of T −1(Yt ).
Thus by transformations we obtain a very broad class of diffusions for which we
can calculate prediction-based estimating functions explicitly. We illustrate this
idea by a single example.

Example 6.1. If the transformation, F(x) = log(x/(1 − x)), is applied to the gen-
eral Jacobi diffusion (Case 6), then we obtain a process that, by Ito’s formula,
solves the equation

dYt = −β{1 − 2α + (1 − α)eYt − αe−Yt − 16a cosh4(Yt/2)}dt

+ 2
√

−2aβ cosh(Yt/2) dWt .

This is a diffusion for which the invariant distribution is the generalized logistic
distribution with density

f (x) = eκ1x

(1 + ex)κ1+κ2B(κ1, κ2)
, x ∈ R,

where κ1 = −(1 − α)/a, κ2 = −α/a and B denotes the Beta-function. This dis-
tribution was introduced and studied in Barndorff-Nielsen, Kent and Sørensen
(1982).
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7 Partially observed systems of stochastic differential equations

Let the D-dimensional process X be the solution to the stochastic differential
equation (2.1), where, as usual, the parameter θ varies in a subset � of R

p . We
assume that X is stationary. In this section we will consider a number of examples,
where X is not observed directly, but where we have observations of the form (2.2)
or (2.3).

7.1 Discrete time observations with measurement errors

First we consider observations of the type (2.2), where k is real valued, that is,
d = 1. Let us find a polynomial prediction-based estimating function of the type
considered in Example 2.6. To find the minimum mean square error predictor, we
must find mixed moments of the form (2.26). By the binomial formula,

Eθ(Y
k1
1 Y

k2

 ) = Eθ

((
k(Xt1) + Z1

)k1
(
k(Xt
) + Z


)k2
)

=
k1∑

i1=0

k2∑
i2=0

(
k1
i1

)(
k2
i2

)
Eθ(k(Xt1)

i1k(Xt
)
i2)Eθ (Z

k1−i1
1 )Eθ (Z

k2−i2

 ).

Note that the distribution of the measurement error Zi can depend on com-
ponents of the unknown parameter θ . We need to find the mixed moments
Eθ(k(Xt1)

i1k(Xt2)
i2) (t1 < t2), which can easily be determined by simulation.

Sometimes these mixed moments can be found explicitly. As an example, con-
sider the situation where a Pearson diffusion (see Section 6) has been observed
with measurement errors. In this case k(x) = x, and by (6.3)

Eθ(X
i1
t1
X

i2
t2
) = Eθ(X

i1
t1
Eθ(X

i2
t2
|Xt1))

(7.1)

=
i2∑

k=0

(
i2∑


=0

qi2,k,
e
−λ
(t2−t1)

)
Eθ(X

i1+k
t1

),

where Eθ(X
i1+k
t1

) can be found by (6.2), provided that it exists.
In order to find the optimal polynomial prediction-based estimating function,

we must find the mixed moments of the form (3.13), which can be calculated in a
similar way and for a Pearson diffusion can be found explicitly.

A more complex example is when the coordinates of X are D independent
diffusions given by

dXi,t = −βi(Xi,t − αi) dt + σi(Xi,t ) dWi,t , i = 1, . . . ,D, (7.2)

and where

Yi = X1,ti + · · · + XD,ti + Zi.

The sum

St = X1,t + · · · + XD,t
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is a useful model because its autocorrelation function has D time-scales. Specifi-
cally, the autocorrelation function is

r(t) = φ1 exp(−β1t) + · · · + φD exp(−βDt),

where φi = Var(Xi,t )/(Var(X1,t ) + · · · + Var(XD,t )). An autocorrelation of this
form is often found in observed time series. Examples are financial time series (see
Barndorff-Nielsen and Shephard (2001)) and turbulence (see Barndorff-Nielsen,
Jensen and Sørensen (1990) and Bibby, Skovgaard and Sørensen (2005)).

Again we must find mixed moments of the form (2.26). The measurement errors
can be taken care of as above, so we need to calculate mixed moments of the type
Eθ(S

κ
t1
Sν

t

). By the multinomial formula,

E(Sκ
t1
Sν

t

) = ∑∑ κ!

κ1! · · ·κD!
ν!

ν1! · · ·νD!E(X
κ1
1,t1

X
ν1
1,t


) · · ·E(X
κD

D,t1
X

νD

D,t

),

where the first sum is over 0 ≤ κ1, . . . , κD such that κ1 + · · · + κD = κ , and the
second sum is analogous for the νi ’s. The higher-order mixed moments of the form
(3.13) can be found by using a similar formula with four sums and four multino-
mial coefficients. Such formulae may appear daunting, but are easy to program.
For a Pearson diffusion, mixed moments of the form E(X

κ1
t1

· · ·Xκk
tk

) can be calcu-
lated as explained above.

Example 7.1 (Sum of two skew t-diffusions). Consider a sum of two indepen-
dent diffusions of the form (7.2) with αi = 0 and

σ 2
i (x) = 2βi(ν − 1)−1(

x2 + 2ρ
√

νx + (1 + ρ2)ν
)
,

i = 1,2, where ν > 3. This is one of the Pearson diffusions. The stationary distri-
bution of Xi,t is a skew t-distribution, ρ is the skewness parameter, and for ρ = 0
the stationary distribution is a t-distribution with ν degrees of freedom. To sim-
plify the exposition we consider equidistant observations at time points ti = �i,
and assume that there are no measurement errors, and that the value, r(�), of the
autocorrelation function at time � is known. Then the optimal estimating function
based on predictions of Y 2

i with predictors of the form π(i−1) = a0 + a1Yi−1 is

n∑
i=2

[
Y 2

i − 2(1 + ρ2)ν/(ν − 2) − 4ρ
√

νr(�)Yi−1/(ν − 3)

Yi−1Y
2
i − Yi−12(1 + ρ2)ν/(ν − 2) − 4ρ

√
νr(�)Y 2

i−1/(ν − 3)

]
.

From this we can obtain estimators of ρ and ν. We can estimate r(�) by the value
at time � of the empirical autocorrelation function based on the observations Yi

and insert this value in the expressions for ρ̂ and ν̂. The remaining parameters
can be estimated by fitting the theoretical autocorrelation function to the empirical
autocorrelation functions, or by using an estimating function where more power
functions of the data are predicted.
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7.2 Integrated diffusions

Next we consider observations of the form (2.3), where k is real valued. Again we
will find polynomial prediction-based estimating functions. Measurement errors
can be treated exactly as in the previous subsection, so to simplify the presentation
we will here assume that there is no measurement error.

To find the minimum mean square error predictor, we must find mixed moments
of the form

E(Y
k1
1 Y

k2

 )

=
∫
A

E(k(Xv1) · · ·k(Xvk1
)k(Xu1) · · ·k(Xuk2

)) duk2 · · · du1 dvk1 · · · dv1,

where 1 ≤ 
 and A = [0, t1]k1 × [t
−1, t
]k2 . Thus we need to calculate mixed mo-
ments of the type E(k(Xt1) · · ·k(Xtm)). Such mixed moments can be determined
by simulation. In order to find the optimal polynomial prediction-based estimating
function, we must find the mixed moments of the form (3.13). By a similar argu-
ment such mixed moments can also be expressed as an integral of mixed moments
of the type E(k(Xt1) · · ·k(Xtm)).

If X is a Pearson diffusion and k(x) = x, these mixed moments can be calcu-
lated by a simple iterative formula obtained from (6.3) and (6.2), as explained in
the previous subsection. Moreover, for the Pearson diffusions, E(Xt1 · · ·Xtm) de-
pends on t1, . . . , tm through sums and products of exponential functions; cf. (6.3)
and (7.1). Therefore the integral above can be explicitly calculated, and thus ex-
plicit optimal estimating functions of the type considered in Example 2.6 are avail-
able for observations of integrated Pearson diffusions.

Estimation based on observations that are integrals of a diffusion (D = d = 1,
k(x) = x) with no measurement error was studied by Bollerslev and Wooldridge
(1992), Ditlevsen and Sørensen (2004) and Gloter (2006), while maximum likeli-
hood estimation in the case of measurement errors was studied by Baltazar-Larios
and Sørensen (2010).

An interesting more general case is that of hypoelliptic stochastic differential
equations, where one or more components are not directly affected by the Wiener
process and hence are smooth. If the smooth components are observed at discrete
time points, then we obtain data of the type (2.3). Hypoelliptic stochastic differ-
ential equations are, for instance, used to model molecular dynamics; see, for ex-
ample, Pokern, Stuart and Wiberg (2009). A simple example is the stochastic har-
monic oscillator

dX1,t = −(β1X1,t + β2X2,t ) dt + γ dWt,

dX2,t = X1,t dt,

β1, β2, γ > 0, where the position of the oscillator, X2, is observed at discrete time
points.
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Example 7.2. Consider observations where D = d = 1 and k(x) = x, and where
the diffusion process X is the square root process

dXt = −β(Xt − α)dt + τ
√

Xt dWt, X0 > 0.

We will find a prediction-based estimating function with f1(x) = x and f2(x) = x2

and with predictors given by π
(i−1)
1 = a1,0 + a1,1Yi−1 and π

(i−1)
2 = a2,0. Then the

minimum mean square error predictors are

π̆
(i−1)
1 (Yi−1; θ) = μ

(
1 − a(β)

) + a(β)Yi−1,

π̆
(i−1)
2 (θ) = α2 + ατ 2β−3�−2(e−β� − 1 + β�)

with

a(β) = (1 − e−β�)2

2(β� − 1 + e−β�)
.

The optimal prediction-based estimating function is

n∑
i=1

⎛
⎝ 1

Yi−1

0

⎞
⎠[

Yi − π̆
(i−1)
1 (Yi−1; θ)

] +
n∑

i=1

⎛
⎝ 0

0
1

⎞
⎠[

Y 2
i − π̆

(i−1)
2 (θ)

]
,

from which we obtain the estimators

α̂ = 1

n

n∑
i=1

Yi + a(β̂)Yn − Y1

(n − 1)(1 − a(β̂))
,

n∑
i=2

Yi−1Yi = α̂
(
1 − a(β̂)

) n∑
i=2

Yi−1 + a(β̂)

n∑
i=2

Y 2
i−1,

τ̂ 2 = β̂3�2 ∑n
i=2(Y

2
i − α̂2)

(n − 1)α̂(e−β̂� − 1 + β̂�)
.

The estimators are explicit apart from β̂ , which can easily be found numerically
by solving a nonlinear equation in one variable. For details, see Ditlevsen and
Sørensen (2004).

7.3 Stochastic volatility models

Consider a stochastic volatility model given by

dXt = (κ + βvt ) dt + √
vt dWt ,

where the volatility, vt , is a stochastic process that cannot be observed directly.
If the data are observations of X at the time points �i, i = 0,1,2, . . . , n, then
Yi = Xi� − X(i−1)� can be written in the form

Yi = κ� + βSi + √
SiAi,
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where the Ai ’s are independent, standard normal distributed random variables, and
where

Si =
∫ i�

(i−1)�
vt dt.

In order to find a polynomial prediction-based estimating function of the type
considered in Example 2.6, we must find mixed moments of the form (2.26). We
assume that v and W are independent, so that the sequences {Ai} and {Si} are
independent. By the multinomial formula we find that

E(Y
k1
1 Y

k2
t1

) = ∑
Kk11,...,k23E(S

k12+k13/2
1 S

k22+k23/2
t1

)E(A
k13
1 )E(A

k23
t1

),

where the sum is over all nonnegative integers kij , i = 1,2, j = 1,2,3, such that
ki1 + ki2 + ki3 = ki (i = 1,2), and where

Kk11,...,k23 = k1!
k11!k12!k13!

k2!
k21!k22!k23!(κ�)k·1βk·2

with k·j = k1j + k2j . The moments E(A
ki3
i ) are the well-known moments of the

standard normal distribution. When ki3 is odd, these moments are zero. Thus we
only need to calculate the mixed moments of the form E(S


1
1 S


2
t1

), where 
1 and 
2
are integers. The moments (3.13), which are needed to find the optimal polynomial
prediction-based estimating function, can be obtained in a similar way. To calculate
these, we need mixed moments of the form E(S


1
1 S


2
t1

S

3
t2

S

4
t3

), where 
1, . . . , 
4 are
integers.

If the volatility model is a diffusion process, then Si is an integrated diffusion, so
such mixed moments can be calculated by the methods in Section 7.2. In particular,
they can be calculated explicitly if the volatility process is a Pearson diffusion.
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