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Abstract. We develop a design-based prediction approach to estimate the fi-
nite population mean in a simple setting where some responses are missing.
The approach is based on indicator sampling random variables that operate
on labeled units (subjects). We define missing data mechanisms that may de-
pend on a subject, or on a selection (such as when the study design assigns
groups of selected subjects to different interviewers). Using an approach usu-
ally reserved for model-based inference, we develop a predictor that equals
the sample total divided by the expected sample size. The methods are based
on best linear unbiased prediction in finite population mixed models. When
the probability of missing is estimated from the sample, the empirical estima-
tor simplifies to the mean of the realized nonmissing responses. The different
missing data mechanisms are revealed by the notation that accounts for the
labels and sample selections. The mean squared error (MSE) of the empiri-
cal estimator, counterintuitively, is smaller than the MSE if the probability of
missing is known.

1 Introduction

Statistical analysis in the presence of incomplete or missing data is a pervasive
problem in sample surveys. A simple example illustrates the problem. Suppose that
a voter opinion poll is conducted via a simple random telephone sample selected
from a list of registered voters. Although a sample of size n is selected, response
will most likely be obtained on n1 < n selected subjects. Some of the registered
voters will have answering machines and screen calls, resulting in nonresponse.
In addition, poor interviewing skills by some interviewers may result in refusals
for other contacted subjects. The first type of nonresponse depends on the subject,
while the second type of nonresponse depends on the interviewer.

In the simplest setting, the probability of nonresponse will be unrelated to the
actual voter preference of the subject. If this is true, the missing responses are
called missing completely at random (MCAR) (Little, 1987). For example, if the
proportion of registered voters who screen calls among those who would vote for
a candidate is the same for all candidates, then the missing responses are MCAR.
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Also, if the proportion of refusals that result from poor interviewer skills is the
same for voters of all candidates, the missing responses are MCAR. MCAR is the
simplest kind of nonresponse assumption and it is often assumed as a starting point
in an analysis, as we do here.

How should one estimate the voter preference for a candidate when response
for some of the selected sample subjects is missing? An intuitive estimator is the
simple proportion (i.e., mean) of the n1 responding subjects who would vote for
the candidate. This is the estimator described by Cochran (1977). Although intu-
ition is a good guide in selecting this estimator, its statistical properties are difficult
to derive, since the denominator is a random variable. A way around this compli-
cation is to condition on the observed sample size, n1. Oh and Scheuren (1983)
and Rao (1985) have used this approach to show that the estimator is unbiased.
The conditional approach, however, draws into question the role of the underly-
ing sampling scheme in statistical inference. We examine this simple problem and
show how explicit specification of sampling indicator random variables will re-
sult in a probability model familiar to other problems. Straightforward application
of prediction methods gives rise to a predictor that depends on the probability of
missing response, which, when replaced by the sample estimate, reduces to the
mean of the observed responses.

We define a finite population as a collection of a known number, N , of identi-
fiable subjects labeled s = 1,2, . . . ,N . Associated with subject s is response ys ,
which we assume is potentially observable without error. In the voting preference
survey, ys corresponds to an indicator that assumes a value of one if subject s will
vote for the incumbent, and zero otherwise, and the assumption of no response
error corresponds to each subject having no uncertainty as to their vote. We sum-
marize the set of population values in the vector y = (y1, . . . , yN)′ and assume that
there is interest in a p × 1 vector of parameters of the form β = Gy where G is
a matrix of known constants. Attention is limited to a single parameter, the popu-
lation mean, given by β = μ = 1

N

∑N
s=1 ys , that is, by taking G = g′ = 1

N
1′
N and

define the population variance as N−1
N

σ 2 = 1
N

∑N
s=1(ys − μ)2.

2 Sampling, missing data, and prediction

Suppose that a simple random sample without replacement is to be selected from
the population represented by the first n elements in a permutation of the pop-
ulation, where each permutation is equally likely. This representation has been
discussed by Cassel, Särndal and Wretman (1977) and explored in the context of
superpopulation models by Rao and Bellhouse (1978). Our discussion is closely
related, but follows the definition and notation used by Stanek, Singer and Lençina
(2004).

Let i = 1,2, . . . ,N index the positions in a permutation. We represent the value
in position i of a randomly selected permutation by the random variable Yi =
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∑N
s=1 Uisys where Uis = 1 if unit s is in position i and Uis = 0 otherwise. When all

permutations are equally likely, the random vector Y = (Y1, . . . , YN)′ is a random
permutation of the population (as in Cassel, Särndal and Wretman (1977)). We can
relate Y to y by considering Y = Uy where

U =
⎛
⎜⎝

U11 · · · U1N

...
. . .

...

UN1 · · · UNN

⎞
⎟⎠ .

Note that y is a vector of constants indexed by the subject labels, while Y is a
vector of random variable indexed by the positions. Realizing a value of Yi will
not reveal which subject is occupying position i in the permutation, although it
will reveal the corresponding value. To know which subject occupies position i in
a permutation, we need to know the realized value of the random variable Si =∑N

s=1 Uiss.
These subtle distinctions can be illustrated with the voting preference example.

Suppose that the realized response for the first selected subject (i = 1) is a vote
for the incumbent. Simply knowing the realized value of Y1 does not tell us which
subject voted for the incumbent, it only tells us that one of the subjects voted this
way. In order to know which subject cast this vote, we need to know which subject
occupied the first position in the permutation, that is, the realization of S1. This
could be recorded along with the realized value of Y1, resulting in a bivariate re-
sponse. Typically, the additional variate representing the labeled unit is dropped
from the analysis. Although not relevant for the present discussion, the subtle dif-
ference between the realized value corresponding to a position in the sample and
the realized value of a subject is what makes interpretation of realized random ef-
fects in mixed models so challenging (see Stanek, Singer and Lençina (2004) for
additional discussion).

Since each subject has an equal chance of being assigned to a given position
in a permutation, Eξ(Yi) = μ for i = 1, . . . ,N , where ξ denotes expectation over
permutations. We can summarize this expected value structure in a linear model
given by Y = Xβ + E where X = 1N and β = μ.

We partition the vector of random variables into a subset which we call the
sample, YI = (Y1, . . . , Yn)

′, indexed by i = 1,2, . . . , n, and the remainder, YII =
(Yn+1, . . . , YN)′, indexed by i = n+1, . . . ,N , such that Y = (Y′

I |Y′
II)

′. In order to
estimate a parameter that is a linear function of Y, the basic problem is prediction
of a linear function of YII that is not observed, since YI is realized. The linear
function is determined by the parameter of interest. For example, since the popula-
tion mean can be represented by μ = n

N
ȳI + N−n

N
ȲII (where ȳI = 1

n

∑n
i=1 yi with

yi representing the realized value of Yi and ȲII = 1
N−n

∑N
i=n+1 Yi), an estimator of

μ requires prediction of ȲII .
We illustrate this process with a simple example. Suppose we have a popula-

tion with size N = 4 and select a sample without replacement of size n = 2. We
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Table 1 Example of realized sample for three possible permutations where N = 4 and n = 2

uy Permutation Y Realized sample yI

⎛
⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

y2

y1

y4

y3

⎞
⎟⎟⎟⎠

(
y2

y1

)

⎛
⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

y3

y4

y1

y2

⎞
⎟⎟⎟⎠

(
y3

y4

)

...
...

...⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎟⎠

(
y1

y2

)

represent the population as y = (y1, y2, y3, y4)
′ and a random permutation of the

population as Y = (Y1, Y2, Y3, Y4)
′. The first two random variables in the permuta-

tion make up the sample. A total of N ! = 24 possible equally likely permutations
can occur. As an example, the results of three possible permutations are given in
Table 1. The random variables Y3 and Y4 will not be observed. Predicting their
sum in the expression ȲII is the basic problem.

Predictors of this function can be developed using the approach of Royall
(1988), as summarized by Valliant, Dorfman and Royall (2000) in the context of
superpopulation models, but it is not necessary to introduce a superpopulation to
apply the approach to simple random sampling. We require that the predictors be a
linear function of the sample, be unbiased, and have minimum expected MSE, that

is, ˆ̄Y II , is the best linear unbiased predictor (BLUP). A weighted linear function
of this predictor and the sample mean leads to the best linear unbiased estimator
(BLUE) of μ. Under simple random sampling, the BLUP of ȲII is ȳI , so that the
BLUE of μ is ȳI , the simple sample mean (Stanek, Singer and Lençina, 2004).

3 Two methods of specifying missing data

Under the assumption of MCAR, we specify two models that account for miss-
ing data. In each model, we assume that the probability of a missing response
is constant, and equal to π . The first model represents the missing data mech-
anisms by random variables indexed by the position of a subject in the sample,
Mi, i = 1, . . . ,N , where Mi takes on a value of one if response is missing for po-
sition i, and zero otherwise. Such random variables may represent a missing data



Estimating the mean when some responses are missing 175

mechanism for factors determined by the study design, as when different inter-
viewers are assigned groups of sample subjects to interview. The second model
represents a missing data mechanism by random variables indexed by subjects,
Hs = 1, . . . ,N , where Hs takes on a value of one if response is missing for sub-
ject s, and zero otherwise. Such random variables may represent a missing data
mechanism where a factor, such as answering machine screening, depends on in-
dividual subjects. The two missing data mechanisms emphasize the distinction
between subject labels and sample positions.

3.1 A model for response when missing data depends on sample
subject positions

We first consider the setting where the missing data mechanism is indexed by the
position of subjects in the sample, as might occur if interviewers are assigned to
consecutive selected subjects. We incorporate the missing data mechanism into the
random permutation model by augmenting the N random variables to a vector of
2N random variables.

The first N random variables in the vector correspond to potentially observed
responses. The ith random variable is given by (1 − Mi)Yi . If i ≤ n, the random
variable will be realized in the sample. When the realized value of Mi is mi = 0,
response for the subject selected in position i is given by the realized value of Yi ,
that is, yi . When the realized value of Mi is mi = 1, response for the subject
selected in position i is missing, and the value of the realization, (1 − mi)Yi , is
zero. Thus, the first N random variables are the potentially observable responses
for random variables representing a permutation.

The second N random variables in the vector correspond to missing responses.
The ith random variable is given by MiYi . If i ≤ n, the random variable will be
realized (but the value of the random variable will not be observed) in the sample.
For example, when the realized value of Mi is mi = 1, response for the subject
selected in position i is missing, but the realized value of MiYi will correspond
to the realized value of miYi , that is, yi . Although this value will not be observed
by the investigator, it will be contained in the second set of random variables.
When the realized value of Mi is mi = 0, response for the subject selected in
position i is not missing, but the value of the realization, miYi , is zero. Thus, the
second N random variables are the potentially observable responses for realized
random variables representing a permutation where response is missing.

When the probability of missing depends on position, we represent the first
N random variables by the product (IN − M∗)Y where M∗ = ⊕N

i=1 Mi is a
diagonal matrix with diagonal elements given by Mi . We partition this vector
into an n × 1 vector representing the sample, Y(o)

I , and an (N − n) × 1 vector

representing the remainder, Y(o)
II , such that (IN − M∗)Y = (Y(o)′

I |Y(o)′
II )′, where

the superscript is a reminder that these random variables are potentially ob-
served. The second N random variables correspond to missing responses and
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are given by the product Y(m) = M∗Y. We represent the vector of 2N ran-
dom variables by Z1 = (Y(o)′

I |Y(o)′
II |Y(m)′)′. Elements of this vector are given by

Z
(o)
1i = (1 − Mi)

∑N
s=1 Uisys and Z

(m)
1i = Mi

∑N
s=1 Uisys .

3.2 A model for response when missing data depends on labeled subjects

When the probability of a missing value depends on the subject, we represent po-
tentially observable random variables by a 2N × 1 vector in a similar manner. We
form the first vector of N random variables that are potentially observed by the
product U(IN − H∗)y, where H∗ = ⊕N

s=1 Hs is a diagonal matrix with diagonal

elements given by Hs . We partition this vector into the sample, γ
(o)
I , and the re-

mainder, γ
(o)
II , using the same notation, but where U(IN − H∗)y = (γ

(o)′
I |γ (o)′

II )
′
.

Elements of γ
(o)
I are now of the form Z

(o)
2i = ∑N

s=1 Uis(1−Hs)ys for i = 1, . . . , n.
When hs = 0, the realized value for the subject s is not missing and may be ob-
served; when hs = 1, the realized value of the random variable Z

(o)
2i is zero. The N

random variables in the vector corresponding to the missing responses are given
by the product γ (m) = UH∗y with elements Z

(m)
2i = ∑N

s=1 UisHsys .

We represent the vector of 2N random variables by Z2 = (γ
(o)′
I |γ (o)′

II |γ (m)′)
′
.

The random variables in the n× 1 vector γ
(o)
I are observed as a result of sampling.

The elements of γ
(o)
II and γ (m) are not observed. Notice that unobserved random

variables correspond to both the missing data, and to the portion of the population
that is not included as part of the sample. Although these random variables are
represented distinctly, they share the common status of ‘missing data.’

4 Predicting the mean response

We develop the expected value and variance of the 2N × 1 vector of random
variables representing the population next, and use these expressions to predict
mean response. Expectation is taken with respect to random variables represent-
ing the missing data mechanism, ξ1, and with respect to random permutations
of the population ξ2. For example, the elements of Z1 are either of the form
Z

(o)
1i = (1 − Mi)

∑N
s=1 Uisys or Z

(m)
1i = Mi

∑N
s=1 Uisys . Using conditional ex-

pectation, Eξ1ξ2(Z
(o)
1i ) = Eξ1[Eξ2|ξ1(Z

(o)
1i )], and since Eξ2|ξ1(Z

(o)
1i ) = (1 − Mi)μ,

Eξ1ξ2(Z
(o)
1i ) = (1 − π)μ. Similarly, Eξ1ξ2(Z

(m)
1i ) = πμ. Combining these expres-

sions, we get Eξ1ξ2(Z1) = μ
[ (

1 − π

π

)
⊗ 1N

]
.

The results illustrate that the expected value of random variables in the sam-
ple, Z

(o)
1i are not equal to the population mean. This result is intuitive if we recall

that when a response is missing, the observed response is zero (as a result of in-
troducing the missing data random variables in the model). For example, if the
probability of a missing response is π = 0.20, the expected value of a potentially
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observable random variable, Z
(o)
1i , i = 1, . . . , n is 0.8μ. The expected value does

not imply that there is bias, but simply that the expected value will be closer to
zero than the population mean. Identical results are obtained taking the expected
value of the random variables Z2, that is, Eξ1ξ2(Z2) = μ

[ (
1 − π

π

)
⊗ 1N

]
.

The variance can be developed in a similar manner by taking Varξ1ξ2(Z1) =
Varξ1[Eξ2|ξ1(Z1)] + Eξ1[Varξ2|ξ1(Z1)]. To evaluate this expression, we let M =
(IN − M∗|M∗)′

, so that Z1 = MUy. Then Eξ2|ξ1(Z1) = M1Nμ, where M1N =(
1N

0N

)
+

( −m

m

)
, and m = (M1 M2 · · · MN )′. Note that Varξ1(M1N) =(

1 −1

−1 1

)
⊗ Varξ1(m). Since we assume that the missing data random vari-

ables are independent, it follows that Varξ1(m) = π(1 − π)IN , and hence

Varξ1[Eξ2|ξ1(Z1)] = π(1 −π)μ2
(

1 −1

−1 1

)
⊗ IN . From Stanek, Singer and Lençina

(2004) we have Varξ1[UY] = σ 2(IN − 1
N

JN), and hence

Eξ1[Varξ2|ξ1(Z1)] = σ 2Eξ1

[
M

(
IN − 1

N
JN

)
M′

]
,

where Eξ1(MJNM′) = σ 2π(1 − π)
(

1 −1

−1 1

)
⊗ IN + σ 2

(
1 − π

π

)(
1 − π

π

)′ ⊗ JN .
Combining these expressions, it follows that

Varξ1ξ2(Z1) =
(
σ 2

[
(1 − π)2 π(1 − π)

π(1 − π) π2

]
⊗

(
IN − JN

N

))

+
[
π(1 − π)

(
N − 1

N
σ 2 + μ2

)(
1 −1

−1 1

)
⊗ IN

]
.

Identical results are obtained evaluating the variance of the random variables Z2.
The model for the population that includes missing data is given by

Z1 = Xα + E1

where X = I2 ⊗ 1N and α =
(

(1 − π)μ

πμ

)
. Notice that in this model, the sum of the

parameters is equal to the population mean, μ. A similar model can be expressed
for Z2. We drop the subscripts for Z in the subsequent development since the two
models have the same expected value and variance.

We use the prediction approach to estimate the population mean, μ = g′Z,
where g = 1

N
12N . To do so, we partition g = (g′

I g′
II )′ with gI = n

N
1n

n
and par-

tition Z into the sample set of random variables, ZI , with elements Z
(o)
i (corre-

sponding to Y(o)
I or γ

(o)
I ), and the remaining random variables, ZII . The sample

random variables will be observed, and correspond either to the responses for the
nonmissing selected units, or to zero for the selected units with missing responses.
As a result, once the sample is realized, μ = g′

I zI + g′
IIZII , and the basic problem

is the prediction of g′
IIZII .
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We require the predictor to be a linear function of the sample data, p′ZI , to
be unbiased, such that Eξ1ξ2(p

′ZI − g′
IIZII) = 0, resulting in the constraint that

p′1n(1−π) = 1− n
N

(1−π), and to minimize the variance Varξ1ξ2(p
′ZI −g′

IIZII).
Minimizing the variance subject to this constraint using Lagrange multipliers and
simplifying leads to the best linear unbiased estimator (Lu, 2004) given by

μ̂ = 1′
nZI

n(1 − π)
. (4.1)

The denominator, n(1 − π), corresponds to the expected number of responding
sample subjects and μ̂ to the average of the expected respondents. The numerator
is simply the total of the realized sample,

∑n
i=1 Z

(o)
i , using a response of zero for

random variables where the response is missing. The variance of the estimator is
given by

Var(μ̂) = 1

n(1 − π)

[
πμ2 + N − n(1 − π) − π

N
σ 2

]
.

The estimator can be written in a manner that emphasizes the interpretation of
predicting the unobserved random variables. We express it as the weighted sum
of three terms: the sample mean, Z̄ = 1

n

∑n
i=1 Z

(o)
i , the predictor of response for

a subject not selected in the sample, P̂1 and the predictor of response for the Nπ

subjects where response is expected to be missing, P̂2. Using this notation, the
estimator is given by

μ̂ = 1

N
[nZ̄ + (N − n)P̂1 + NπP̂2].

To interpret this result, note that the predictor of response for a subject not se-
lected in the sample who will respond is equal to the average response over the
sample, and given by P̂1 = Z̄. The predictor for subjects whose response will be
missing corresponds to the average response of the expected respondents, P̂2 = μ̂.
Combining these expressions, we get

μ̂ = 1

N
[nZ̄ + (N − n)Z̄ + Nπμ̂],

which readily can be seen to be equal to (4.1). A key feature of this decomposition
is the ability to interpret terms in the estimator as a sum of realized sample values,
and predictors of unobserved random variables. This provides an intuitive guide to
the statistical inference that links directly to the actual statistical methods.

4.1 The empirical predictor

In practice, it is common to replace the unknown probability of missing responses
with estimates that may come as additional data, or directly from the sample. We
refer to the resulting predictor as an empirical predictor.
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We can estimate π by the proportion of missing responses in the sample. Notice
that if response consists solely of the realized values of ZI , then we will not be
able to distinguish whether or not response for position i in the sample is miss-
ing, or simply represents a response with value zero for the selected subject. As
a result, we cannot form an unbiased estimate of π without additional informa-
tion which we assume consists of the realized values, mi of Mi (or

∑N
s=1 UisHs )

for i = 1, . . . , n. This allows us to know whether or not response is missing for
each position in the sample. Defining n0 as the number of elements of ZI where
response is missing, we estimate π by π̂ = n0

n
. Representing the number of non-

missing sample responses as n1 = n − n0, the empirical predictor simplifies to

μ̂0 = 1′
nZI

n(1 − π̂)
= 1

n1

n∑
i=1

Z
(o)
i ,

that is, the simple mean of the nonmissing sample respondents. The empirical pre-
dictor simplifies to the intuitive estimator widely used, although rarely motivated in
a formal fashion. Using the finite population random permutation model approach
and the additional data on Mi or

∑N
s=1 UisHs for i = 1, . . . , n, this corresponds to

the BLUP.
To estimate the MSE we replace π by π̂ = n0

n
, 1

N

∑N
s=1 y2

s by T 2 =
1
n1

∑n
i=1 Z

(o)2
i and σ 2 by S2

1 = 1
n1−1

∑n
i=1(1 − mi)(Z

(o)
i − μ̂0)

2. It follows that

V̂ (μ̂0) = n0
nn1

T 2 + (N−n
N

)
S2

1
n

. The first term in this expression inflates the variance
to account for variability resulting from division by the expected number of non-
missing sample responses, as opposed to the actual number of nonmissing sample
responses. Although for the empirical estimator, we use the actual number of non-
missing sample responses, the expression for the MSE still retains this term. The
second term is similar to the variance of the sample mean under simple random
without replacement sampling. The difference is that S2

1 is an estimate of σ 2 that
depends only on nonmissing sample respondents.

4.2 An example

We illustrate the empirical predictor with the voting example. Suppose that a tele-
phone interview survey of n = 400 voters in Amherst, Massachusetts is conducted
to estimate the proportion of voters who favor same sex marriages. We assume
that the sample is selected based on simple random sampling of the town voter
registration list containing N = 8000 registered voter names. We also assume that
the probability of response being missing is independent of the actual subject’s
response for all voters.

As a result of the survey, suppose that n1 = 250 responses are obtained,
where 200 (μ̂0 = 0.80) favor same sex marriages. The simple sample average
is z̄ = 200

400 = 0.5, while the estimate of the probability of missing response is
π̂ = 150

400 = 0.375. We construct the estimator of the proportion of voters favoring
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same sex marriages by adding the number of voters favoring same sex marriages
in three groups, namely, the sampled voters who respond, nz̄ = 400(200

400 ) = 200,
the predicted number of voters who would respond, but were not included in the
sample, (N − n)z̄ = 7600(200

400 ) = 3800 and the predicted number of voters who
would not respond, [Nπ̂ ]μ̂0 = [8000(0.375)]0.8 = (3000)0.8 = 2400. Adding the
observed number of voters favoring same sex marriages who would respond and
those who would not respond, we get

μ̂0 = 1

8000
[200 + 3800 + 2400] = 0.8.

When the response is dichotomous, the expression for the MSE simplifies to

V̂ (μ̂0) = 1

n1

(
N − n

N − 1

)
μ̂0(1 − Z̄) +

(
1

N − 1

)
n0

n1

(
n − 1

n

)
μ̂0,

so that V̂ (μ̂0) = 0.0015202 + 0.000059857 = 0.00158. We compare this to the
variance corresponding to the finite population where the sample size is assumed
to be equal to the number of nonmissing sample responses. This variance is given
by σ̂ 2 = 1

n1
(N−n1

N
)S2

1 . When response is dichotomous, S2
1 = n1(

μ̂0(1−μ̂0)
n1−1 ), and in

our example σ̂ 2 = 0.0006225. Simulation studies reveal that σ̂ 2 is a better approx-
imation for the variance of μ̂0 than V̂ (μ̂0). Using this expression and assuming
asymptotic normality, we may construct an approximate 95% confidence interval
for the expected response obtaining (0.751, 0.849) in the example.

5 Discussion

The simple example illustrates a design based method that frames statistical infer-
ence as a problem of predicting values not in the sample. When some responses
are missing, predictors are needed both for the remaining units in the population,
and for the sampled units for which response is missing. This is very similar to the
approach advocated by Valliant, Dorfman and Royall (2000) in which optimal pre-
dictors are constructed for unobserved random variables based on a superpopula-
tion model. Both approaches distinguish between the values in a finite population
and the set of random variables whose realization corresponds to the population
values. The difference in the two approaches stems from accounting for the unit
labels. In the superpopulation approach, labels are ignored. The starting point is
a set of exchangeable random variables that form a superpopulation. The finite
population is considered to be a realization of a set of N superpopulation random
variables and the predictors are developed from the superpopulation model, and not
from the finite population sampling. Additional discussion of the superpopulation
model approach is given by Bolfarine (1989), with other missing data perspectives
given by Orchard and Woodbury (1972) and Bolfarine (1987–1988).
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In contrast, the probability model presented in Section 4 arises directly from
the sampling and a missing data model. Units in the population are identifiable,
and the labels can be traced through the process of describing the missing data
mechanism. This enables a clear interpretation of the physical processes of sam-
pling, and generation of the missing data. No superpopulation is needed. However,
similar to the superpopulation model approach, the essential statistical problem is
framed as a prediction problem, and uses the same tools in developing the best
linear unbiased predictors as in the model-based approach.

The basic design-based prediction approach was presented in the context of sim-
ple random sampling by Stanek, Singer and Lençina (2004). Innovative aspects to
the application of this approach to the missing data problem include a clear distinc-
tion between missing data mechanisms that depend on sample positions from those
that depend on units, and the representation of the problem as a double set of ran-
dom variables. The empirical estimates provide an additional interesting aspect of
the development. In the context of best linear unbiased predictors in mixed models,
empirical estimates are commonly constructed by replacing variance component
parameters by sample estimators. Usually, such substitutions result in larger ex-
pected MSE due to additional variance introduced by substituting the estimators
for parameters. In our application, the predictor involves a single unknown param-
eter, π . Replacing this parameter by the sample estimator does inflate the expected
MSE. However, the expected MSE appears to dramatically overstate the variabil-
ity when compared with the variance evaluated from simulation studies. In a sense,
substituting n1 for the sample size reduces the variance by accounting for the ig-
norable missing data, since the response is recorded as a value of zero when the
sample respondent’s response was missing.

Using finite population sampling models and a prediction approach connects
estimation and prediction, since an estimator of the population mean can be inter-
preted as a predictor of the linear combination of random variables not included
in the sample. The design-based prediction approach to finite populations can be
extended to other situations. Predictors of realized random effects have been de-
veloped by Stanek and Singer (2004, 2008) in the context of two stage sampling
with response error. Additional extensions have been made to settings where there
are auxiliary variables associated with each unit in the context of simple random
sampling by Li (2003). These extensions begin to develop design based methods
that may be useful for modeling survey data. Other extensions, as for example to
nonignorable missing response mechanisms, remain to be explored.
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