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Abstract. The nominal response model (NRM) was proposed by Bock [Psy-
chometrika 37 (1972) 29–51] in order to improve the latent trait (ability)
estimation in multiple choice tests with nominal items. When the item para-
meters are known, expectation a posteriori or maximum a posteriori meth-
ods are commonly employed to estimate the latent traits, considering a stan-
dard symmetric normal distribution as the latent traits prior density. However,
when this item set is presented to a new group of examinees, it is not only
necessary to estimate their latent traits but also the population parameters of
this group. This article has two main purposes: first, to develop a Monte Carlo
Markov Chain algorithm to estimate both latent traits and population parame-
ters concurrently. This algorithm comprises the Metropolis–Hastings within
Gibbs sampling algorithm (MHWGS) proposed by Patz and Junker [Journal
of Educational and Behavioral Statistics 24 (1999b) 346–366]. Second, to
compare, in the latent trait recovering, the performance of this method with
three other methods: maximum likelihood, expectation a posteriori and maxi-
mum a posteriori. The comparisons were performed by varying the total num-
ber of items (NI), the number of categories and the values of the mean and
the variance of the latent trait distribution. The results showed that MHWGS
outperforms the other methods concerning the latent traits estimation as well
as it recoveries properly the population parameters. Furthermore, we found
that NI accounts for the highest percentage of the variability in the accuracy
of latent trait estimation.

1 Introduction

The nominal response model (NRM) was proposed by Bock (1972) in order to
improve the latent trait estimation in nominal tests. Let us suppose that a test con-
sisting of I items, with mi categories each one, is administered to n examinees,
and that a random variable Yijh, i = 1,2, . . . , I , j = 1,2, . . . , n, h = 1,2, . . . ,mi,

which indicates the category chosen by subject j to item i, by assuming value 1
for this category and 0 for the all remaining ones, is observed. The NRM, which
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represents the probability of such answer, is given by

Pijh = P(Yijh = 1|θj , ζ i )
(1.1)

= exp[aih(θj − bih)]∑mi

s=1 exp[ais(θj − bis)] = exp(dih + aihθj )∑mi

s=1 exp(dis + aisθj )
,

where:

θj : latent trait of subject j,
ζ i : (d′

i ,a′
i )

′ = (di1, . . . , dimi
, ai1, . . . , aimi

)′,
aih: slope (discrimination) parameter of the category h of item i,
bih: difficulty parameter of the category h of item i,
dih = −aihbih: intercept parameter of the category h of item i.

Discussion about the interpretations of the model and the item parameters
can be found, for example, in Bock (1972), De Ayala (1992), DeMars (2003),
Azevedo (2003) and Baker and Kim (2004).

Most of the articles that deal with estimation in NRM are concerned with
item parameter estimation, under different conditions. See De Ayala and Sava-
Bolesta (1999), Bolt, Cohen and Wollack (2001), Wollack et al. (2002) and
DeMars (2003), for instance. Latent traits estimation is discussed in the works of
De Ayala (1989), De Ayala (1992) and Baker and Kim (2004). The latter discusses
also the estimation of the population parameters via marginal maximum likeli-
hood (MML), but not jointly with the latent traits; see also Bock and Aitkin (1981).
The first two aforementioned articles use expectation a posteriori (EAP) method
to estimate the latent traits, while Baker and Kim (2004) consider maximum like-
lihood (ML). The maximum a posteriori (MAP) method is implemented in the
Multilog program [Thissen, Chen and Bock (2003)]. In both EAP and MAP meth-
ods it is assumed a standard normal distribution for the latent traits.

In this work we are concerning with the situation where the item parameters in
the NRM are known in some metric [see, e.g., Andrade and Tavares (2005)], and
we want to estimate the latent traits and the population parameters of a group of
examinees, different from that one used to calibrate the item parameters. In this
case, the population parameters are free to be estimated.

This paper has two goals: first, to develop a Metropolis–Hastings within Gibbs
sampling algorithm to estimate jointly the latent traits and the population para-
meters. Second, to compare, in the latent trait recovering, the performance of this
method with three others: ML, EAP and MAP. The comparisons are performed
by varying the total number of items (NI), the number of categories (NC) and the
values of the mean and the variance of the latent trait distribution. The NI and NC
are known to have influence in the estimation accuracy, according to De Ayala and
Sava-Bolesta (1999), Wollack et al. (2002) and DeMars (2003). Furthermore, we
want to verify the impact of different values of the mean and variance of the latent
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trait distribution. We believe that the latent traits will be better estimated when one
uses information about the population parameters.

In Section 2 we present the MCMC algorithm and the other methods. In Sec-
tion 3 we perform a simulation study to compare the aforementioned methods and
in Section 4 we outline some comments and conclusions.

2 MCMC estimation and the other methods

MCMC algorithms are powerful tools to make Bayesian inference; see Gamerman
and Lopes (2006) for details. One of the most used algorithms of this class is the
Gibbs sampling. This procedure calculates, empirically, joint posterior distribu-
tions through the so-called full conditional distributions. In many situations it is not
possible to obtain these distributions analytically. This is the case of NRM. A way
of avoiding such problem is to use some auxiliary algorithm as the Metropolis–
Hastings or the adaptive rejection; see, for example, Patz and Junker (1999a) and
Ghosh et al. (2000). Wollack et al. (2002) proposed a MCMC Gibbs sampling with
adaptive rejection sampling algorithm to fit the NRM under standard normal latent
distribution by using WinBugs package; see Lunn et al. (2000). On the other hand,
Patz and Junker (1999a) developed a Metropolis–Hastings within Gibbs sampling
algorithm for the one, two and three parameter logistic models and for the gener-
alized partial credit model. We consider such approach for the NRM, henceforth
MHWGS approach.

First, let us calculate the joint posterior distribution. Considering the usual as-
sumptions of conditional independence, [see, e.g., Baker and Kim (2004)], the
likelihood, for the latent trait of subject j, is given by

L(θj |y·j ·, ζ ) =
I∏

i=1

mi∏
h=1

P
yijh

ijh , (2.1)

where Pijh is as described in (1.1), y·j · = (y1j1, . . . , y1jm1, . . . , yIj1, . . . , yIjmI
)′

and ζ = (ζ ′
1, . . . , ζ

′
I )

′. For Bayesian inference we assume the following prior:

p(θ ,ηθ ) = p(θ |ηθ )p(ηθ )

=
{

n∏
j=1

p(θj |ηθ )

}
p(μθ)p(ψθ),

where θ = (θ1, . . . , θn) and ηθ = (μθ ,ψθ). The prior for θj is assumed to be

θj |ηθ ∼ N(μθ,ψθ). (2.2)

For the population parameters, natural choices, which lead to conditional con-
jugate families [see Gelman (2006)] are

μθ ∼ N(μμ,ψμ), (2.3)

ψθ ∼ IG(ν0/2, κ0/2). (2.4)
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Also, the prioris (2.3) and (2.4) are proper and this ensures that the posterior
of ηθ is also proper; see Gelman et al. (2004), for example. Therefore, from (2.1),
(2.2), (2.3) and (2.4) it follows that the joint posterior distribution is given by

p(θ ,ηθ |y···) ∝ L(θ |y·j ·, ζ )p(θ ,ηθ )

∝
{

I∏
i=1

n∏
j=1

mi∏
h=1

P
yijh

ijh

}{
n∏

j=1

exp
[
−(θj − μθ)

2

2ψθ

]}
ψ

−n/2
θ (2.5)

×
{

exp
[
−(μθ − μμ)2

2ψμ

]}{
ψ

−(ν0/2+1)
θ exp

(
− κ0

2ψθ

)}
.

The distribution (2.5) has an intractable form. Also, the full conditional dis-
tribution of the latent traits is not known. However, the full distributions of the
population parameters are known and easy to sample from. Therefore, a hybrid
MCMC algorithm can be used to simulate from (2.5). This algorithm is composed
by a Metropolis–Hastings within Gibbs sampling step for the latent traits and two
Gibbs sampling steps to estimate ηθ , which is exactly the MHWGS algorithm pro-
posed by Patz and Junker (1999b). A kernel function [see Patz and Junker (1999a)]
is necessary to draw from the latent traits. Following Patz and Junker (1999a) we
choose

q
(
θ

(t)
j , θ

(t−1)
j

) ∼ N
(
θ

(t−1)
j , σ 2

θ

)
,

where θ
(t)
j is the current simulated value of θ and θ

(t−1)
j is the simulated value of

the former iteration. Denoting (·) the set of all other parameters, the hybrid MCMC
algorithm (MHWGS) is defined as follows:

(1) Draw θ
(t)
j from θj |(·) ∼ p(θj |ζ ,y···), for j = 1, . . . , n mutually independent:

(a) Draw θ
(∗)
j ∼ N(θ

(t−1)
j , σ 2

θ ).

(b) Accept θ
(t)
j = θ

(∗)
j with probability:

πj

(
θ

(t−1)
j , θ

(∗)
j

)
= min

{ L(θ
(∗)
j |y·j ·, ζ ) exp{−(θ

(∗)
j − μ

(t−1)
θ )2/(2σ 2

θj
)}

L(θ
(t−1)
j |y·j ·, ζ ) exp{−(θ

(t−1)
j − μ

(t−1)
θ )2/(2σ 2

θj
)} ,1

}
,

otherwise, set θ
(t)
j = θ

(t−1)
j .

(2) Draw μ
(t)
θ from μθ |(·) ∼ N(ψ̂

(t)
μ μ̂

(t)
θ , ψ̂

(t)
μ ), where:

μ̂
(t)
θ = 1

ψ
(t−1)
θ

n∑
j=1

(
θ

(t)
j

) + μμ

ψμ

, ψ̂(t)
μ =

(
n

ψ
(t−1)
θ

+ 1

ψμ

)−1

.



An estimation method for latent trait and population parameters in NRM 419

(3) Draw ψ
(t)
θ from ψθ |(·) ∼ IG(̂ν(t), κ̂(t)), where:

ν̂(t) = 1

2

[
n∑

j=1

(
θ

(t)
j − μ

(t)
θ

)2 + ν0

]
,

κ̂(t) = n + κ0

2
.

Giving suitable starting values (θ (0),η
(0)
θ ), the iteration of the three steps above

comprises the MHWGS algorithm. Therefore, any quantity, as the mean and the
variance of the posterior distributions can be calculated, based on the generated
samples. These values can be used as estimates and measures of precision of such
estimates.

The ML, for the NRM, is well described in the literature; see Baker and
Kim (2004), for example. Therefore it will be not presented in this work. To de-
scribe the other two Bayesian methods we will consider, as usual, a standard nor-
mal distrubition as the prior, that is, ηθ = (0,1) in (2.2). Therefore, the posterior
distribution of θj is given by

p(θj |y·j ·, ζ ) ∝ L(θj |y·j ·, ζ )p(θj |ηθ ) ≡ L(θj |y·j ·, ζ )p(θj )
(2.6)

∝
{

I∏
i=1

mi∏
h=1

P
yijh

ijh

}{
exp

[
−θ2

j

2

]}
.

The EAP estimates is the expectation of (2.7), that is,

E[θj |y·j ·, ζ ] =
∫

R θL(θ |y·j ·, ζ )p(θ) dθ∫
R L(θ |y·j ·, ζ )p(θ) dθ

.

However, notice that it is not possible to obtain such expectation analytically.
Numerical methods, as the Gaussian quadrature integration [see, e.g., Stroud and
Secrest (1980)] should be employed in order to obtain the EAP estimates. Con-
sidering such approach, the EAP, in terms of Gaussian quadrature points, is given
by

E[θj |y·j ·, ζ ] = θj ≈
∑Q

q=1 θqL(θq |y·j ·, ζ )Aq∑Q
q=1 L(θq |y·j ·, ζ )Aq

, (2.7)

where θq, q = 1, . . . ,Q are the quadrature points and Al the associated quadrature
weights. The accuracy of EAP can be evaluated through the variance a posteriori:

Var[θj |y·j ·, ζ ] =
∫

R{θ − E[θj |y·j ·, ζ ]}2L(θ |y·j ·, ζ )p(θ) dθ∫
R L(θ |y·j ·, ζ )p(θ) dθ

. (2.8)
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Again, no explicit solutions are avaible and numerical methods should be used.
Therefore, the equation (2.8), in terms of quadrature points, becomes

Var[θj |y·j ·, ζ ] ≈
∑Q

q=1(θq − θj )
2L(θq |y·j ·, ζ )Aq∑Q

q=1 L(θq |y·j ·, ζ )Aq

,

where θj is given by (2.7). The MAP is obtained by maximizing (2.7) with re-
spect θj , which is equivalent to solve the following equation:

S(θj ) = ∂ lnp(θj |y·j ·, ζ )

∂θj

= ∂ lnL(θj |y·j ·, ζ )

∂θj

+ ∂ lnp(θj )

∂θj
(2.9)

=
I∑

i=1

α′
iTi[yij. − Pij.] − θj ,

where αi and Ti are appropriate matrices; see Baker and Kim (2004) or
Azevedo (2003), for example. Notice that it is not possible to solve equation (2.9)
analytically. Therefore, some numerical method should be employed; for example,
Newton–Raphson or Fisher Scoring, see Rao (2002), for example. To accomplish
for that, we need the Hessian function, which is given by

H(θj ) = ∂2 lnp(θj |y·j ·, ζ )

∂θ2
j

= ∂2 lnL(θj |y·j ·, ζ )

∂θ2
j

+ ∂2 lnp(θj )

∂θ2
j

(2.10)

= −
I∑

i=1

{α′
iTiWij T′

iαi} − 1,

where Wij is a suitable matrix; see Baker and Kim (2004) or Azevedo (2003), for
example. The first components of equations (2.9) and (2.10) require some algebra
to be developed. The details can be found in Bock (1972), Baker and Kim (2004)
or Azevedo (2003), for example. Furthermore, notice that the Fisher information is
I (θj ) = −H(θj ). Therefore, the Newton–Raphson and Fisher scoring algorithms

are equivalent. Hence, given a suitable starting value, say θ̂
(0)
j , the iterative process

is given by

θ̂
(t)
j = θ̂

(t−1)
j + [

I
(
θ̂

(t−1)
j

)]−1[
S
(
θ̂

(t−1)
j

)]
,

t = 1,2, . . ., until a convergence criterium be achieved.
The ML and MAP methods are both implemented in the commercial pack-

age Multilog; see http://www.ssicentral.com/. However, for practical reasons, all
the methods were implemented in a program developed by the authors using
the object-oriented statistical system Oxtm; see http://www.doornik.com/products.
html#Ox, and it is avaliable upon request from the authors. In the next section we
will present a simulation study.

http://www.ssicentral.com/
http://www.doornik.com/products.html#Ox
http://www.doornik.com/products.html#Ox
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3 Simulation study

To compare the performance of the four estimation methods we conducted a Monte
Carlo simulation study, according to Harwell et al. (1996). That is, considering
replication of datasets and using suitable statistics to measure the goodness of the
estimates. The number of replications was R = 20. This choice was based on previ-
ous works; see De Ayala and Sava-Bolesta (1999), DeMars (2003) and Wollack et
al. (2002). The factors (and their levels) considered were: the number of items (NI)
(20, 30, 40), the number of categories per item (NC) (4, 5), the values of the pop-
ulation means (−2,0,2) and the values of the population variance (0.5,1.0,1.5).
Hence, there are 3 × 2 × 3 × 3 = 54 combinations. Once that our interest lies on
the main factors (and not in the possible interactions) and also because the large
time demanded by the MCMC methods, we considered a fractional factorial de-
sign using 18 of the 54 combinations. These combinations were generated in order
to ensure the estimability of the main effects and they are presented in Table 1. In
all simulations we set n = 600 examinees.

We considered a set of six tests varying in number of items: 20, 30, 40, and in
number of categories (alternatives) per item: 4 and 5. Tables 2 and 3 present the
items used to build the tests. The 20 items tests were built using the first 20 items
and in the 40 item tests we considered all the items. The 30 items tests were built
considering the first 21 and the items: 23, 25, 27, 29, 32, 34, 36, 38 and 40. This
allows us to have tests in which the item parameteres range properly in terms of
difficult and discrimination. That is, it is possible to cover the latent trait range and
also to identify examinees with different abilities.

As hyperparameters of priors (2.3) and (2.4), we considered (μμ = 0,ψμ =
100) and (κ0 = 4.2, ν0 = 2.2). That is, the μθ prior is flat while the ψθ is mod-
erately informative. For proposal variance we used (σ 2

θ = 0.82). One of the most
important aspects of the MCMC methods is to verify the convergence of the sim-
ulated values to the posterior densities of interest. There are several suggestions
in the literature but no agreement about the most suitable one; see Gamerman
and Lopes (2006), for example. In this work we considered: the monitoring of
the chains generated by three different sets of starting values, trace plots and

Table 1 Factor level combinations of the fractional factorial design

NI NC μθ ψθ NI NC μθ ψθ NI NC μθ ψθ

20 4 −2.0 1.5 30 4 −2.0 1.0 40 4 −2.0 0.5
20 4 2.0 0.5 30 4 2.0 1.5 40 4 2.0 1.0
20 4 0.0 1.0 30 4 0.0 0.5 40 4 0.0 1.5
20 5 −2.0 1.5 30 5 −2.0 1.0 40 5 −2.0 0.5
20 5 2.0 0.5 30 5 2.0 1.5 40 5 2.0 1.0
20 5 0.0 1.0 30 5 0.0 0.5 40 5 0.0 1.5
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Table 2 Item parameters used in the simulation studies: 4 alternatives tests

Item b a Item b a Item b a Item b a

1 −2.76 −0.50 11 0.57 −0.60 21 −2.22 −0.60 31 0.47 −0.70
1 −3.80 −0.20 11 −0.40 −0.70 21 −3.80 −0.20 31 −0.40 −0.70
1 −3.40 0.10 11 −0.20 0.40 21 −3.40 0.10 31 −0.20 0.40
1 −3.00 0.60 11 0.16 0.90 21 −2.50 0.70 31 0.13 1.00
2 −2.63 −1.20 12 0.41 −1.70 22 −2.07 −1.10 32 0.36 −1.60
2 −2.90 −0.40 12 −0.20 −0.30 22 −2.80 −0.40 32 −0.20 −0.30
2 −2.80 0.20 12 0.10 0.80 22 −2.40 0.20 32 0.10 0.80
2 −2.68 1.40 12 0.47 1.20 22 −2.24 1.30 32 0.39 1.10
3 −1.96 −0.60 13 0.97 −0.50 23 −1.44 −0.70 33 0.79 −0.60
3 −2.80 −0.70 13 0.10 −0.20 23 −2.80 −0.70 33 0.10 −0.20
3 −2.50 0.40 13 0.30 0.10 23 −2.50 0.40 33 0.30 0.10
3 −2.37 0.90 13 0.79 0.60 23 −1.97 1.00 33 0.66 0.70
4 −2.12 −1.70 14 1.30 −1.20 24 −1.89 −1.60 34 1.09 −1.10
4 −2.60 −0.30 14 0.40 −0.40 24 −2.60 −0.30 34 0.40 −0.40
4 −2.40 0.80 14 0.80 0.20 24 −2.40 0.80 34 0.80 0.20
4 −2.05 1.20 14 1.11 1.40 24 −1.71 1.10 34 0.92 1.30
5 −1.59 −0.50 15 1.86 −0.60 25 −1.26 −0.60 35 1.46 −0.70
5 −2.20 −0.20 15 0.80 −0.70 25 −2.20 −0.20 35 0.80 −0.70
5 −1.90 0.10 15 1.00 0.40 25 −1.90 0.10 35 1.00 0.40
5 −1.74 0.60 15 1.42 0.90 25 −1.44 0.70 35 1.18 1.00
6 −1.32 −1.20 16 1.62 −1.70 26 −1.03 −1.10 36 1.41 −1.60
6 −1.80 −0.40 16 1.00 −0.30 26 −1.80 −0.40 36 1.00 −0.30
6 −1.60 0.20 16 1.20 0.80 26 −1.60 0.20 36 1.20 0.80
6 −1.42 1.40 16 1.74 1.20 26 −1.18 1.30 36 1.45 1.10
7 −0.73 −0.60 17 2.30 −0.50 27 −0.51 −0.70 37 1.86 −0.60
7 −1.60 −0.70 17 1.20 −0.20 27 −1.60 −0.70 37 1.20 −0.20
7 −1.40 0.40 17 1.60 0.10 27 −1.40 0.40 37 1.60 0.10
7 −1.11 0.90 17 2.05 0.60 27 −0.92 1.00 37 1.71 0.70
8 −0.80 −1.70 18 2.57 −1.20 28 −0.71 −1.60 38 2.18 −1.10
8 −1.30 −0.30 18 1.60 −0.40 28 −1.30 −0.30 38 1.20 −0.40
8 −1.00 0.80 18 2.00 0.20 28 −1.00 0.80 38 1.60 0.20
8 −0.79 1.20 18 2.37 1.40 28 −0.66 1.10 38 1.97 1.30
9 −0.32 −0.50 19 3.15 −0.60 29 −0.26 −0.60 39 2.64 −0.70
9 −1.00 −0.20 19 2.00 −0.70 29 −1.00 −0.20 39 1.70 −0.70
9 −0.80 0.10 19 2.20 0.40 29 −0.80 0.10 39 2.00 0.40
9 −0.47 0.60 19 2.68 0.90 29 −0.39 0.70 39 2.24 1.00

10 0.01 −1.20 20 2.99 −1.70 30 0.06 −1.10 40 2.41 −1.60
10 −0.80 −0.40 20 2.00 −0.30 30 −0.80 −0.40 40 1.90 −0.30
10 −0.40 0.20 20 2.60 0.80 30 −0.40 0.20 40 2.10 0.80
10 −0.16 1.40 20 3.00 1.20 30 −0.13 1.30 40 2.50 1.10

Geweke statistics. All these procedures were implemented in the object-oriented
statistical system Oxtm. In the first starting values set, the latent traits were drawn
from a N(0,1) distribution and μθ and ψθ were fixed equal to 0 and 1, respec-
tively. In the second set, the latent traits were all fixed to 0, μθ was drawn from
N(0,1) and ψθ was drawn from U(0,2). Finally, in the third set, the standardized
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Table 3 Item parameters used in the simulation studies: 5 alternatives tests

Item b a Item b a Item b a Item b a

1 −2.50 −0.40 11 0.32 −0.90 21 −1.94 −0.50 31 0.57 −0.90
1 −3.90 −0.20 11 −0.70 −0.20 21 −3.80 −0.20 31 −0.80 −0.70
1 −3.60 −0.10 11 −0.40 −0.20 21 −3.60 −0.10 31 −0.50 0.20
1 −3.40 0.10 11 −0.20 0.40 21 −3.40 0.10 31 −0.20 0.40
1 −3.00 0.60 11 0.16 0.90 21 −2.50 0.70 31 0.13 1.00
2 −2.40 −0.80 12 0.64 −1.20 22 −1.74 −1.00 32 0.63 −1.00
2 −3.00 −0.50 12 −0.20 −0.60 22 −3.00 −0.60 32 −0.20 −0.60
2 −2.70 −0.30 12 0.00 −0.20 22 −2.70 −0.30 32 0.00 −0.30
2 −2.40 0.20 12 0.10 0.80 22 −2.40 0.60 32 0.10 0.80
2 −2.68 1.40 12 0.47 1.20 22 −2.24 1.30 32 0.39 1.10
3 −2.19 −0.90 13 1.36 −0.40 23 −1.59 −0.90 33 1.06 −0.50
3 −3.00 −0.20 13 −0.20 −0.20 23 −3.00 −0.70 33 −0.20 −0.20
3 −2.80 −0.20 13 0.00 −0.10 23 −2.80 0.20 33 0.00 −0.10
3 −2.50 0.40 13 0.30 0.10 23 −2.50 0.40 33 0.30 0.10
3 −2.37 0.90 13 0.79 0.60 23 −1.97 1.00 33 0.66 0.70
4 −1.85 −1.20 14 1.93 −0.80 24 −1.34 −1.00 34 1.26 −1.00
4 −2.77 −0.60 14 0.10 −0.50 24 −2.80 −0.60 34 0.40 −0.60
4 −2.50 −0.20 14 0.40 −0.30 24 −2.60 −0.30 34 0.60 −0.30
4 −2.40 0.80 14 0.80 0.20 24 −2.40 0.80 34 0.80 0.60
4 −2.05 1.20 14 1.11 1.40 24 −1.71 1.10 34 0.92 1.30
5 −1.49 −0.40 15 1.55 −0.90 25 −1.06 −0.50 35 1.66 −0.90
5 −2.20 −0.20 15 0.60 −0.20 25 −2.30 −0.20 35 0.30 −0.70
5 −2.00 −0.10 15 0.80 −0.20 25 −2.10 −0.10 35 0.60 0.20
5 −1.90 0.10 15 1.00 0.40 25 −1.90 0.10 35 1.00 0.40
5 −1.74 0.60 15 1.42 0.90 25 −1.44 0.70 35 1.18 1.00
6 −1.02 −0.80 16 2.02 −1.20 26 −0.75 −1.00 36 1.70 −1.00
6 −1.90 −0.50 16 0.70 −0.60 26 −2.00 −0.60 36 0.90 −0.60
6 −1.80 −0.30 16 1.00 −0.20 26 −1.80 −0.30 36 1.00 −0.30
6 −1.60 0.20 16 1.20 0.80 26 −1.60 0.60 36 1.20 0.80
6 −1.42 1.40 16 1.74 1.20 26 −1.18 1.30 36 1.44 1.10
7 −0.98 −0.90 17 2.58 −0.40 27 −0.49 −0.90 37 2.01 −0.50
7 −1.80 −0.20 17 1.10 −0.20 27 −2.00 −0.70 37 1.10 −0.20
7 −1.60 −0.20 17 1.40 −0.10 27 −1.80 0.20 37 1.30 −0.10
7 −1.40 0.40 17 1.60 0.10 27 −1.40 0.40 37 1.60 0.10
7 −1.11 0.90 17 2.05 0.60 27 −0.92 1.00 37 1.71 0.70
8 −0.62 −1.20 18 2.97 −0.80 28 −0.24 −1.00 38 2.62 −1.00
8 −1.30 −0.60 18 1.60 −0.50 28 −1.50 −0.60 38 1.20 −0.60
8 −1.10 −0.20 18 1.80 −0.30 28 −1.30 −0.30 38 1.40 −0.30
8 −1.00 0.80 18 2.00 0.20 28 −1.00 0.80 38 2.00 0.60
8 −0.79 1.20 18 2.37 1.40 28 −0.66 1.10 38 1.97 1.30
9 0.02 −0.40 19 2.81 −0.90 29 −0.07 −0.50 39 2.84 −0.90
9 −1.30 −0.20 19 1.80 −0.20 29 −1.10 −0.20 39 1.20 −0.70
9 −1.10 −0.10 19 2.00 −0.20 29 −1.00 −0.10 39 1.80 0.20
9 −0.80 0.10 19 2.20 0.40 29 −0.80 0.10 39 2.00 0.40
9 −0.47 0.60 19 2.68 0.90 29 −0.39 0.70 39 2.24 1.00

10 0.35 −0.80 20 3.35 −1.20 30 0.58 −1.00 40 2.88 −1.00
10 −0.80 −0.50 20 2.00 −0.60 30 −1.20 −0.60 40 1.60 −0.60
10 −0.60 −0.30 20 2.30 −0.20 30 −0.90 −0.30 40 1.70 −0.30
10 −0.40 0.20 20 2.60 0.80 30 −0.40 0.60 40 2.00 0.80
10 −0.16 1.40 20 3.00 1.20 30 −0.13 1.30 40 2.50 1.10
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scores were used as the latent traits starting values. For μθ and ψθ we calculated
the sample mean and variance of the standardized scores plus values generated
from a N(0,1) distribution. We simulated a set of responses for the combination
(NI = 20,NC = 4,μθ = −2,ψθ = 1.5) and applied the convergence assessment
procedures aforementioned. The Geweke statistics were calculated considering in-
dependent samples of size 100 after 2000 iterations. They showed that the conver-
gence occurred for all considered parameters (the population parameters and some
latent traits randomly chosen). Also, the observation of trace plots indicated that a
burn-in of 2000 is enough to draw from the posterior densities. The Figure 1 shows
the autocorrelations and trace plots of the generated chains for one latent trait (ran-
domly chosen), the mean and the variance obtained from different starting values.
It shows that the autocorrelations become negligible after a lag of 20. Also, the
initial states of the chains do not affect the convergence. Therefore we decided to
consider a burn-in of 2000, simulating more 18,000 values after that and retaining
every 20 values. Hence, we had 900 values to estimate the posterior densities.

To compare the performance of the estimation methods we considered the fol-
lowing statistics for each latent trait:

Corr: mean of the correlation between θj and θj among the examinees.

Bias: 1
n

∑n
j=1(θj − θ̂ j ).

Var: 1
n

∑n
j=1

1
R

∑R
r=1(θ̂jr − θ̂ j )

2.

Figure 1 Autocorrelations and trace plots for chains generated from different starting values.
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MSE: 1
n

∑n
j=1

1
R

∑R
r=1(θj − θ̂jr )

2.
RMSE: the square root of MSE.

Where θ̂jr is the estimate of the latent trait of examinee j obtained from the

dataset r and θ̂ j = 1
R

∑R
j=1 θ̂jr .

Table 4 presents the aforementioned statistics for each estimation method in
each factors level combination. The results indicate that the MCMC performs
equally or better than the other methods. When the true population parameters
match with that considered in the usual methods, the four estimation procedures
produce quite similar results. However, when this is not true, the MCMC produce
more accurate results. This is even more clear when the true population parameters
are far from (0,1). Hence, we concluded that estimating the population parame-
ters properly, improves the latent traits estimates. Also, the MHWGS approach
presented the most accurate results.

Figures 2, 3 and 4 present the MSE per latent trait ranges for different combi-
nations of level factors. One can see that, even though the MHWGS was the most
accurate estimation procedure, the MSE of the estimates of the other methods are
smaller than that of the MHWGS ones, for some latent trait ranges. Therefore the

Table 4 Statistics for the latent trait estimation

NI NC μθ ψθ E.M. Corr Var Bias RMSE

20 4 −2.0 1.5 MV 0.988 0.571 −0.134 0.813
MAP 0.980 0.101 0.405 0.648
EAP 0.981 0.105 0.388 0.633

MHWGS 0.989 0.159 −0.010 0.462

20 4 2.0 0.5 MV 0.987 0.240 0.041 0.509
MAP 0.990 0.110 −0.322 0.491
EAP 0.990 0.113 −0.312 0.486

MHWGS 0.990 0.092 0.003 0.369

20 4 0.0 1.0 MV 0.995 0.164 −0.001 0.417
MAP 0.995 0.113 0.000 0.379
EAP 0.995 0.114 −0.001 0.379

MHWGS 0.995 0.115 −0.001 0.379

20 5 −2.0 1.5 MV 0.980 1.416 −0.113 1.234
MAP 0.977 0.113 0.474 0.729
EAP 0.978 0.116 0.455 0.712

MHWGS 0.987 0.177 0.004 0.502

20 5 2.0 0.5 MV 0.987 0.233 0.031 0.499
MAP 0.987 0.124 −0.353 0.531
EAP 0.986 0.126 −0.345 0.526

MHWGS 0.987 0.098 0.003 0.391

20 5 0.0 1.0 MV 0.994 0.182 −0.003 0.440
MAP 0.995 0.118 0.003 0.395
EAP 0.995 0.120 0.001 0.395

MHWGS 0.995 0.120 0.001 0.395
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Table 4 Continued.

NI NC μθ ψθ E.M. Corr Var Bias RMSE

30 4 −2.0 1.0 MV 0.991 0.260 −0.065 0.539
MAP 0.987 0.086 0.304 0.499
EAP 0.987 0.088 0.287 0.487

MHWGS 0.991 0.108 0.002 0.380

30 4 2.0 1.5 MV 0.995 0.241 0.052 0.517
MAP 0.983 0.073 −0.284 0.511
EAP 0.983 0.074 −0.273 0.502

MHWGS 0.992 0.104 −0.013 0.376

30 4 0.0 0.5 MV 0.995 0.100 −0.008 0.324
MAP 0.995 0.080 −0.002 0.299
EAP 0.995 0.081 −0.006 0.300

MHWGS 0.995 0.066 −0.002 0.295

30 5 −2.0 1.0 MV 0.986 0.519 −0.059 0.747
MAP 0.988 0.098 0.346 0.538
EAP 0.988 0.101 0.327 0.525

MHWGS 0.992 0.127 −0.001 0.404

30 5 2.0 1.5 MV 0.995 0.206 0.045 0.476
MAP 0.990 0.084 −0.279 0.490
EAP 0.989 0.084 −0.273 0.487

MHWGS 0.995 0.112 0.004 0.371

30 5 0.0 0.5 MV 0.993 0.121 −0.008 0.358
MAP 0.993 0.093 −0.001 0.326
EAP 0.993 0.094 −0.006 0.326

MHWGS 0.993 0.075 −0.001 0.319
40 4 −2.0 0.5 MV 0.994 0.130 −0.035 0.374

MAP 0.991 0.070 0.193 0.355
EAP 0.991 0.072 0.179 0.348

MHWGS 0.991 0.066 0.000 0.298

40 4 2.0 1.0 MV 0.995 0.155 0.032 0.412
MAP 0.990 0.065 −0.212 0.393
EAP 0.990 0.066 −0.202 0.387

MHWGS 0.994 0.078 −0.008 0.316

40 4 0.0 1.5 MV 0.999 0.082 0.000 0.295
MAP 0.998 0.063 0.003 0.285
EAP 0.998 0.064 0.002 0.284

MHWGS 0.998 0.069 0.001 0.280

40 5 −2.0 0.5 MV 0.992 0.146 −0.031 0.396
MAP 0.990 0.079 0.232 0.395
EAP 0.990 0.082 0.215 0.386

MHWGS 0.991 0.075 0.003 0.320

40 5 2.0 1.0 MV 0.997 0.118 0.024 0.354
MAP 0.995 0.072 −0.210 0.379
EAP 0.994 0.072 −0.202 0.375

MHWGS 0.996 0.083 0.005 0.312

40 5 0.0 1.5 MV 0.998 0.095 −0.005 0.316
MAP 0.997 0.072 0.001 0.311
EAP 0.997 0.073 −0.001 0.310

MHWGS 0.998 0.079 −0.002 0.304
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Figure 2 MSE per latent trait range for some 20 items tests.

MHWGS is not uniformly better than the other three methods (concerning the la-
tent trait values). Also, we can notice that the highest MSE occurs for the more
extreme latent trait values. Furthermore, when the population parameters are far
from (0,1) values, the MSE tend to be higher. Anyway, in general, one can say
that MHWGS algorithm outperforms the other methods.

An ANOVA was calculated for the fractional factorial design by considering
as the response variable, ln(RMSE); see De Ayala and Sava-Bolesta (1999) and
DeMars (2003). Since that there are many observations (number of examinees) by
each combination of factor levels, any statistical test would be significant. Also,
some usual ANOVA assumptions as: normality and homogeneity cannot hold in
considering as the response, ln(RMSE). Therefore, the statistic ω2 was considered
instead of the F one, without performing any statistical test. The ω2 statistic, for
a specific factor, is given by

ω2 = SSfactor − df factorMSerror

MSerror + SStotal
,
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Figure 3 MSE per latent trait range for some 30 items tests.

where SS· is the sum of squares, MS· is the mean square and df · are the degrees
of freedom. This allows us to evaluate the contribution of each main effect in the
difference of the accuracy of the estimates; see De Ayala and Sava-Bolesta (1999)
and DeMars (2003), for example. Table 5 presents such results. We see that NI
accounts for the highest percentage of the variability of the ln(RMSE), while the
other factors (NC, mean and variance) have a small impact. The remaining effects,
including possible interactions and other factors which could be considered as the
sample size ratio [see DeMars (2003)] have, all together, a reasonable influence
(they are into the error term). In the design that was considered it is not possible to
identify the contribution of each one.

By inspecting Table 6, one can see that the population parameters were all well
recovered by the MHWGS approach. Table 7 presents the number of iterations
necessary to obtain the convergence in the iterative process for MV and MAP as
well as the precision achieved. Also, the time spent by the estimation process is
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Figure 4 MSE per latent trait range for some 40 items tests.

Table 5 Anova for the latent trait estimation

Source of variation SS df MS ω2

NI 161.64 2 80.82 0.216
NC 9.50 1 9.50 0.013
μθ 41.37 2 20.68 0.055
ψθ 24.70 2 12.35 0.033
Error 509.08 10792 0.05 –
Total 746.28 – – –

displayed for the two former methods and MHWGS algorithm. It is clear that MAP
requires less iterations and less time of computation. Furthermore, we can see that
the MHWGS algorithm requires much more time than the other methods.
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Table 6 Results of the population parameter estimation for MHWGS algorithm

NI NC μθ ψθ Statistic est. μθ est. ψθ

20 4 −2.0 1.5 mean −2.010 1.516
meanse 0.055 0.110

var < 0.001 0.003

20 4 2.0 0.5 mean 2.003 0.506
meanse 0.034 0.042

var < 0.001 0.001

20 4 0.0 1.0 mean 0.000 0.998
meanse 0.044 0.069

var < 0.001 0.001

20 5 −2.0 1.5 mean −1.996 1.481
meanse 0.055 0.111

var < 0.001 0.003

20 5 2.0 0.5 mean 2.003 0.503
meanse 0.035 0.043

var < 0.001 0.001

20 5 0.0 1.0 mean 0.001 0.987
meanse 0.044 0.070

var < 0.001 0.001

30 4 −2.0 1.0 mean −1.998 0.992
meanse 0.044 0.071

var < 0.001 0.001

30 4 2.0 1.5 mean 1.987 1.460
meanse 0.052 0.100

var < 0.001 0.002

30 4 0.0 0.5 mean −0.002 0.496
meanse 0.032 0.035

var < 0.001 0.001

30 5 −2.0 1.0 mean −2.001 1.026
meanse 0.045 0.075

var < 0.001 0.001

30 5 2.0 1.5 mean 2.004 1.505
meanse 0.052 0.100

var < 0.001 0.001

30 5 0.0 0.5 mean −0.001 0.502
meanse 0.033 0.037

var < 0.001 0.000

4 Concluding remarks

The proposed MHWGS algorithm recovers both latent traits and population para-
meters properly. Its computational implementation is straightforward and can be
extended to other situations such as: unknown item parameters and different latent
traits distributions. It is clear that estimating properly the population parameters,
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Table 6 Continued.

NI NC μθ ψθ Statistic est. μθ est. ψθ

40 4 −2.0 0.5 mean −2.000 0.502
meanse 0.032 0.037

var < 0.001 < 0.001

40 4 2.0 1.0 mean 1.992 0.980
meanse 0.043 0.066

var < 0.001 0.001

40 4 0.0 1.5 mean 0.001 1.487
meanse 0.051 0.093

var < 0.001 0.001

40 5 −2.0 0.5 mean −1.997 0.510
meanse 0.033 0.039

var < 0.001 0.001

40 5 2.0 1.0 mean 2.005 1.019
meanse 0.043 0.068

var < 0.001 0.001

40 5 0.0 1.5 mean −0.002 1.472
meanse 0.051 0.093

var < 0.001 0.001

mean = mean of the estimates, meanse = mean of the standard errors, var = variance of the esti-
mates.

Table 7 Time spent in seconds (TS), precision achieved (PA) and number of required iterations
(NRI) in the simulation study

MV MAP MCMC

Items Cat μθ ψθ PA NRI ST PA NRI ST ST

20 4 −2.0 1.5 0.000009 52.00 6.65 0.000009 41.10 5.30 1539.69
20 4 2.0 0.5 0.000607 97.55 10.43 0.000009 48.15 5.22 1316.58
20 4 0.0 1.0 0.000009 52.00 6.65 0.000009 41.10 5.30 1539.69
20 5 −2.0 1.5 0.000007 27.20 4.43 0.000008 29.40 4.76 1810.29
20 5 2.0 0.5 0.003033 100.00 20.24 0.000010 70.25 14.27 2392.73
20 5 0.0 1.0 0.000008 25.30 3.56 0.000008 31.65 4.38 1653.41
30 4 −2.0 1.0 0.000332 89.20 15.30 0.000008 31.45 5.55 2095.55
30 4 2.0 1.5 0.000122 99.90 29.92 0.000010 76.95 23.11 3511.32
30 4 0.0 0.5 0.000008 23.50 4.87 0.000008 36.65 7.47 2396.07
30 5 −2.0 1.0 0.000008 24.80 6.49 0.000008 30.65 7.73 3028.68
30 5 2.0 1.5 0.000063 74.70 9.01 0.000009 36.95 4.52 1475.86
30 5 0.0 0.5 0.000007 19.90 5.05 0.000008 31.10 7.74 2848.61
40 4 −2.0 0.5 0.000031 71.15 19.39 0.000009 32.10 8.90 3221.85
40 4 2.0 1.0 0.001557 100.00 27.32 0.000009 80.80 22.21 3276.54
40 4 0.0 1.5 0.000025 69.55 22.28 0.000009 54.40 17.29 3708.44
40 5 −2.0 0.5 0.000007 20.60 8.84 0.000008 26.25 11.16 4719.00
40 5 2.0 1.0 0.000009 76.85 28.34 0.000009 59.10 21.91 4282.20
40 5 0.0 1.5 0.000009 49.55 20.81 0.000009 42.30 18.08 4807.37
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better latent traits estimates are obtained. Furthermore, we notice that the number
of items accounts for the highest percentage in the variability of the accuracy in
the latent traits estimation. The other factors: number of categories and the values
of the population parameters, account for a small percentage of this variability.
We need to point out that, the EAP and MAP procedure may be improved, if one
use suitable estimates of population parameters, as those that can be obtained by
using the MML approach; see Baker and Kim (2004). As far we know, there are
no programs which allow to consider such approach for the NRM.

Acknowledgments

This research was supported by CNPq (Conselho Nacional de Desenvolvimento
Científico e Tecnológico) from Brazil, through a Master’s program scholarship. It
is part of the Master’s Dissertation written by the first author under the guidance
of the second.

References

Andrade, D. F. and Tavares, H. R. (2005). Item response theory for longitudinal data: Population
parameter estimation. Journal of Multivariate Analysis 95 1–22. MR2164119

Azevedo, C. L. N. (2003). Métodos de estimação na Teoria da Resposta ao Item. Master’s Disserta-
tion, University of São Paulo, in Portuguese.

Baker, F. B. and Kim, S.-H. (2004). Item Response Theory: Parameter Estimation Techniques, 2nd
ed. Marcel Dekker, New York. MR2086862

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two
or more nominal categories. Psychometrika 37 29–51.

Bock, R. D and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika 46 443–459. MR0668311

Bolt, D. M., Cohen, A. S. and Wollack, J. A. (2001). A mixture item response model for multiple
choice data. Journal of Educational and Behavorial Statistics 26 381–409.

De Ayala, R. J. (1989). A comparison of the nominal response model and three-parameter logistic
model in computerized adaptive testing. Educational and Psychological Measurement 49 789–
805.

De Ayala, R. J. (1992). The nominal response model in computerized adaptive testing. Applied Psy-
chological Measurement 16 327–343.

De Ayala, R. J. and Sava-Bolesta, M. (1999). Item Parameter Recovery for the Nominal Response
Model. Applied Psychological Measurement 23 3–19.

DeMars, C. E. (2003). Sample Size and the Recovery of Nominal Response Model Item Parameters.
Applied psychological measurement 27 275–288. MR1977220

Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Chapman and Hall, London. MR2260716

Gelman, A. (2006). Prior distribution for variance parameters in hierarchical models. Bayesian
Analysis 1 515–533. MR2221284

Gelman, A. and Carlin, J. B. and Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd
ed. Chapman and Hall, London. MR2027492

http://www.ams.org/mathscinet-getitem?mr=2164119
http://www.ams.org/mathscinet-getitem?mr=2086862
http://www.ams.org/mathscinet-getitem?mr=0668311
http://www.ams.org/mathscinet-getitem?mr=1977220
http://www.ams.org/mathscinet-getitem?mr=2260716
http://www.ams.org/mathscinet-getitem?mr=2221284
http://www.ams.org/mathscinet-getitem?mr=2027492


An estimation method for latent trait and population parameters in NRM 433

Ghosh, M., Ghosh, A., Chen, M.-H. and Agresti, A. (2000). Noninformative priors for one-parameter
item response models. Journal of Statistical Planning and Inference 88 99–115. MR1767562

Harwell, M., Stone, C. A., Hsu, T.-C. and Kirisci, L. (1996). Monte Carlo studies in item response
theory. Applied Psychological Measurement 20 101–125.

Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000). WinBUGS—a Bayesian modelling
framework: Concepts, structure, and extensibility. Statistics and Computing 10 325–337.

Patz, R. J. and Junker, B. W. (1999a). A straightforward approach to Markov chain Monte Carlo
methods for item response models. Journal of Educational and Behavioral Statistics 24 146–
178.

Patz, R. J. and Junker, B. W. (1999b). Applications and extensions of MCMC in IRT: multiple item
types, missing data and rated responses. Journal of Educational and Behavioral Statistics 24
346–366.

Rao, C. R. (2002). Linear Statistical Inference and Its Applications. Wiley, New York.
Stroud, A. H. and Secrest, D. (1980). Gaussian Quadrature Formulas. Prentice-Hall, Englewood,

NJ. MR0202312
Thissen, D., Chen, W. H. and Bock, D. (2003). In IRT from SSI (M. Du Toiti, ed.). Scientific Software

International, Chicago, IL.
Wollack, J. A., Bolt, D. M., Cohen, A. S. and Lee, Y.-S. (2002). Recovery of item parameters in the

nominal response model: A comparison of marginal maximum likelihood estimation and Markov
chain Monte Carlo estimation. Applied Psychological Measurement 26 339–352. MR1917876

University of Campinas
Cidade Universitária “Zeferino Vaz”
Distr. Barão Geraldo
Campinas
São Paulo 13083-859
Brasil
E-mail: cnaber@ime.unicamp.br

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
Florianopólis/SC, 57072–970
Brazil
E-mail: dandrade@inf.ufsc.br
URL: http://www.inf.ufsc.br/~dandrade

http://www.ams.org/mathscinet-getitem?mr=1767562
http://www.ams.org/mathscinet-getitem?mr=0202312
http://www.ams.org/mathscinet-getitem?mr=1917876
mailto:cnaber@ime.unicamp.br
mailto:dandrade@inf.ufsc.br
http://www.inf.ufsc.br/~dandrade

	Introduction
	MCMC estimation and the other methods
	Simulation study
	Concluding remarks
	Acknowledgments
	References
	Author's Addresses

