
Brazilian Journal of Probability and Statistics
2010, Vol. 24, No. 2, 400–412
DOI: 10.1214/09-BJPS036
© Brazilian Statistical Association, 2010

Nonergodicity and growth are compatible for 1D
local interaction

A. D. Ramos and A. Toom
Federal University of Pernambuco

Abstract. We present results of Monte Carlo simulation and chaos approxi-
mation of a class of Markov processes with a countable or continuous set of
states. Each of these states can be written as a finite (finite case) or infinite
in both directions (infinite case) sequence of pluses and minuses denoted by
⊕ and �. As continuous time goes on, our sequence undergoes the follow-
ing three types of local transformations: the first one, called flip, changes any
minus into plus and any plus into minus with a rate β; the second, called an-
nihilation, eliminates two neighbor components with a rate α whenever they
are in differents states; and the third, called mitosis, doubles any component
with a rate γ . All of them occur at any place of the sequence independently.
Our simulations and approximations suggest that with appropriate positive
values of α,β and γ this process has the following two properties. Growth:
In the finite case, as the process goes on, the length of the sequence tends to
infinity with a probability which tends to 1 when the length of the initial se-
quence tends to ∞. Nonergodicity: The infinite process is nonergodic and the
finite process keeps most of the time at two extremes, occasionally swinging
from one to the other.

1 Introduction

Since the first studies of the Ising model, it became common among physicists to
recognize the qualitative difference between the one-dimensional and the multi-
dimensional cases for all multicomponent models with local interaction. This lore
crystallized in the shape of the “positive rates conjecture” (see [4], pages 178, 201)
and was brilliantly refuted by Peter Gács [2,3]. However, the cases when a random
process with one-dimensional local interaction shows some form of nonergodicity,
remain nontrivial and for this reason still attract attention; our task is to provide
another case of this sort.

Our ultimate goal is to study the case which we call infinite. In this case, the
configurations are double infinite sequences of pluses and minuses, denoted by ⊕
and �, respectively. However, this case is not yet defined rigorously. In addition,
every computer has a finite memory, so any computer simulation in fact is a sim-
ulation of some finite process. For these reasons along with infinite processes, we
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Figure 1 A circular C with |C| = n.

deal with analogous finite processes, which are easy to define and which we in fact
model.

In the finite case, to avoid complications at the ends, we use configurations
called “circulars.” A circular is just a finite sequence of pluses and minuses, but
terms of this sequence, called components, are enumerated by remainders modulo
|C|, where |C| is the length (i.e., the number of components) of the circular, rather
than natural numbers. (In the literature this is sometimes called periodic condition.)
Figure 1 shows a circular C with length n = |C| and components C0, . . . ,Cn−1,
whose indices 0, . . . , n − 1 are remainders modulo n, so the index next to n − 1 is
zero.

The usual finite sequences of pluses and minuses, whose terms are indexed by
natural numbers, are called words. The length of a word W is denoted by |W |.
There is the empty word, denoted by �, whose length is zero. We say that a word
W = (a1, a2, . . . , ak) appears at a place i in a circular C = (C0, . . . ,Cn − 1) if
Ci+1 = a1,Ci+2 = a2, . . . ,Ci+k = ak , where the sums in the indices are modulo n.
If a word W appears in a circular C and |W | ≤ |C|, we can substitute it by another
word V , thus obtaining another circular. We shall label such a substitution with
W → V . Our process consists in iterative applications of three concrete kinds of
substitutions. Namely, as continuous time goes on, our sequence (finite or infinite)
undergoes the following types of transformation:

• Annihilation: (⊕,�) → � and (�,⊕) → �. If the states of the
components with indices x and x + 1 are different, both disappear
with a rate α independently of the other components. The com-
ponents x − 1 and x + 2 become neighbours. The length of the
circular decreases by two.

• Flip: ⊕ → � and � → ⊕. This changes the state of one com-
ponent with a rate β independently of the other components. The
length of the circular does not change.

• Mitosis: ⊕ → ⊕⊕ and � → ��. This duplicates one component
with a rate γ independently of other components. The length of
the cicular increases by one.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

In the finite case the text presented above may be accepted as a definition. In the
infinite case the corresponding class of processes has never been rigorously defined
(according to our knowledge). However, we have reasons to believe that such a
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definition is possible. Processes of this sort have been mentioned in a physical
context [5,6]. For similar processes with discrete time some special cases have
been already studied [7–9,11] and a general definition for the discrete time case
is already available [10]. Thus we take the liberty to speak about both finite-space
and infinite-space versions of the processes described above and study them using
Monte Carlo method and chaos approximation.

Our main results: Monte Carlo simulation and chaos approximation lead to sim-
ilar pictures of ergodicity versus nonergodicity and growth versus shrinking (Fig-
ures 2 and 6). Both of them suggest that with appropriate positive values of α,β

and γ our processes have the following two properties:
Growth: In the finite case the length of the circular tends to infinity with prob-

ability that tends to one, as the length of initial circular (consisting of several mi-
nuses) tends to ∞.

Nonergodicity: The infinite process is nonergodic and the finite process keeps
most of the time at two extremes, occasionally swinging from one to the other.

Our work was motivated by success and failure of [11], which considered infi-
nite processes similar to ours with these differences: time was discrete (which we
deem unimportant), flip was asymmetric, that is, it turned minuses into pluses, but
not vice versa (which also is unimportant for us since our initial configuration con-
sists of minuses) and mitosis was absent (which is important). [11] proved some
form of nonergodicity for that process for α small enough: if the process started
with “all minuses,” the percentage of pluses always remained small. This was a
success and it was improved in [8] and studied numerically in [7,9]. The failure
of [11] was the impossibility to present a finite analog: in the absence of mitosis,
length of the sequence decreased in average and the configuration degenerated. In
our work this failure is removed.

2 Monte Carlo simulation

Due to limitations of all real computers, the Monte Carlo method by its very nature
always refers to some finite space case, even when the ultimate motivation is to
study the infinite case. In addition, even when we study a continuous time process,
its computer simulation always has discrete time. This applies to our study also.
Thus, we approximate our infinite-space process with a Markov process with a
countable set � of states, where � is the set of circulars of all lengths. The time t

(i.e., the number of iterations of our computer simulation) is discrete and at every
time step at most one transformation of the list (1), chosen at random, takes place.
Thus, in each individual experiment we obtain a randomly generated sequence of
circulars and the circular obtained at time t is denoted by Ct . Its x-th component is
denoted by Ct

x , where x = 0, . . . , |Ct | − 1. We denote by M the set of probability
distribution, that is, the set of normalized measures on �, the set of circulars.
We call a measure μ ∈ M local if it is in fact concentrated on a finite subset
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of �. We consider the circulars Ct as representations of the corresponding local
measures μt ∈ M. So the sequence C0,C1,C2, . . . is a “typical” trajectory of the
corresponding process μ0,μ1,μ2, . . . .

Let us denote by quant(W |C) the quantity of different places, at which a word
W appears in a circular C. After that we define the frequency of W in C as

freq(W |C) = quant(W |C)

|C| . (2)

For any μ ∈ M we define the frequency of the word W according to μ as

freq(W |μ) = ∑
C∈�

freq(W |C) · μ(C). (3)

We were especially interested in freq(⊕|μt), that is, the frequency of pluses
at time t . Due to limitations of our computer facilities, we could not estimate
freq(⊕|μt) directly, so we approximated it by

freq(⊕|μt)
def= 1

t

t∑
k=1

freq(⊕|Ck). (4)

Since the rules of our process do not change when we swap plus and minus, the
ergodicity of our infinite process implies that the frequency of pluses tends to 1/2
and for its finite analog this frequency tends to 1/2 with a probability, which tends
to 1 when the length of the initial condition (consisting only of minuses) tends
to ∞. To estimate the desired frequencies we used the following procedure, which
we call Imitation. This procedure generates a sequence of circulars in the following
inductive way. (Forget imprefections of computer-generated random numbers.)

Base of induction. The initial circular C0 consists of 1000 minuses.
t-th induction step. Given a circular Ct , where t = 0,1,2, . . . we performed

these three procedures:
The first procedure imitated the random choice of a place where to per-

form a transformation: a random integer number x distributed uniformly in
{0,1, . . . , |Ct | − 1} was generated to identify the position, where the transforma-
tion would occur.

The second procedure imitated (1): first it generated a real random number ξ

distributed uniformly in (0,1). Then:

• if ξ ∈ [0, α
α+β+γ

) and Ct
x �= Ct

x+1, these components annihilated, that is, both
of them disappeared.

• If ξ ∈ [ α
α+β+γ

,
α+β

α+β+γ
), the component Ct

x changed its state from � to ⊕ or
from ⊕ to �.

• If ξ ∈ [ α+β
α+β+γ

,1], this component underwent mitosis, that is turned into two
components in the same state.
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If we denote the resulting circular by Ct+1, we obtain the induction step of that
process, which we have in mind. However, this process cannot yet be implemented
on a real computer. That is why we denote the resulting circular by (C′)t . Due to
presence of annihilation and mitosis, the length of (C′)t might be different from
the length of Ct ; so in the course of the process the length of our circular changed
randomly and usually had a tendency either to shrink all the time or to grow all the
time. To prevent our process from shrinking to degeneration or growing beyond
our computer possibilities we used the third procedure.

The third procedure which helped to keep Ct within range: given (C′)t , we
generated a new circular, namely Ct+1, in one of the following ways.

Duplication: if |(C′)t | < Nmin, where Nmin = 500, then Ct+1 was obtained from
(C′)t by concatenating it with its copy and thereby duplicating its length.

Cut: if |(C′)t | > Nmax, where Nmax = 15,000, then Ct+1 was obtained from
(C′)t deleting half of it.

Otherwise we changed nothing and obtained Ct+1 = (C′)t .
When we stopped: We stopped our simulation when each one of the three trans-

formations (1) occured at least 100,000 times. Thus the procedure Imitation is
described.

To obtain the small squares on Figure 2, approximating the boundary between
the regions of ergodicity and nonergodicity, we used Imitation to attribute an ap-
propriate value to a Boolean variable denoted by E (which means “it seems to be
ergodicity”) as follows: if at the end of iteration the quantity freq(⊕|μt) was in the

Figure 2 White squares approximate the boundary between suggested ergodicity and suggested
nonergodicity. White balls approximate the boundary between suggested shrinking and suggested
growth. Compare this figure with Figure 6.
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range (0.45,0.55), we set E = yes; otherwise we set E = no. We interpreted the
result E = yes as a suggestion that the infinite process with the triple (α,β, γ ) is
ergodic; the result E = no was interpreted as a suggestion that this triple produces
a nonergodic process.

Notice that if we multiply α,β and γ by one and the same positive number, the
process does not change. So only ratios of these three numbers to each other are
important for us. We used Imitation within a cycle with a fixed γ /β and grow-
ing α/β: we started with α/β = 0.1 and then iteratively performed Imitation and
increased α/β by 0.1 and repeated this until α/β reached the value 8 or E got
the value no. Thus we obtained a certain value of α/β . In fact we performed this
cycle 5 times and recorded the arithmetical average of the 5 values of α/β thus
obtained. All this was done for 50 values of γ /β , namely the values 0.1 × i with
i = 1, . . . ,50. Thus we obtained 50 pairs (α/β, γ /β) represented by small squares
on Figure 2.

To obtain the small circles on Figure 2, approximating the boundary between
the regions of growth and shrinking, we used Imitation within a cycle with a fixed
α/β and growing γ /β: we started with γ /β = 0.1 and then iteratively performed
Imitation and increased γ /β by 0.1 and repeated this until γ /β reached the value
8 or there was none duplication in the course of performing Imitation. Thus we
obtained a certain value of γ /β . In fact, we performed this cycle 5 times and
recorded the arithmetical average of the 5 values of γ /β thus obtained. All this
was done with 17 values of α/β , namely, the values 0.5 × i with i = 0, . . . ,16.
Thus we obtained 17 pairs (α/β, γ /β) represented by small circles on Figure 2.

Now let us look at Figure 3(a), where we put results of two different experi-
ments to save space. One experiment with α/β = 1 and γ /β = 3 is represented
by the points, whose vertical coordinates are between 0.3 and 0.7. In this case the
frequency of pluses kept close to 1/2. We interpreted this case as an example of
growth and ergodicity.

Figure 3(b) pertains to the case α/β = 7 and γ /β = 3. It shows a different
behavior: most of the time the frequency of pluses keeps either near a number
close to zero or near a number close to one. In other words, in this case freq(⊕|Ct)

oscillates between two extremes. We interpreted this case as an example of growth
and nonergodicity.

The points on Figure 3(a), whose vertical coordinates are less than 0.2, pertain
to the case α/β = 7 and γ /β = 1/2. The figure shows no swing in this case, but
there may be swings too rare for our computer time. In this connection let us dis-
tinguish two cases: “real” and “ideal.” The real case is that, which was actually
programmed, including the third procedure at every step of iteration. In this case
the length of the circular remains bounded and therefore our process is an ergodic
finite Markov chain. Due to its symmetry, the limit frequencies of pluses and mi-
nuses must be equal. So, since we see the process staying for a long time with a
small (less than 0.2) frequency of pluses, somewhen in the future it must stay for
an equally long time with an equally small frequency of minuses and so on with
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(a)

(b)

Figure 3 (a) The points whose vertical coordinates are between 0.3 and 0.7 pertain to the case
α/β = 1 and γ /β = 3. We suggest that in this case our infinite process grows and is ergodic. The
points with the vertical coordinates less than 0.2 pertain to the case α/β = 7 and γ /β = 1/2. We
conjecture that in this case our infinite process shrinks and is nonergodic. (b) Pertains to the case
α/β = 7 and γ /β = 3. We observe that freq(⊕|Ct ) spends most of the time near 0.1 or 0.9, some-
times rapidly swinging from one extreme to the other. We suggest that the corresponding infinite
process grows and is nonergodic.
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swings between them. The ideal case is the same without the third procedure. In
this case, if the process grows, swings may be completely absent with a positive
probability. However, in the present case the process shrinks, so the swings seem
to be inevitable also. Anyway, we suggest to classify this case as an example of
shrinking and nonergodicity.

3 Chaos approximation

Chaos approximation is widely used in the numerical study of random processes,
especially in physical context. In spite of its simplicity, its behavior often is qualita-
tively similar to behavior of the original process. In our case chaos approximation
gives us a deterministic approximation of our process, whose behavior is shown
on Figure 6. It is really similar to that on Figure 2.

Now let us describe the chaos approximation in our case. Remember our proce-
dure of Imitation. Let us imagine that at every step of this procedure, in addition
to the operations described above (before or after them—it does not matter), all
the components of Ct are randomly permuted. Behavior of the resulting process
essentially has only two parameters: quantity of pluses and quantity of minuses
at time t , which we denote by X(t) and Y(t). When these quantities are large,
we may approximatedly treat them as if they were real. In this approximation, we
obtain a random process described by the differential equations (5):

dX(t)

dt
= −β · X(t) + β · Y(t) + γ · X(t) − α · X(t)Y (t)

X(t) + Y(t)
,

dY (t)

dt
= −β · Y(t) + β · X(t) + γ · Y(t) − α · X(t)Y (t)

X(t) + Y(t)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

The last term in each formula is based on our assumption that all the components
are mixed all the time, whence the neighbor components are independent from
each other. Also notice that in this case multiplying α,β and γ by one and the
same positive number does change the process, but in a very special way: it only
slows it down or speeds it up. This allows us to use only ratios α/β and γ /β in the
Figure 6.

Since the process (5) is homogeneous, we deal in fact with a two-dimensional
analog of the theorem on page 7 of [1]. So we may go to other variables

S(t) = X(t) + Y(t) and B(t) = X(t) − Y(t)

X(t) + Y(t)
. (6)

For simplicity, sometimes we shall denote X(t), Y (t), S(t) and B(t) by X,Y,S

and B , respectively. The following system of equations is equivalent to (5):

dS

dt
= S ·

(
γ − α

2
(1 − B2)

)
, (7)

dB

dt
= B ·

(
α

2
(1 − B2) − 2β

)
. (8)
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The last equation is easy to solve explicitly, but we shall get all we need by quali-
tative arguments. Since we are especially interested in the proportion of each type
of particles, we consider also another process, which we call normalized chaos
approximation:

Xnorm(t) = X(t)

X(t) + Y(t)
, Ynorm(t) = Y(t)

X(t) + Y(t)
. (9)

Then

Xnorm(t) = 1 + B(t)

2
and Ynorm(t) = 1 − B(t)

2
.

Thus, all we need to know will follow as soon as we study behavior of B(t).
So let us treat the equation (8) as a deterministic dynamical system with a space
[−1,1] and continuous time t . We call a number B∗ ∈ [−1,1] a fixed point of
this system if (8) equals zero at B = B∗. We say that a fixed point B∗ ∈ [−1,1]
attracts a point B ∈ [−1,1] if the process (8) starting at B(0) = B tends to B∗
when t → ∞. Given a fixed point, we call its basin of attraction or just basin the
set of points attracted by it. It is easy to describe completely fixed points and their
basins for (8). The right-hand side of (8) equals zero at three (generally complex)
values of B , which we denote by

B∗
1 = −

√
1 − 4β

α
, B∗

2 = 0, B∗
3 =

√
1 − 4β

α
. (10)

Hence follows our classification:
If α/β < 4, then B∗

1 and B∗
3 are not real and the right-hand side of (8) is⎧⎨

⎩
positive when B ∈ [−1,0),
zero when B = 0,
negative when B ∈ (0,1].

Figure 4 illustrates this.
Therefore in this case B(t) tends to zero from any initial value when t → ∞.
If α/β = 4, then B∗

1 and B∗
3 are real and equal to zero. The signs of the right-

hand side of (8) are the same as in the previous case and B(t) also tends to zero
from any initial condition when t → ∞.

Figure 4 Behavior of B(t) when α/β < 4.
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Figure 5 Behavior of B(t) when α > 4β .

If α/β > 4, then B∗
1 and B∗

3 are real and −1 < B∗
1 < B∗

2 = 0 < B∗
3 < 1 (remem-

ber that β > 0). So the right-hand side of (8) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

positive when B ∈ [−1,B∗
1 ),

zero when B = B∗
1 ,

negative when B ∈ (B∗
1 ,B∗

2 ),
zero when B = B∗

2 = 0,
positive when B ∈ (B∗

2 ,B∗
3 ),

zero when B = B∗
3 ,

negative when B ∈ (B∗
3 ,1].

Figure 5 illustrates this.
Therefore in this case B(t) tends to B∗

1 or B∗
2 or B∗

3 from any initial condition
when t → ∞, so [−1,1] is a union of three basins:

basin(B∗
1 ) = [−1,0), basin(B∗

2 ) = {0}, basin(B∗
3 ) = (0,1].

Thus the normalized chaos approximation is ergodic if α/β ≤ 4 and nonergodic
if α/β > 4.

Now we are ready to study the chaos approximation (5). Let us remember that
X(t) + Y(t) = S(t) and say that our dinamical system:

• grows if S(t) tends to infinity when t → ∞.
• shrinks if S(t) tends to zero when t → ∞.

Let us find out when it grows and when it shrinks.
Notice that we may rewrite (7) as

d lnS

dt
= γ − α

2
(1 − B2). (11)

Let us denote by G(B) the right-hand side of (11).
Given two positive functions f1 and f2 of t ≥ 0, let us write f1 � f2 if f1 =

O(f2) and f2 = O(f1).

Lemma. Let B(0) ∈ basin(B∗
i ), where i ∈ {1,2,3}. Then:

If G(B∗
i ) > 0, then lnS(t) � t .

If G(B∗
i ) = 0, then | lnS(t)| = o(t).

If G(B∗
i ) < 0, then − lnS(t) � t .
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Proof. The easiest case is when the initial value of B is a fixed point of (8). In this
case B(t) ≡ B(0) for all t ≥ 0, so the right-hand side of (11) is a constant.

If B(0) equals B∗
2 = 0, then (11) turns into

d lnS(t)

dt
= γ − α/2,

whence lnS(t) = (γ − α/2) · t + const, so

S(t) = e(γ−α/2)·t times a constant.

Therefore our process grows if γ /α > 1/2 and shrinks if γ /α < 1/2.
If B∗

1 and B∗
3 are real and B(0) equals one of them, then (11) turns into

d lnS(t)

dt
= γ − 2β,

whence lnS(t) = (γ − 2β) · t + const, so

S(t) = e(γ−2β)·t times a constant.

Therefore our process grows if γ /β > 2 and shrinks if γ /β < 2.
Now let us consider the general case: B(0) is any number in [−1,1]. Then B(0)

belongs to a basin of some B∗
i , where i ∈ {1,2,3}. Then from (11) for any t ≥ 0

lnS(T ) = lnS(0) +
∫ T

0
G(B(t)) dt, (12)

where the integration is taken along the trajectory (S(t),B(t)) of our process. It is
easy to prove that

lnS(t)

t
tends to G(B(bi)) when t → ∞. (13)

This fact is similar to the well-known fact that if a sequence has a limit, its
Cesàro transformation has the same limit. So the idea of the proof is the same.
Figure 6 resumes our findings.

In the special case when X(0) = Y(0) we have B(t) = 0 for all t . But zero is a
fixed point, so the process is ergodic. �

Conclusion

Our main purpose was to study a class of random processes, whose states were
infinite in both directions sequences of pluses and minuses. At the same time we
had to deal with analogous processes, whose states were finite sequences of pluses
and minuses, which we called circulars. We studied these processes using two
methods: Monte Carlo and chaos approximations. These methods led us to similar
results and suggested that our processes can grow and be nonergodic at the same
time. So we may have found another example of 1-D nonergodicity.
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Figure 6 Classification for X(0) �= Y (0). Compare this figure with Figure 2.
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