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The statistical mechanics of stretched polymers
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Abstract. We describe some recent results concerning the statistical prop-
erties of a self-interacting polymer stretched by an external force. We con-
centrate mainly on the cases of purely attractive or purely repulsive self-
interactions, but our results are stable under suitable small perturbations
of these pure cases. We provide in particular a precise description of the
stretched phase (local limit theorems for the endpoint and local observables,
invariance principle, microscopic structure). Our results also characterize pre-
cisely the (nontrivial, direction-dependent) critical force needed to trigger the
collapsed/stretched phase transition in the attractive case. We also describe
some recent progress: first, the determination of the order of the phase tran-
sition in the attractive case; second, a proof that a semi-directed polymer in
quenched random environment is diffusive in dimensions 4 and higher when
the temperature is high enough. In addition, we correct an incomplete argu-
ment from Ioffe and Velenik [In Analysis and Stochastics of Growth Pro-
cesses and Interface Models (2008) 55–79].

1 Introduction

The statistical mechanics of stretched polymers has already a long history (see,
e.g., [2,15]) and has known a strong revival in recent years, thanks in particular to
remarkable experimental progress (in particular, the development of micromanipu-
lation techniques, such as optical tweezers and atomic force microscopy, that allow
a direct experimental realization of such a situation, making it possible, for exam-
ple, to measure precisely the force/extension relation for given polymer chains).

In the present review, the polymers are always assumed to be long, flexible
chains, which means that we are studying the polymer chains at a scale large com-
pared to their persistence length. It should be noted, however, that our techniques
should be able to handle a nontrivial persistence length, or even the case of a semi-
flexible polymer, the persistence length of which is comparable to its length.

The physical situation we want to analyze is depicted in Figure 1. Namely, we
consider a long polymer chain, pulled by forces F and −F at its extremities. How-
ever, this setting is slightly inconvenient, as the spatial location of the polymer is
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Figure 1 Left: A polymer chain pulled at both endpoints by opposite force F and −F . Right: The
equivalent setting considered in the present review, in which one of the endpoint is pinned at the
origin, the other one being pulled by a force F .

not fixed. To lift the ambiguity, we fix one of the endpoints at the origin, and ap-
ply a force F to the other endpoint. Obviously, the two descriptions are physically
completely equivalent.

There are two contributions to the polymer energy: the first one is the internal
energy due to the self-interaction, which will be denoted by �; the second is the
contribution due to the work done by the force, −〈F,D〉d , where D is the total
extension of the polymer (i.e., the position of its free endpoint).

All this review, except Sections 5 and 6, is based on the work [7], in which
proofs of the various statements made below can be found.

In the Appendix, we provide an alternative to an incomplete argument we gave
in [7].

2 The model

2.1 Polymer configurations and their distribution

A configuration of the polymer is given by a length n nearest-neighbor path on Z
d ,

γ = (γ (0), . . . , γ (n)), with γ (0) = 0. Notice that there would be no problems in
considering more general geometries (e.g., finite-range jumps).

To each configuration γ of the polymer, we associate an internal energy �(γ )

given by

�(γ )
def= ∑

x∈Zd

φ(�x(γ )),

where �x(γ ) is the local time of γ at x, �x(γ )
def= ∑n

i=0 1{γ (i)=x}. The function
φ : N → R is a nondecreasing function satisfying φ(0) = 0.
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Remark 2.1. Here, and in the following, we are considering local times at ver-
tices. We could just as well have considered more general local potentials, for
example, local times through (possibly directed) edges.

We shall consider two classes of interaction potentials φ: attractive and repul-
sive. They are characterized as follows:

• Repulsive self-interactions. These are characterized by

φ(�1 + �2) ≥ φ(�1) + φ(�2).

The terminology can be easily understood: The energetic cost of placing �1 + �2
monomers at a given vertex x is higher than that of placing �1 monomers at
a vertex x and �2 monomers at a different vertex y. Since lower energies are
favored, this will induce a self-repulsion of the chain.

• Attractive self-interactions. These are similarly characterized by

φ(�1 + �2) ≤ φ(�1) + φ(�2).

The same argument as before shows that this induces a self-attraction of the
chain. In the attractive case, we can, without loss of generality, make the fol-
lowing further assumption on φ:

lim
�→∞

φ(�)

�
= 0. (1)

Indeed, if φ was growing super-linearly, then the energy would always dominate
the entropy (which obviously grows linearly with the chain length), and the
polymer would always concentrate on two vertices. On the other hand, if there
is a linear part in φ, then it can be taken out, since the total length of the polymer
is fixed, and thus the contribution of the linear part is independent of the polymer
configuration. In the following, we shall always assume that (1) is fulfilled when
considering self-attractive interactions.

Remark 2.2. In this review, we only discuss attractive and repulsive potentials.
Our results, however, are stable under perturbations. This is explained in details
in [7].

Let now F ∈ R
d be the force applied at the free endpoint. Our model is defined

by the following probability measure on paths γ = (γ (0), . . . , γ (n)),

P
F
n (γ )

def= 1

ZF
n

e−�(γ )+〈F,γ (n)〉d .

Before finishing this section, let us mention how a few classical polymer models
can be embedded into our framework.
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2.2 Some examples

The self-avoiding walk (SAW). This is the standard model for self-repelling paths,
with countless applications in polymer physics. It is defined by the probability
measure giving equal weight to all length n nearest-neighbor paths γ on Z

d satis-
fying the condition that no vertex is visited more than once. It is immediate to see
that this corresponds to the particular choice

φ(�) =
{∞, if � ≥ 2,

0, if � ∈ {0,1}.

The Domb–Joyce model. There are numerous models of weakly self-avoiding
walk, in which the hardcore self-avoidance condition characterizing the SAW is
replaced by a softcore penalty for multiple visits of a given vertex. The best-known
such model is the Domb–Joyce model, in which the energy of a polymer chain γ

is given by

β
∑

0≤i<j≤n

1{γ (i)=γ (j)}

for some β > 0. It is easily verified that this corresponds to setting

φ(�) = 1
2β�(� − 1).

The discrete sausage. This model has been studied in many papers under vari-
ous names and interpretations. We chose this name in analogy with its continuous
counterpart in which an underlying Brownian motion replaces the simple random
walk. In this model, the energy of a polymer chain γ is simply given by β times
the number of different vertices visited by γ . This corresponds to the particular
choice

φ(�) =
{

β, if � ≥ 1,
0, if � = 0.

The above interaction is obviously attractive.

The reinforced polymer. This is a generalization of the previous model, formally
analogous to a reinforced random walk. Let (βk)k≥1 be a nonincreasing sequence
of nonnegative real numbers. The contribution to the energy of a given configura-
tion γ due to the kth visit at a given vertex is given by βk . In other words,

φ(�) =
�∑

k=1

βk.
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The polymer in an annealed random potential. Another important example of
polymer model with attractive self-interaction is given by a polymer in an an-
nealed random potential. Let (Vx)x∈Zd , be a collection of i.i.d. nonnegative ran-
dom variables (the random potential). Given a realization θ of the environment,
the quenched weight associated to a polymer configuration γ is

wθ
qu(γ )

def= e−∑n
i=0 Vγ (i)(θ). (2)

It associates to each monomer the value of the potential at its location. The an-
nealed weight of a polymer configuration corresponds to averaging the quenched
weight w.r.t. the environment,

wan(γ )
def= Ew·

qu(γ ). (3)

Physically, this corresponds to a situation in which both the polymer and the envi-
ronment have had time to reach equilibrium. It is easy to check that the probability
measure associated to the annealed weights corresponds to choosing

φ(�) = − log Ee−�V .

2.3 The inverse correlation length

In our analysis, a crucial role is played by the two-point function and the associated
inverse correlation length. The two-point function is defined, for λ ∈ R and x ∈ Z

d ,
by

Gλ(x)
def= ∑

γ :0→x

e−�(γ )−λ|γ | def= ∑
γ :0→x

Wλ(γ ),

where the sum runs over all nearest-neighbor paths γ from 0 to x (of arbitrary
length), and |γ | denotes the length of γ . It is easy to see that Gλ(x) is finite (for
all x ∈ Z

d ) as soon as λ > λ0, where

λ0
def= lim

n→∞
1

n
log

∑
γ :|γ |=n

γ (0)=0

e−�(γ )

is essentially the free energy per monomer associated to a (free) polymer chain.
The above limit is well defined by sub- (super-) additivity in the repulsive (attrac-
tive) case. It can also be shown that λ0 ∈ (0,∞) always holds, with λ0 = log(2d)

in the attractive case [4,7].
Moreover, the two-point function is infinite (for all x ∈ Z

d ) when λ < λ0, so
that there is a transition at the critical value λ0. Indeed, λ < λ0 readily implies
divergence of the bubble diagram

∑
x Gλ(x)2 = ∞. In view of, for example, (A.2)

in [7], this already implies divergence of the two-point function in the repulsive
case. On the other hand in the attractive case Gλ(0) = ∞ as soon as λ < λ0. The
divergence of the two-point function for every x follows, since in the attractive
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case Gλ(x) ≥ Hλ(x)Gλ(0), where Hλ(x) > 0 is the contribution of all the paths
γ : 0 	→ x which are stopped upon arrival to x.

When λ > λ0, not only is the two-point function finite, but it is actually expo-
nentially decreasing as a function of x. This exponential decay is best encoded in
the inverse correlation length ξλ : Rd → R, defined by

ξλ(x)
def= lim

k→∞−1

k
logGλ([kx]) (λ > λ0),

where [x] ∈ Z
d denotes the component-wise integer part of x ∈ R

d . It can be
proved that the inverse correlation length is well defined, and is an equivalent norm
on R

d . It measures the directional rate of decay of the two-point function, in the
sense that

Gλ(x) = e−ξ(nx)‖x‖(1+o(1)),

where nx
def= x/‖x‖ and the function o(1) converges to zero as ‖x‖ goes to infinity.

An important object associated to the correlation length ξλ is the Wulff shape
Kλ, defined by

Kλ
def= {F ∈ R

d : 〈F,x〉d ≤ ξλ(x),∀x ∈ R
d}.

The name Wulff shape is inherited from continuum mechanics, where Kλ is the
equilibrium crystal shape once ξλ is interpreted to be a surface tension (i.e., Kλ

is the convex set with support function ξλ). Alternatively, one can describe Kλ in
terms of polar norms, as was done, for example, in [5]: Introducing the polar norm

ξ∗
λ (F )

def= max
x 
=0

〈F,x〉d
ξλ(x)

= max
ξλ(x)=1

〈F,x〉d,

we see that Kλ can be identified with the corresponding unit ball,

Kλ = {F : ξ∗
λ (F ) ≤ 1}.

In general, the family (Kλ)λ≥λ0 is an increasing (w.r.t. inclusion) sequence of con-
vex subsets of R

d (actually, convex bodies as soon as λ > λ0).

2.4 Behavior of the correlation length as λ ↓ λ0

As will be explained in the next section, the behavior of ξλ as λ ↓ λ0 has an im-
portant impact on the behavior of the polymer under stretching. In this respect, the
following dichotomy between attractive and repulsive models can be established:

ξλ0(x)
def= lim

λ↓λ0
ξλ(x)

{≡ 0, in the repulsive case,
> 0, in the attractive case.

We refer to [4,7] for the attractive case. The repulsive part is worked out in the
Appendix. The behavior of ξλ0 has an immediate impact on the limiting shape
Kλ0 : Kλ0 has nonempty interior in the attractive case, whereas Kλ0 = {0} in the
repulsive case.
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3 Macroscopic behavior of the polymer

Let us say that the polymer is in the collapsed phase if and only if

lim
n→∞P

F
n

(
1

n
|γn| > ε

)
= 0 ∀ε > 0.

This means that, in the macroscopic scaling limit, the polymer has no extension.
We call the complementary phase the stretched phase.

The following theorem describes the macroscopic behavior of the polymer de-
pending on the intensity of the applied force.

Theorem 3.1.

The polymer is
{

in the collapsed state if F ∈ Kλ0 ,
in the stretched state if F /∈ Kλ0 .

In the repulsive case, we have seen that Kλ0 = {0}, and we can thus con-
clude that any nonzero applied force results in the polymer being macroscopi-
cally stretched. In the attractive case, however, Kλ0 
= ∅, and the polymer remains
macroscopically collapsed for small enough applied forces. This corresponds to
the intuition: In the attractive case, the self-interaction favors the collapsed phase,
while the force favors the stretched phase, and the phase transition is a consequence
of this competition.

Notice that Theorem 3.1 does not describe the behavior of the polymer when
the force belongs to the boundary of Kλ0 . This critical case is delicate and is still
under investigation in the case of attractive self-interaction; see also Section 5.
This question in the case of repulsive self-interaction reduces to proving that the
critical polymer (i.e., without any applied force) is subballistic. This is still an
open problem, even for the SAW in dimensions 2,3 and 4! Of course, it should be
possible (but less interesting) to establish diffusivity in high enough dimensions
using a suitable version of the lace expansion.

4 Description of the stretched phase

We now turn to the description of the polymer in the stretched phase. We treat si-
multaneously the cases of attractive and repulsive self-interactions, as the results in
that phase are identical. The only assumption is thus that F /∈ Kλ0 , or, equivalently,
that

F ∈ ∂Kλ for some λ > λ0. (4)

The above λ should be viewed as a conjugate parameter.
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4.1 Distribution of the endpoint

The first natural problem is to determine the distribution of the free endpoint of the
polymer.

The following result guarantees that the polymer is indeed in the stretched
regime: There exists v̄F ∈ R

d \ {0}, ε > 0 and c > 0 such that

P
F
n

(
1

n
γ (n) /∈ Bε(v̄F )

)
≤ e−cn.

This can then be strengthened into a strong local limit result. More precisely, there
exists a rate function JF that is strictly convex and real analytic on Bε(v̄F ) and
possesses a nondegenerate quadratic minimum at v̄F , and a positive, real analytic
function G on Bε(v̄F ) such that

P
F
n

(
1

n
γ (n) = x

)
= G(x)

nd/2 e−nJF (x)(1 + o(1)
)

as n → ∞

uniformly in x ∈ 1
n
Z

d ∩ Bε(v̄F ).

4.2 Description of the microscopic structure

4.2.1 Decomposition into irreducible pieces. In the previous subsection, we have
described the Gaussian fluctuations of the endpoint of the polymer in the stretched
phase. It is also natural, and physically relevant, as will be explained below, to
describe the structure of the whole polymer chain at the microscopic scale. The
crucial structural fact established in [7] is that whenever the pulling force F is
strong in the sense of (4), one is entitled to ignore all polymer configurations apart
from those admitting a decomposition into irreducible pieces (see Figure 2),

γ = ωL � ω1 � · · · � ωm � ωR, (5)

where � denotes concatenation. As Figure 2 indicates, there are three types of irre-
ducible pieces: the two extremal ones ωL,ωR, which could be viewed as boundary
conditions, and the bulk ones ω1, . . . ,ωm. In either case, the size distribution of
these pieces (e.g., diameter) has exponentially decaying tails [7]. Consequently,

Figure 2 The decomposition of a path γ into irreducible pieces.
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the boundary conditions have no impact on the large scale properties of such poly-
mers and, for the sake of a more transparent notation, we shall ignore them in the
sequel, considering instead a simplified model with only bulk irreducible pieces
present. Let us describe the family 
 of the latter. Recall that we fixed the pulling
force F and the conjugate parameter λ > λ0, such that F ∈ ∂Kλ. For κ ∈ (0,1) de-

fine a positive cone Y
def= {x ∈ Z

d : |〈x,F 〉d | > κξλ(x)}. It is convenient to choose
κ sufficiently small to ensure that Y contains one of the neighbors of the origin.

Given a path γ = (ω(0), . . . ,ω(l)), we say that ω(k) is a cone-point of ω if
k = 1, . . . , l − 1, and(

ω(0), . . . ,ω(k − 1)
) ⊂ ω(k) − Y and

(
ω(k + 1), . . . ,ω(l)

) ⊂ ω(k) + Y.

We say that a path ω is irreducible if it does not contain cone points and, in addition
is cone-confined in the following sense,

ω ⊆ (
ω(0) + Y

) ∩ (
ω(l) − Y

)
. (6)

We denote by 
 the set of irreducible paths, identifying paths differing only by Z
d

shifts.
Note that the set 
 is adjusted to F and, accordingly, to λ. However, the def-

initions are set up in such a way that one may use the same set 
 for all pulling
forces in a neighborhood of F . This is important for application of analytic local
limit theory, which is behind most of the results we derive. There are two canonical
variables associated with ω = (ω(0), . . . ,ω(l)) ∈ 
. The first one is the number of
steps, |ω| = l. The second one is the displacement, D(ω) = ω(l) − ω(0). Then, as
was proved in [7],

P
F
λ (ω) = exp{φ(1) − �(ω) − λ|ω| + 〈F,D(ω)〉d}

is a probability measure on 
 with exponentially decaying tails: There exist
ν1, ν2 > 0, such that uniformly in l ≥ 0,

P
F
λ (|ω| > l) + P

F
λ

(|D(ω)| > l
) ≤ ν1e

−ν2l . (7)

Consider the product measure ⊗P
F
λ on the space of countable strings (ω1,ω2, . . .)

of elements ωi ∈ 
. Recall our convention to ignore boundary pieces in (5).
Then one can express the canonical partition function ZF

n in terms of the grand-
canonical measure ⊗P

F
λ as follows:

ZF
n = eλn

∑
N

⊗P
F
λ

(
N∑

i=1

|ωi | = n

)
. (8)

Similarly, for x ∈ Y , one can express two-point functions,

Gλ(x) = e−〈F,x〉d ∑
N

⊗P
F
λ

(
N∑

i=1

D(ωi) = x

)
. (9)
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Figure 3 Pincus’ blobs picture (adapted from [2]). Under tension, the polymer decomposes into a
succession of independent “blobs” of a size given by the correlation length 1/ξ . Inside each blob, the
corresponding piece of polymer has the same scaling properties as a critical (i.e., without applied
forces) polymer.

In view of the Cramer-type condition (7), relations (8) and (9) pave the way for
a comprehensive local limit description of the microscopic geometry of polymer
chains in the corresponding canonical ensembles. Applications for statistics of a
general class of local observables are discussed in [7]. For example, one readily
infers that, under P

F
n , typical polymers γ are composed of (1+O(1/

√
n))n/E

F
n |ω|

irreducible pieces whose lengths are at most O(logn). In particular, the following
invariance principle holds.

4.2.2 An invariance principle. As before, let λ > λ0 and F ∈ ∂Kλ. Then [7] there
exists an R

d -neighborhood U of F such that the function μ = μ(H), which is de-
fined through the relation H ∈ Kμ [note that in this notation μ(F) = λ], is analytic
on U and, furthermore, the Hessian �F

�= d2μ(F) is nondegenerate.
In terms of μ the average displacement per step is given by v̄F = ∇μ(F) [7].

Now, for a given γ with |γ | = n, let γ = ω1 � · · · � ωm be its irreducible de-
composition. Again, recall that for simplicity we ignore boundary pieces in (5).
With the irreducible decomposition at hand, we define the interpolated trajectory
gn = gn[γ ] : [0,1] → R

d as follows:

(1) Let Gn : [0, n] → R
d be the linear interpolation through the space–time

points

(0,0), (|ω1|,D(ω1)),
(|ω1| + |ω2|,D(ω1) + D(ω2)

)
,

. . . ,

(
n,

∑m
1 D(ωi)

)
.

(2) For t ∈ [0,1] define gn(t) = (Gn(tn) − tnv̄F )/
√

n.

Then (gn,P
F
n ) weakly converges to the law of

√
�F Bt , t ∈ [0,1], where B is

the standard Brownian motion on R
d .

4.2.3 Pincus’ blobs. In 1976, in order to derive various scaling properties of
stretched polymers (which he modeled by SAW), Pincus introduced a heuristic
description of the polymer now known as Pincus’ blobs picture. The latter assumes
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that, in the stretched phase, the polymer’s structure is that of a string of “blobs,”
which possess (in the terminology used in the present paper) the following charac-
teristic properties:

• statistical independence;
• sizes of the order of the correlation length λ(F );
• the same scaling properties as nonstretched polymers.

It seems likely that the decomposition into irreducible pieces described in the pre-
vious subsection should yield the rigorous counterpart to this blobs picture, but a
precise identification would require substantially more work.

On the positive side, we already know that the irreducible pieces are statistically
independent (modulo the fact that their total length is fixed to n).

Concerning the sizes of the irreducible pieces, our estimates do not allow us
to say that they are of the order of the correlation length. One does have a weak
version of such a claim: Coarse-graining the polymer at the correlation scale yields
an object that does indeed admit a decomposition into irreducible pieces of the
right scale, but our estimates are too poor to be converted into estimates for the
underlying microscopic object. This seems, however, to be a purely technical issue,
and, at least for a subclass of these polymer models, one should be able to improve
on the latter estimates.

The most difficult aspect seems to be the last one. It is not actually really clear to
us what the statement exactly means, but it seems to require a good understanding
of the collapsed phase, which seems to be quite difficult in general, although this
might be easier in the attractive case (using, e.g., the technology described in [17]),
or in high enough dimensions (using, e.g., the lace expansion).

A related question of interest is to understand how v̄F scales with the applied
force F . Pincus’ conjecture is that v̄F ∝ Fχ , where χ = (1/ν) − 1 with ν the
exponent characterizing the growth of the free polymer, En(‖D‖) ∝ nν . Of course,
the determination (and even existence!) of the exponent ν itself is an open problem
in general (e.g., for the SAW below the critical dimension).

In any case, providing a rigorous version of this heuristic picture would be very
interesting for two reasons: First, its validity is taken as a basic assumption in
many works in polymer physics (see [2,15] and references therein), and, second,
its validity, especially in the regime when Fnν is not very large [in our work, we
only consider the regime in which n > n0(F ), for some fixed F , so our results
shed no light on this problem yet], is not considered obvious even from the point
of view of Theoretical Physics [9].

5 Order of the collapsed/stretched phase transition

As we have seen above, there is a nontrivial phase transition between a collapsed
and a stretched phase in the case of polymers with self-attractive interactions. In
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this section, we present some preliminary results describing in more details the
behavior of the polymer at this transition.

The problem investigated is the determination of the order of the phase tran-
sition. Let us fix a direction h ∈ ∂Kλ0 and consider a force of the form F = αh,
α ∈ R

+. The criterion used is the behavior of the macroscopic position of the
free endpoint of the polymer which, as we have seen, is given by 0 in the collapsed
phase (α < 1), and by v̄F 
= 0 in the stretched phase (α > 1). We say that the transi-
tion is of first order if the position is discontinuous at the transition: limα↓1 v̄F 
= 0,
and is of continuous otherwise. (The order turns out not to depend on the chosen
direction h.)

This question has already been investigated in the Physics’ literature [10]
(see also the earlier work [6]) for the particular case of the discrete sausage,
� = β#{γ (k) : 0 ≤ k ≤ n} (which is equivalent to a random walk among annealed
killing traps). The conclusion drawn by the authors for this particular model are the
following: The transition is of continuous in the one-dimensional case, but of first
order in all higher dimensions. Their argument was analytic in d = 1, but relied
entirely on numerical evidences for d ≥ 2.

In the case of the Wiener sausage, a lot of information has been extracted
about the behavior of the path in the collapsed regime: In dimension 1, [3,11]
(and also [12] for soft obstacles) provide a detailed description of the path for all
subcritical forces. In higher dimensions, the results seem to be restricted to the
case F = 0; see [16] for the two-dimensional Wiener sausage and [14] for the
higher-dimensional Wiener sausage. Similar results for the two-dimensional dis-
crete sausage have been obtained in [1]. The order of the transition itself does not
seem to have been investigated rigorously in these works.

It turns out, however, that it is easy to verify that the transition is continuous for
the one-dimensional discrete sausage. Namely,

Theorem 5.1. assume that d = 1 and φ(�) = β1{�≥1} (1d discrete sausage). Let
h ∈ ∂Kλ0 . There exist a1, a2, a3 > 0 such that, for any ε > 0,

P
αh
n

(
1

n
D(γ ) > ε

)
≤ e−a1ε

2n

for all n ≥ a2βε−3 ∨ a2ε
−2| log ε| and all α > 1 satisfying |α − 1| ≤ a3ε/h. In

particular, limα↓1 v̄αh = 0 and the transition is continuous.

Proof. Let us write Zλ,F
n,x = ∑

γ :0→x,|γ |=n e−�(γ )−λ|γ |+〈F,D(γ )〉d . We use the fol-
lowing convention: We drop F and/or λ from the notation when they take value
0, and similarly drop x or n from the notation when the corresponding constraint
is removed. For example, we write Zλ

x = ∑
γ :0→x e−�(γ )−λ|γ |. Also, given a par-

tition function Z and a family of paths A, we write Z[A] for the corresponding
partition function restricted to paths in A.
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We can assume that h > 0 [i.e., h = ξλ0(1)]. We first bound from above the
numerator of the probability:

Zαh
n [D(γ ) > εn] = ∑

x>εn

eλ0nZλ0,αh
n,x = ∑

x>εn

eλ0n+αhxZλ0
n,x

= ∑
x>εn

eλ0n+αhx Z
λ0
n,x

Z
λ0
x

Zλ0
x ≤ eλ0n

∑
x>εn

e(α−1)hx Z
λ0
n,x

Z
λ0
x

,

since αhx = ξλ0(x) + (α − 1)hx and Z
λ0
x ≤ e−ξλ0 (x) (by subadditivity). Moreover,

Zλ0
n,x = ESRW

[
e−�(X[0,n]),Xn = x

] ≤ e−βx
PSRW(Xn = x),

while, using τx = min{n ≥ 1 :Xn = x},
Zλ0

x = ∑
n≥0

ESRW
[
e−�(X[0,n]),Xn = x

] ≥ e−βx
∑
n≥0

PSRW(τ−1 > τx, τx = n)

≥ e−βx
PSRW(τ−1 > τx) ≥ 1

x + 1
e−βx.

We thence have, for some c1 > 0,

Zαh
n [D(γ ) > εn] ≤ eλ0n(n + 1)

∑
x>εn

e(α−1)hx
PSRW(Xn = x)

≤ eλ0n(n + 1)
∑

x>εn

e(α−1)hx−c1x
2/n ≤ eλ0ne−c2ε

2n,

provided that (α − 1)h � ε and n � ε−2| logn|.
Let us now turn to the denominator. We have, with M = (n/β)1/3,

Zαh
n ≥ Zαh

n [0 ≤ γ (k) < M,∀k ≤ n]
≥ e−βMeλ0nPSRW(0 ≤ Xk < M,∀1 ≤ k ≤ n) ≥ eλ0ne−c3β

2/3n1/3
,

since PSRW(0 ≤ Xk < M,∀1 ≤ k ≤ n) ≥ exp(−cn/M2), for some c > 0. Finally,

P
αh
n

(
D(γ ) > εn

) ≤ e−(c2ε
2−c3β

2/3n−2/3)n ≤ e−c4ε
2n,

provided n is so large that n−2/3β2/3 � ε2. �

Although the previous result confirms the corresponding prediction in [10], it
seems that among one-dimensional self-attractive polymer models, this behavior
is pathological. Indeed, as the following heuristic argument indicates, the generic
situation in dimension 1 should be that the transition is continuous at high temper-
atures only, and becomes of first order at low temperatures.

This can be easily understood (at a heuristic level at least) by considering what
happens for the variant of the discrete sausage in which φ2(�) = β1{�≥1} +β1{�≥2}.
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The discrete sausage is equivalent to a random walk among annealed killing
traps in one dimension. What made the above proof work is that, for the walk to
reach a distant point x, it must be the case that there are no obstacles between 0
and x. But once this happens, the random walk can reach x in a diffusive way at
virtually no additional cost.

In the variant, however, the situation is completely different, at least when
β � 1. Indeed, it is equivalent to a random walk among annealed i.i.d. traps com-
ing in two colors: each vertex is independently occupied by a black trap with prob-
ability p = 1 − e−β , by a white trap with probability p, by both with probability
p2, or is empty. The random walks dies if it steps on a black trap, or if it visits at
least twice a white trap. By the same reasoning as before, we see that there must
be no black traps in the interval between 0 and x. Now there are two possible
strategies: either we remove all traps altogether in this interval, or we force the
walk to move ballistically [since it cannot visit more than once each remaining
(white) trap, and has to cross them to reach x]. A simple computation shows that,
at large β , the second alternative is much less costly, and thus the critical pinned
polymer should be ballistic. The situation is opposite at small β , and in this case
the polymer should travel diffusively in an interval essentially free of traps.

This is reminiscent of what happens for the one-dimensional Brownian bridge
among pointlike obstacles, for which it is proved [13] that it is favorable for the
Brownian motion to go ballistically to its final point when the obstacles are soft,
but not in the case of hard obstacles.

Let us turn now to our (still preliminary) results in dimensions 2 and higher. In
the one-dimensional case, we essentially reduced the analysis of the order of the
transition to determining whether typical paths γ : 0 → x are ballistic at λ = λ0 (for
large ‖x‖). Such a relationship still holds in higher dimensions, and is the core of
our approach to this problem. Namely, the following argument shows that ballistic
behavior of typical polymers γ : 0 → x at λ = λ0 implies that the transition is of
first order.

Let h ∈ Kλ0 , α > 1 and ρ > 0. Using the fact that ξλ0(x) ≥ 〈h,x〉d , for all
x ∈ R

d , and proceeding as above, we can write

Zαh
n [‖D(γ )‖ ≤ ρn] = ∑

x:‖x‖≤ρn

eλ0n+α〈h,x〉d Zλ0
n,x ≤ ∑

x:‖x‖≤ρn

eλ0n+α〈h,x〉d Zλ0
x

≤ ∑
x:‖x‖≤ρn

eλ0n+αξλ0 (x)Zλ0
x ≤ eλ0n+(α−1)κρn+o(n),

where κ = sup‖x‖=1 ξλ0(x).
On the other hand, let xh be the unit vector dual to h. Assume that one can show

the following ballisticity statement: There exists ρ̄ > 0 such that, with x = [ρ̄nxh],
P

λ0
x (|γ | = n) ≥ e−o(n) as n → ∞. (10)
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Then, using this x, we would have, since Z
λ0
x � e−ξλ0 (x) and 〈h,x〉d = ξλ0(x),

Zαh
n ≥ eλ0neα〈h,x〉d Z

λ0
n,x

Z
λ0
x

Zλ0
x ≥ eλ0ne(α−1)ξλ0 (x)−o(n)

P
λ0
x (|γ | = n)

≥ eλ0ne(α−1)ξλ0 (xh)ρ̄n−o(n),

which would allow us to conclude that the transition is of first order, since this
would imply that, for small enough ρ,

P
αh
n

(‖D(γ )‖ ≤ ρn
) ≤ e−c(α)n

for any α > 1 and n large enough.
The higher-dimensional problem is thus reduced to proving (10). One natural

way to proceed is to try to extend the Ornstein–Zernike analysis developed in [7]
for the case λ > λ0 to the case λ = λ0. This requires a slightly different coarse-
graining, and a substantially refined argument and is still under progress. One
part of the argument is already complete and explains a fundamental difference
between dimensions 1 and higher. It follows from the coarse-graining argument
alluded to above that there always exists a ballistic random tube of (in average)
bounded cross-section connecting 0 and x inside which the polymer has to re-
main. In dimensions 2 and higher, this forces the polymer to move ballistically,
since staying inside this tube longer than needed has a high entropic cost. In di-
mension 1, however, as there is no transverse direction in which to escape the tube,
this entropic cost disappears and the polymer can behave diffusively (although it
does not necessarily do so, as discussed above).

6 Semi-directed polymer in a quenched random environment

As already mentioned, the case of a polymer in an annealed random potential falls
into the general framework considered in the present paper. In this section, fol-
lowing a work in progress, we present some partial new results concerning the
case of a stretched polymer in a quenched weak disorder. The full account will be
published elsewhere.

The strength of the disorder will be modulated by an additional parameter β ≥ 0.
Accordingly, we adjust the quenched and the annealed weights in (2) and (3) as

wθ
λ,β(γ ) = e−β

∑n
i=0 Vγ (i)(θ)−λ|γ | and wλ,β(γ ) = Ewθ

λ,β(γ ).

Given N ∈ N define

H−
N = {x = (x1, . . . , xd) ∈ Z

d :x1 < N}
and its outer vertex boundary LN = ∂H−

N . Consider the family DN of nearest
neighbor paths from the origin 0 to LN , and define the corresponding quenched
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and annealed partition functions,

Zθ
N = Zθ

N(λ,β) = ∑
γ∈DN

wθ
λ,β(γ ) and ZN = EZθ

N(λ,β).

We shall assume that the distribution of Vx’s has bounded support and that it sat-
isfies 0 ∈ supp(V ) ⊆ [0,∞). The former condition can be relaxed (see, e.g., [4]),
whereas the latter is just a normalization condition.

It has been recently proved by Flury [4] and then reproved by Zygouras [18]
that in four and higher dimensions for any λ > λ0 = log(2d) the annealed and
the quenched free energies are equal once β is small enough. Namely, for all β

sufficiently small there exists ξ = ξ(λ,β) > 0 such that

− lim
N→∞

1

N
logZθ

N = ξ = − lim
N→∞

1

N
log ZN. (11)

This is an important result: In sharp contrast with models of directed polymers, the
model of semi-directed polymers does not have an immediate underlying martin-
gale structure and, subsequently one has to look for different (and arguably more
intrinsic) ways to study it.

We shall take (11) as the starting point. Since, as explained in preceding sec-
tions, we fully control the annealed weights, there are some consequences at hand.
First of all, it immediately follows from Chebyshev inequality that, given ν > 0,
we may eventually ignore in the quenched ensemble subfamilies AN ⊂ DN which
satisfy ZN(AN) ≤ e−νNZN . In particular, we can continue to restrict attention to
paths γ ∈ DN which admit the irreducible decomposition (5) with only bulk ir-
reducible paths present. Next, the constant ξ in (11) can be identified in terms of
inverse correlation length as ξ = ξλ(e1), where e1 is the unit vector in the first co-
ordinate direction. More precisely, as in (9), we can express the annealed partition
function as

ZN = ∑
x∈LN

Gλ(x) = e−Nξ
∑
M

⊗P
ξe1
λ

(
M∑
i=1

〈D(ωi),e1〉d = N

)
. (12)

Here is our refinement of the result by Flury and Zygouras:

Theorem 6.1. Let d ≥ 4. Then for every λ > λ0 there exists β0 = β0(λ, d), such
that for every β ∈ [0, β0) the limit;

�θ = lim
N→∞�θ

N
�= lim

N→∞
Zθ

N

ZN

∈ (0,∞), (13)

exists P-a.s. and in L2(
).

Our second result gives a kind of justification to the prediction that semi-
directed polymers should be diffusive at weak disorder: The random weights
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wθ
λ,β give rise to a (random) probability distribution μθ

N on DN . For a polymer

γ = (γ (0), . . . , γ (τ )) ∈ DN ; τ = |γ |, define X(γ ) as the Z
d−1-valued transverse

coordinate of its endpoint; γ (τ) = (N,X(γ )).

Theorem 6.2. Let d ≥ 4. Then for every λ > λ0 there exists β̂0 = β̂0(λ, d), such
that for every β ∈ [0, β̂0) the distribution of X obeys the diffusive scaling with a
nonrandom diffusivity constant σ = σ(β,λ) > 0 in the following sense:

lim
N→∞�θ

Nμθ
N

( |X(γ )|2 − σ 2N

N

)
= 0 in L2(
). (14)

Above σ(β,λ) is precisely the (transversal) diffusivity constant of the corre-
sponding annealed polymer model. That is σ is the Gaussian curvature of ∂Kλ at
ξ(e1).

We conclude this section with a brief comment regarding (13). One way to
read (12) is to claim that the quantity tλ(x)

�= eξx1Gλ(x) satisfies a d-dimensional
renewal relation,

tλ(x) = ∑
y

tλ(y)qλ(x − y), (15)

where

qλ(z) = Eqθ
λ(z)

�= E
{
eξz1

∑
ω∈


D(ω)=z

wθ
λ,β(ω)

}
.

The quenched version of (15) is,

tθλ(x) = ∑
y

tθλ(y)q
υyθ

λ (x − y),

where υyθ is the corresponding shift of random environment. Set qθ
λ = ∑

y qθ
λ(y).

Then the limit �θ in (13) is actually recovered through the following Ansatz:

�θ = 1 + ∑
x

tθλ(x)(q
υxθ
λ − 1). (16)

Appendix: Divergence of the correlation length for self-repulsive
polymers

In this section, we provide a proof that the correlation length of self-repulsive
polymers diverges as F ↓ 0. This corrects the incomplete argument given in [7].1

By convexity, it is enough to consider ξλ
�= ξλ(e1).

1We are grateful to Jean Bérard for pointing out this flaw.
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Proposition A.1. In the case of repulsive potentials,

ξλ0 = lim
λ↓λ0

ξλ = 0.

Proof. The potential being repulsive, we know that Zn ≥ eλ0n for all n ≥ 1, and
thus can deduce that ∑

x∈Zd

Gλ0(x) = ∑
n≥1

Zne
−λ0n = ∞. (17)

We are going to show that a nonvanishing ξλ0 would contradict the latter statement.
Let us define α

�= lim�→∞ φ(�)
�

. �

Lemma A.1. Assume that

ξλ0 = lim
λ↓λ0

ξλ > 0. (18)

Then, α > log 2d − λ0. In particular, there exist c1 > 0 and c2 < ∞, such that

λ0� + φ(�) ≥ �(c1 + log 2d) − c2 (19)

for all � ∈ N.

Proof. Indeed, assume that α ≤ log 2d − λ0. Then φ(�) ≤ �(log 2d − λ0). Conse-
quently, for λ = λ0 + ε,

(λ0 + ε)|γ | + ∑
x

φ(�x(γ )) ≤ (log 2d + ε)|γ |.

As a result, ξλ ≤ ξSRW
ε , where the latter is the Lyapunov exponent of the simple

random walk with killing rate ε, known to tend to zero as ε tends to zero. �

Let GK = [−K, . . . ,K]d be the cube of radius K .

Lemma A.2. Assume (18). Then for every K there exists ν1 = ν1(K) such that∑
γ (0)=0
γ⊆GK

Wλ0(γ ) ≤ ν1(K). (20)

Proof. By (19),

Wλ0(γ ) ≤ ec2(2K+1)d−c1|γ |
(

1

2d

)|γ |

for every γ such that γ (0) = 0 and γ ⊆ GK . �

Let GK be the set of paths γ = (γ (0), . . . , γ (n)) such that γ \ γ (n) ∈ GK and
γ (n) ∈ ∂outGK .



Mechanics of stretched polymers 297

Lemma A.3. Assume (18). Then there exist ν2 < ∞ and ν3 > 0 such that∑
γ∈GK

Wλ0(γ ) ≤ ν2e
−ν3K. (21)

Proof. The proof goes along the lines of the Hammersley–Welsh method as ex-
posed in the book [8]. Let us say that γ = (γ (0), . . . , γ (n)) is a half-space path if
γ (0) = 0 and

〈γ (�), �e1〉d < 〈γ (n), �e1〉d
for all � < n = |γ |. The set of half-space paths with (γ (n), �e1)d = K will be de-
noted as PK . Evidently, (21) will follow from∑

γ∈PK

Wλ0(γ ) ≤ ν2

2d
e−ν3K. (22)

In order to prove (22), let us define yet another set of paths: We shall say that γ is
a cylindrical path; γ ∈ CK , if γ ∈ PK and, in addition,

〈γ (�), �e1〉d ≥ 0

for all � = 0, . . . , |γ |. The function

Cλ(K)
�= ∑

γ∈CK

Wλ(γ )

is finite for all λ > λ0. By our assumption on the potential �,

Cλ(K + L) ≥ e−φ(1)
Cλ(K)Cλ(L).

Therefore, K 	→ e−φ(1)
Cλ(K) is super-multiplicative. By convexity of the inverse

correlation length,

lim
K→∞

1

K
log Cλ(K) ≤ −ξλ.

It follows that

Cλ(K) ≤ eφ(1)−Kξλ(�e1) (23)

uniformly in K and in λ > λ0. By monotone convergence, (23) holds at λ0 as well.
Next, each path γ ∈ PK can be canonically (i.e., by a series of reflections)

mapped into a concatenation of cylindrical paths,

γ 	→ γ1 � γ2 � · · · � γr

with γi ∈ CMi
such that, M1 ≥ K , M1 > M2 > · · · > Mr and, in addition,

Wλ0(γ ) ≤ erφ(1)
∏

Wλ0(γi).
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It follows that

∑
γ∈PK

Wλ0(γ ) ≤ eφ(1) max
M≥K

Cλ0(M) ×
∞∏

M=1

(
1 + eφ(1)

Cλ0(M)
)
.

The target inequality (22) follows now from (23). �

In view of (20) and (21) the coarse-graining procedure of [7] implies that once
Assumption (18) holds,

∑
x Gλ0(x) is (even exponentially) convergent, which is in

contradiction with (17).
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