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Abstract. We review some recent developments in the study of Gibbs and
non-Gibbs properties of transformed n-vector lattice and mean-field models
under various transformations. Also, some new results for the loss and re-
covery of the Gibbs property of planar rotor models during stochastic time
evolution are presented.

1 Introduction

In the recent decade and a half there has been a lot of activity on the topic of
non-Gibbsian measures. Most of the original studies were based on the question of
whether renormalised Hamiltonians exist as properly defined objects, [4,15,16],
with an emphasis on discrete-spin models. Another issue, which also arose in
physics but somewhat later [30], was the following question: Apply a (stochas-
tic) dynamics which converges to a system at a temperature 77 to an initial state at
temperature 7> for a finite time. Is the resulting measure in this transient nonequi-
librium regime a Gibbs measure? Could it be described in terms of an effective
temperature (hopefully between initial and final one)? Again the first results [10]
were for discrete spins. Afterwards more general dynamics and also unbounded
spins were investigated in [2,24,27]. Although the work of [2,24] was about con-
tinuous spins, there remains something of a problem, in that for unbounded spins
the notion of what one should call Gibbsianness for a “reasonable” interaction is
less clear than in the compact case. Thus it turned out to be of interest to see how
a model with compact but continuous spins behaves. Another extension of the
original investigations was the investigation into the question of what the proper
mean-field version of the Gibbs—non-Gibbs question might be. For this, see in par-
ticular [18,20,23]. This question has a particular charm for systems with a general
local spin space.
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As there have recently been a number of reviews on other aspects of the non-
Gibbsian problem [5,7,11,25,26], we here want to emphasize what has been found
for n-vector spins. The results as yet are less complete than what is known for
Ising or Potts spins, but it has also become clear that, although many things are
similar, such systems have traits of their own which are somewhat different and
require new ideas. We have mostly worked on transformations such as stochastic
evolution, which does not rescale space, such as renormalization group transfor-
mations do. Note that in a statistical interpretation, such maps for discrete spins
model imperfect observations, that is observations in which with some probability
one makes a mistake, an interpretation which already was mentioned in [16]. For
continuous spins, the probability of staying exactly at the initial value is zero, but
for short times the map is close to the identity in the sense that the distribution
of an evolved spin is concentrated on a set close to the initial value. We obtained
conservation of Gibbsianness under stochastic evolutions when either the time is
short, or when both initial and final temperature are high. We also found that loss
of Gibbsianness occurs if the initial temperature is low, and the dynamics is an
infinite-temperature one. If the initial system is in an external field, after a long
time the measure can become Gibbsian again. In fact, here we extend the regime
where such results can be proven.

Another question we could address is the discretization question. If one approx-
imates a continuous model by a discrete one, is the approximation still a Gibbs
measure, now for discrete spins? Morally, this question is somewhat related to
renormalization-type questions, as in both cases some coarse-graining takes place,
in which the transformed system only contains part of the initial information. It
turns out that the transformed measure is Gibbsian, once the discretization is fine
enough. All of these questions, the high-temperature and short-time Gibbsianness
for stochastic evolutions, as well as the loss and recovery properties, can also be
addressed in the mean-field setting, and we find that the results are similar as in
the lattice case. Again, for transformations which in some sense are close enough
to the identity, the transformed model is Gibbsian. Finally, one may ask which of
our results depend on the fact that our local state space is a sphere and not just
a compact space? The regularity results (preservation of Gibbsianness) do not, as
they are based on absence of phase transitions. In fact, such extensions have been
proved, for which we refer to the original papers. When it comes to a failure of
Gibbsianness, an internal phase transition has to be exhibited. The mechanism of
this is usually very model-dependent and this is where the intricacy but also the
charm of the n-vector models lies.

2 Gibbsianness and non-Gibbsianness for n-vector lattice models

In this section we review some recent developments in the study of Gibbsianness
and non-Gibbsianness for n-vector models subjected to various transformations.
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The review is mainly based on the recent papers [8,9,21]. Before we plunge into
details let us fix some definitions, notation and give some background from the
theory of lattice spin systems.

2.1 Notation and definitions

For general information on Gibbs measures for lattice spins systems we refer the
reader to [4,14]. In this review we will focus attention on models living on a d-
dimensional lattice Z¢ (d > 1). We will take S", the n-dimensional sphere, as the
single-site spin space equipped with a Borel probability measure « (the a priori
measure). The measures we will study shall be given by Hamiltonians. The Hamil-
tonians in a finite volume A C Z4, with boundary condition w outside A, will be
given by

HR(o)= Y  da(cawao), (1)
A: ANA#D

where the interaction @ is a translation-invariant family of functions ®4:
d . . . : .

(SMHZ" — R, with ®, depending only on the spins in the finite volume A. It

satisfies the following absolute summability condition:

1P =" 1Palleo < o0. )
A>30
The Gibbs measures for the interaction ® are the measures 1 on (S”)Zd whose
finite-volume conditional distributions are given by
exp(—HY (0))a’ (doy)
pa(doplope) = A : 3)

Zy

where a® is the product measure of o over the sites in A. Another, equivalent,
way of defining a Gibbs measure was identified by Kozlov [19], via two properties
of the family of conditional distributions (ua)a. These properties are uniform
nonnullness and quasilocality. The latter property holds for a measure p if for all
continuous test functions f:S" - R, ¢ >0, i € 74 and configurations 7 there
exists a A i such that for all I' D A and pairs of configurations w, ¢

I (f (@) Inaviora) — w(f(@)Inaviira)| <& “)

A collection y of everywhere defined conditional distributions yp = px satisfying
all the above conditions is referred to as a Gibbsian specification.

Now what can be said about the Gibbs properties of transformed Gibbsian n-
vector models? In [8,9,21] the Gibbs properties of various transformations acting
on n-vector models were investigated and we will review the results below.
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2.2 Conservation of Gibbsianness under local transformations
close to the identity

We discuss conservation of Gibbsianness for initial Gibbsian n-vector lattice mod-
els subjected to local transformations close to the identity. The discussion will
mainly follow [9,21]. Though these two papers use different techniques, the re-
sults proved therein have some common ground and we will compare the advan-
tages and disadvantages of both methods. We will mainly address conservation of
Gibbsianness for transformed initial Gibbs measures in this subsection.

We start with a Gibbs measure p of an n-vector model and apply local trans-
formations to it. Examples of such local transformations are infinite-temperature
diffusive dynamics (sitewise independent Brownian motions on spheres), fuzzifi-
cation or discretization of the local spin space, etc. The natural question that comes
to mind is whether such a transformed measure ' is a Gibbs measure. For trans-
formations close to identity the above question can be answered in the affirmative.
This we make precise in the sequel by first stating a theorem which is the intersec-
tion of the results found in [9,21].

Theorem 2.1. Suppose w is the Gibbs measure for a translation-invariant inter-

action ® on (Sl)Zd. Further, assume that ® is twice continuously differentiable
and of finite range. Let ; be the transformed (time-evolved) measure obtained
by applying infinite-temperature diffusive dynamics to . Then for short times the
time-evolved measure |u; is a Gibbs measure.

Theorem 2.1 can be proved either by using cluster expansion techniques as in
[9] or by Dobrushin uniqueness techniques [21]. The results proved in these pa-
pers generalize the above theorem in different directions. In the following we will
review some of the main issues discussed in them. Let us start with the approach
of [9]. The advantage of using cluster expansion techniques is that we can prove
short-time Gibbsianness for more general dynamics beyond the independent Brow-
nian motion on the circles. In particular, one can handle a whole class of systems
which are modeled via the solution o = (0;);c74(t) of the following system of
interacting stochastic differential equations:

doi(t)=—V;3p1H (0 (1)) dt +dBP (1),  t>0,ieZf,

5
o(0) >~ pu, t=0, ©)

where (Bl-(D (t))i.1>0 denotes a family of independent Brownian motions moving on
a circle, V; = d%’_ and 81 ~ 1/Tj is the “dynamical” inverse temperature. We as-
sumed that the “dynamical” Hamiltonian H¢ is built from an absolute summable
“dynamical” interaction which is again of finite range and at least twice continu-
ously differentiable. Let S(¢) denote the semigroup of the dynamics defined in (5).
Then one can prove that for all values of 8 the time-evolved measure ; = o S(t)
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is Gibbsian for short times. Note that the statement of Theorem 2.1 corresponds to
the case where 1 = 0. We note that the cluster expansion technology was heavily
influenced by [2]. Extensions to different graphs are also immediate.

The proof in [9] makes also use of the fact that S! ~ [0, 27r) where 0 and 27
are considered to be the same points. Consequently we can work on the real line
and do not have to worry about more general compact manifolds S". Although
it is in principle possible to write a cluster expansion for S" and we believe that
short-time Gibbsianness for general interacting dynamics holds also in higher spin
dimensions, this has not been done so far.

Next let us review the results in [21]. The Dobrushin uniqueness technique em-
ployed in that work applies to more general interactions on general n-spheres and
also to more general graphs aside from Z¢. Moreover, we expect that it provides
better bounds for the Gibbsian regime than the cluster expansion approach does.
On the other hand, no results for interacting dynamics have been obtained via this
approach, although we believe in principle this should be possible.

To be precise, one considers initial Gibbs measures for interactions ¢ with finite
triple norm, that is,

Pl := sup Z [Al[| P4 llco < 00. (6)
i€Z% A:Asi

Note that this summability condition implies the one in (2) and here we do not
require that @ is translation invariant. Initial Gibbs measures of such interac-
tions were subjected to local (one-site) transformations given by K (doj, dn;) =
k(oi, ni)a(do;)a’(dn;), with ||logk||s < 0o. Here n represents the spin variable
for the transformed system taking values in a compact separable metrizable space
S’, which now needs not be the same as S".

In the language of Renormalization Group Transformations, one could think
of the transformed system as the renormalized system obtained via the single-site
renormalization map k. The map k can also be thought of as the transition kernel
for an infinite-temperature dynamics, where the variable in the second slot will be
the configuration of the system at some time after starting the dynamics from the
configuration in the first slot of k. Sometimes we will refer to the time direction as
the “vertical” direction.

Starting with an initial Gibbs measure p for an interaction  with finite triple
norm, in [21] it was studied to what extent the transformed measure

w'(dn) = | u(do) K (dniloi)
/Q ile_Z[d

will be Gibbsian. In the above we have set Q = (S”)Zd. The study in [21] uses Do-
brushin uniqueness techniques. The paper also provides continuity estimates for
the single-site conditional distributions of the transformed system whenever it is
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Gibbsian. To introduce these estimates the authors made use of a so-called “good-
ness matrix,” which describes the spatial decay of the conditional distributions of
the transformed measure.

In the sequel we will write i for {i} and i€ for 74 \ {i}. In particular the following
definition from [21] will be used.

Definition 2.2. Assume that d is a metricon S" and Q = (Q; ;). jezd 1s anonneg-
ative matrix with sup;cza > jezd 0i,j = 1Qllec < 00. A Gibbsian specification y
is said to be of goodness (Q, d) if the single-site parts y; satisfy the continuity
estimates

lvi@nilnie) = vidnilioll < Y Qi jd(nj, 7)) (7

JEi€

Here ||v; — v2|| is the variational distance between the measures v; and v;.

The matrix Q controls the influence on the specification due to variations in
the conditioning when we measure them in the metric d. The faster O decays,
the better, or “more Gibbsian,” the system of conditional probabilities is. We note,
without going into details, that a fast decay of Q also implies the existence of a
fast decaying interaction potential, but in our view an estimate of the form (7) is
more fundamental than a corresponding estimate on the potential.

We are restricting our attention to single-site y;’s since all y5 for finite A can be
expressed by an explicit formula in terms of the y;’s with i € A. For the solution
of this “reconstruction problem” see [12,14].

The Dobrushin interdependence matrix C = (Cij); jez« of a Gibbsian specifi-
cation y [3,14], is the matrix with smallest matrix-elements for which the speci-
fication y is of the goodness (C, d). Here d is the discrete metric on S" given by
d(nj,nj) = 1?117577}'

One says that y satisfies the Dobrushin uniqueness condition whenever the Do-
brushin constant sup;czq > j;c Cij < 1, and such a Gibbsian specification y ad-
mits a unique Gibbs measure [3,14].

Let us now introduce some notation for our discussion on conservation of
Gibbsianness for transforms of Gibbs measures. Set for each i € Z¢ ay,(doj) =
K (doi|n;), the a priori measures on the initial spin space which are obtained by
conditioning on transformed spin configurations. We call

d' (. 0}) = oy, — | ®)

the posterior (pseudo-)metric associated to K on the transformed spin space §'.
d’ satisfies nonnegativity and the triangle inequality, but we may have d’(n;, n;) =
0 for n; # n; (which happens, e.g., if o; and 7; are independent under K). For any
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given ® with finite triple norm write std; ; (®) for

_ 1/2
std; j(®) := sup sup inf ( / ay; (doy) (H (07) — HY (07) — b)2> )
77,'68/ LEGQ beR
gje=Lje

where H; (0;) is as in (1).
Consider the matrix

- 1
Cij = EGXP( Z

AD{i,j}

§(Pa)

) std; (D). (10)

Here we have denoted by §( f), for f a real-valued observable (measurable func-
tion) on €2, the oscillation of f given by

§(f):=sup|f(w)— fE)
w#E

The above quantity C; j» can be small if either the initial interaction ® is weak or the
measures oy, are close to delta measures. For example this is the case for short-time
evolution of the initial Gibbs measure associated with ®, as we will point out later.
C is an upper bound on the Dobrushin matrices for the joint systems consisting of
the initial and the transformed spins vertically coupled via the map k, and having
fixed transformed configurations. A specification for this system is generated by
® by replacing in equation (3) the a priori measure o by the «;,’s. The main
tool used in [21] to show Gibbsianness of the transformed measure was the lack
of phase transitions in the conditional joint system discussed above. This lack of
phase transitions will follow if the Dobrushin constant of the matrix, C, is strictly
less than 1. More precisely the following theorem was proved ([21], Theorem 2.5).

Theorem 2.3. Suppose that  is a Gibbs measure associated with a lattice in-
teraction ® with finite triple norm. Suppose further that sup;cza 3 jcic C_’i, j <Ll
Then the transformed measure |1 is Gibbsian and the transformed Gibbsian spec-
ification y' has goodness (Q,d’), where

0 =4exp(4sup 3 I 0all) Yo ¥ }%)ij (11)

€24 Asi keic  “AD{ik

Thus the transformed measure p’ will be Gibbsian if either the initial interaction
® is weak or the a priori measures o, are close to delta measures. Furthermore,
in the above theorem the goodness of the transformed specification is expressed
in terms of the posterior metric d’. Can one have local transformations where this
metric could be expressed in terms of more familiar metrics on S ? In what follows
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we present two examples where the above question will have a positive answer.
To do this we pay a price of putting further restrictions on the class of allowed
interactions for the initial system.

Definition 2.4. Let us equip S" with a metric d. Denote by L;; = L;;(®) the
smallest constants such that the j-variation of the Hamiltonian H; satisfies

sup |Hy (o7) — Hf (o) — (H{ (a;) — Hf (a))| < Lijd(0i.a;).  (12)
6.
e =ch
We say that @ satisfies a Lipschitz property with constants (L;;(®P)); jezdyzd, if
all these constants are finite.

For this class of interactions it is not hard to see from (9) that

1/2
std; j(®) < Lij sup inf ( / o, (da,-)d(a,-,ai)z) : (13)
c n

ni cS ai

This follows from replacing the & in (9) by Hf (a;) — Hf (a;). Let us now see some
concrete examples.

2.2.1 Short-time Gibbsianness of n-vector lattice models under diffusive time-
evolution. 'To a Gibbs measure p for a lattice interaction & we apply sitewise
independent diffusive dynamics given by

K(doi,dn;) = K(doi, dn;) = k; (0, ni)ao(doi)ao(dn;). (14)

In the above «y is the equidistribution on S” and k; is the heat kernel on the sphere,
that is,

(' 9)(mi) = /aa(dov)kt(m, )9 (0i), 5)

where A is the Laplace—Beltrami operator on the sphere and ¢ is any test function.
k; is also called the Gauss—Weierstrass kernel. For more background on the heat-
kernel on Riemannian manifolds, see the introduction of [1]. Let C(¢) be the matrix
with entries

Lij —nt\1/2 §(P4)
L1 —e ™V exp( > ) (16)
V2 ASipy 2

With the above notation we have the following generalization of Theorem 2.7 of
[21].

Cij(t)=

Theorem 2.5. Suppose d is the Euclidean metric on S" and ® is an interaction
for which there are finite constants (L; = L;(®)); 7 such that

sup |H{" (0;) — H{”(a;)| < L;d (0}, a;). (17)

we
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Assume further that Sup;cza 3 jczd Ci j(t) < 1. Then the transformed measure i
obtained from a Gibbs measure p for ® and K, is Gibbsian and the specification
for uy has goodness (Q, d) with

- 1
Q,’j(l‘) = Emin{\/?Qij(t), e4Lf — 1}_ (18)

Here Q(t) is defined in the same way as in (11) but has C replaced by C(t).

Proof. The inequality (17) implies (12). But using (12) gives a better bound on
the Dobrushin interdependence matrix. In (17) we keep all the interactions a given
site i has with the rest of its environment, but in (12) only the interaction between
i and a reference site j is kept. Note also that the entries of C(¢) will be small if
either the initial interaction is weak or ¢ is small enough. This is a generalization of
the corresponding Ising and planar rotor results found in [9,10] to more general in-
teractions on any n-dimensional sphere, subjected to infinite-temperature diffusive
dynamics.

The above theorem was proved in [21] for some special pair interaction. The
proof there followed from three steps, namely: (1) an application of Theorem 2.3
to obtain continuity estimates in terms of the posterior metric d’; (2) a comparison
result between d’ and d (the Euclidean metric); see, for example, Proposition 2.8
of [21]; and (3) a telescoping argument over sites in the conditioning. The first two
steps hold for any general interaction on the sphere.

In the third step one uses the continuity property (17) to proceed. In particular
one replaces the constant ¢; in inequality (100) of [21] by L ;. 0

In the next subsection we consider another class of transformations which was
studied in [21].

2.2.2 Conservation of Gibbsianness for n-vector lattice models under discretiza-
tions (fine local approximations). Consider a Gibbs measure p for an interaction
® satisfying (12). Furthermore, partition S” into countably many pairwise disjoint
subsets with nonzero o measure, indexed by elements in a countable set S’. Thus
we have disjoint subsets S;, such that S" = J;c¢ S; and «(S;) > 0 forall i € §'.
For each such decomposition of S” we define
p = supdiam(S;),
ie§
where diam(S;) is the diameter of the set S;. We refer to p as the fineness of

the decomposition. In this setup the conditional a priori measure is given by

o ..
ay, (doi) = %Z’) The above decompositions of S"” define natural maps from the

space of probability measures on €2 to probability measures on (S’ )Zd. The ques-
tion now is: “Which of these maps will lead to a Gibbsian image measure ¢’ upon
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their application to the Gibbs measure p?” This question is partially answered in
Theorem 2.9 of [21], which we state below.

Theorem 2.6. Suppose ® is as above and

— sup Z exp( Z 8(<I>A))LU < 1. (19)

lGZdjez‘ AD{i,j}

Then for any Gibbs measure p of ® the transformed measure (', associated with
the decomposition with fineness p, is a Gibbs measure for a Gibbsian specification
v’ of goodness (Q, dy). Here dy is the discrete metric on S" and Q is given in (11)
with C given by

Cij = Eexp( > 8Ly

AD{i, j}

Observe from the above theorem that the quantity in (19) can be small if ei-
ther the initial interaction is weak or the fineness p of the decomposition is small
enough. Thus for any strength of the initial interaction, the transformed measures
will remain Gibbsian if our decomposition is fine enough. We note that if we make
a decomposition of the circle into equal intervals, the resulting model resembles a
clock model. On could in fact also apply the theorem starting with discrete spins,
such as a large-g clock model, but the advantage of considering continuous spin
spaces is that the theorem can always be applied (in other words, there is always a
fine enough decomposition).

Note also that such a discretization map has strong similarities with fuzzification
maps such as have been studied for Potts models; see, for example, [17,28], in
which one also decomposes the single-site spin space, into a smaller number of
fuzzy spin values.

2.3 Large-time results: Conservation, loss and recovery of Gibbsianness

This section deals with what is known about conservation, loss and recovery of the
Gibbs property in time-evolved Gibbsian measures of vector models on the lattice
74 . The conservation part will focus on large-time results, as the short-time results
have been described in the previous section. We will concentrate here on the work
done in [8,9]. Moreover we will present some new arguments which extend the
results in [8].

In the previous section we defined Gibbs measures [see equation (3)] and fur-
thermore we gave an equivalent description which we stated in equation (4). Let
us now focus on the latter expression. In words it says that if a measure p is Gibb-
sian, every configuration 7 is good, in the sense that for every n the measure is
continuous w.r.t. a change in the conditioning. We referred to this property as the
quasilocality property. But what does it mean for a measure u to be non-Gibbsian?
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Loss of Gibbsianness means essentially the failure of this quasilocality property. It
is enough to find at least one point of essential discontinuity #°P% w.r.t. the condi-
tioning, for example, a point satisfying

sup|e(f (00) Iy @ra) — 1(f (@0 mxy g 6r\a) | > & (20)
w’é‘

for some I' O A and continuous test function f :S" — R, uniformly in A C 74, to
prove that a measure is non-Gibbsian. Physically the failure of quasilocality means
the following: The spin at the origin o is influenced by far away configurations
wr\a and {r\a even when the spins in between are frozen in the configuration
nj{)\e{co} . For a measure which is Gibbsian, the spin op is shielded off from spins
far away when intermediate spins are fixed. So there are no hidden fluctuations
transmitting information from infinity to the origin. Typically, in the analysis one
considers a double-layer system with the initial spin space in the first layer and
the transformed system (or image-spin space) in the second layer. The question
of the Gibbsianness of the measure on the second layer then can be shown to re-
duce to the question: Is it possible to end up in this particular configuration coming
from one initial Gibbs measure only? It turns out that if the original spin system
conditioned on a particular image spin configuration 7°P® exhibits a phase tran-
sition, this implies for u’ that this measure is not Gibbsian. The configuration
n’PeC is often called a bad configuration. We want to stress the difference between
a phase transition of the initial system and a phase transition of the conditioned
double-layer system. Even if the initial system exhibits a phase transition and the
time-evolved measure at time ¢ is a Gibbs measure, it means that conditioned on
every possible image spin configuration n at time ¢, there is no phase transition
for the conditioned system. In other words, for every possible 7 there is only one
possible initial measure leading to this image spin configuration. Hence, a phase
transition of the initial system does not necessarily imply non-Gibbsianness, nor
does non-Gibbsianness imply a phase transition for the initial measure.

In the case of time-evolved XY-spins on the lattice 74, in [8] and [9] some
results about conservation, loss and recovery of Gibbsianness were proved. In [9]
results are proven for conservation and loss of Gibbsianness during time-evolution.
In particular, loss of Gibbsianness could be proven for zero initial external fields.
The paper [8] deals with loss and recovery of Gibbsianness in a situation where
there is a positive initial external field. As we already discussed in the previous
section, the Gibbsian property is conserved for short times for all initial Gibbs
measures evolving under diffusive dynamics consisting of Brownian motions on
the circle, either with or without gradient Hamiltonian drifts, at all temperatures
(for all values of 77 and all values of the initial temperature 75). Moreover, con-
servation for all times holds if the system starts with a high or infinite-temperature
Gibbs measure and evolves under high or infinite-temperature dynamics (77 >> 1).

Let us make the statement on the loss of Gibbsianness result from [9] more pre-
cise. Systems in Z? are considered which start in a low-temperature initial measure
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Figure 1 (a) West-pointing ground state. (b) East-pointing ground state.

with nearest neighbor interaction and zero external field,

galo)=—J > cos(oi — o))
i,jeAi~]

and evolve under independent Brownian motion dynamics on the circle. Then there
is a time interval, depending on the initial (inverse) temperature, such that the time-
evolved measure is not Gibbsian. The idea of the proof is the following. Consider
the double-layer measure and condition it on the alternating North—South con-
figuration. The ground states of the conditioned system then are two symmetric
configurations of spins pointing either to the East with a small correction +¢; or
to the West with a small correction. Let us give a schematic picture. See Figure 1.

The potential of the conditioned model is of C-type (nearest neighbor, invariant
under reflection in vertical and horizontal direction and invariant under transla-
tion), so that the corresponding measure is reflection positive. Using a percolation
argument for low-energy clusters (clusters of vertices connected by low-energy
bonds) from [13], in two dimensions one proves that at low temperatures there
exist two distinct extremal Gibbs measures for the thus-conditioned system. This
implies that the conditioned double-layer system undergoes a phase transition via
discrete symmetry breaking and therefore the time-evolved measure is not Gibb-
sian. This phase transition is called of “spin-flop” type. Let us make a remark on
one special feature of this result. In the Ising spin case (see [10]), where one also
finds at zero external field loss of Gibbsianness, the initial system itself is already
not unique. The XY spin model, however, does not have a first-order phase tran-
sition in two dimensions. So even though starting from a unique Gibbs measure,
there is a time interval where Gibbsianness is lost.

We also mention that the result can be extended to Z> and arbitrary large times.
In that case the initial measure is not unique, and there is long-range order for any
strength of the alternating magnetic field, including zero.

Unfortunately, the techniques which are used rely on the reflection positivity
property of the measure, and therefore cannot be applied to a system which evolves
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with high-temperature dynamics, since then the conditioned measure is not reflec-
tion positive any more. Also for higher-component spins the proof breaks down.

For discrete spins, the authors in [10] prove that loss of Gibbsianness appears
also for high-temperature dynamics; for rotor spins we believe the same is true but
this has not yet been proven. By some Pirogov—Sinai type arguments one might
hope to extend the above result to high-temperature dynamics. But this seems a
technically hard question.

In the presence of an initial external field 4 loss and also recovery results were
obtained in [8]. Similar to the situation for discrete spins in [10], one finds that also
in the presence of a small initial external field there can be a time interval (7, #1)
where Gibbsianness is lost in d > 3 dimensions. Moreover there exists a time 7,
such that for all # > #;, the time-evolved measure is again a Gibbs measure. This
re-entrance result was obtained for strong initial external fields in d > 2 lattice
dimensions.

Intuitively, for an intermediate time interval, the strength of the initial field is
compensated by the induced field coming from the time-evolution. This compen-
sation makes the system behave like in a modified zero-field situation. The system
looks like a zero-field system plus some rest terms which have a discrete symmetry
instead of a continuous one. For low enough initial temperatures there is a time in-
terval where this symmetry is broken for the conditioned double-layer system, and
therefore Gibbsianness is lost. After some time the influence of the time-induced
fields decreases and the system follows the initial field again which brings it back
to the Gibbsian regime. Thus the presence of the initial external field is responsible
for the recovery of the Gibbsian property.

The proof in [9] is similar to the one in [8]. One considers a double-layer system
and conditions on spins pointing all southwards. Then the two ground states of the
conditioned system are again symmetric, pointing either to the East or to the West.
We present a schematic picture of the ground states (Figure 2).

Since the interaction of the conditioned system is also of C-type, that is, among
other properties invariant under reflections, one can use again the percolation of
low-energy clusters argument of Georgii; see [13].

RSN N e N N P Pl g g g
D e Pl 7
L . T N

(@ (b)

Figure 2 (a) East-pointing ground state. (b) West-pointing ground state.
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The proof for the loss of Gibbsianness works only for d > 3 and for small initial
fields.

In the following we propose an argument for a loss of Gibbsianness result which
works for a general initial field / already in a two-dimensional lattice. Moreover
we will prove a recovery result valid for all strengths of the initial field at low
enough temperatures.

Proposition 2.7. Let h be given. For B big enough, there exists a time interval
(to(B, h), t1(B, h)) such that for ty <t < ty, the time-evolved measure u' is not
Gibbsian.

Proof. Let us consider the double-layer joint measure at time O and time ¢ simul-
taneously. The dynamical Hamiltonian H}; (o, ) (the inverse temperature is in this
case absorbed into the definition of the Hamiltonian) is formally given by

—Hj(o,n)=—BH(©)+ Y_ log(pP (i, 1)),

iez?

where o, n € [0, 2n)~Zz, p,(D (oi, n;) is the transition kernel on the circle and the
initial Hamiltonian H (o) is formally given by

—H@)=1J Zcos(a, —ox)+h Zcos(al

i~k

while p® equals

Ze*(m ni+2mn)? /@21)

neZ

P2 (01, i) =

We condition the system at time ¢ to point down alternatingly with a small
correction &€ (which we will specify later) to the East, resp. with a small correction
to the West, that is,

spec | T+ €, if |i| =114+ 1 iseven,
1,é T —¢, else.

Let us look at the corresponding dynamical Hamiltonian. It can be written as a
sum over all nearest neighbor pairs of the pair interaction potential

Htﬁ,{i,i+1}((’v neee) = ‘ng’g(ffi, Oi+1)

= —pJcos(o; —0i41) — /3%(008(01) + cos(i+1))

1 1
- Zlog(p,@(oi, 7w +e)) - Zlog(P,Q(UiH, 7w —¢)),
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where &, B, t, € are parameters (at J fixed), and o, 0;41 denote the values of neigh-
boring spins. The single-site terms coming from the dynamics play the role of
dynamical alternating external fields. Let us rewrite these terms as

0; — (7 +¢))?
log(p® (0, 7 + £)) = — log(v/271) — %
+ 10g<1 + Z e_(O'i_(ﬂ+8)+2nﬂ)2/(2t)+((yi—(n+8))2/(2t))
neZ\0

and similarly for the second one. We choose ¢ of order O(1/8h), or more precisely
in such a way that

Bh(cos(o;) + cos(oit1))
(07 — (m 4+ ©))* " (0i41 — (T — €))?
2t 2t

where o; (o*l-4, 0i4+1) is an error term going to 0 for ¢ small. Call

=2log(v2mr) +

4 4
+0:(0;", O',‘.H),

Rt(oi,JT-I-e)::log(l-i- > e("i<”+8)+2””>2/<2’>+(“f(’T“))z/(z’))
neZ\0

and similarly for R;(oj+1,m — €). Observe that the pair interaction potential is
equal to

@4 (0, 0i11) = —BJ cos(0; — 0i 1) — [ Ri(0i, 7 +£)

1 4 4
— R (0it1, T — &) +0i(0], 077 1).

We end up with a ferromagnetic system with alternating dynamical external fields
of strength O(e/t) coming from the terms R;(o;, w + ¢) which effectively point
in a direction perpendicular to the original fields. Let us assume ¢/t < BJ. Then
the strength of the fields is in fact of order O(eh/J) and the direction alternates,
pointing almost to the East or almost to the West, while the strength is relatively
weak compared to the nearest-neighbor interaction. We will be able to show that
the spin-flop mechanism causes a phase transition to occur.

In order to understand the phases of such a Hamiltonian we will look at first
at its ground states. We want that Qiég(ai, 0j+1) is minimal at (&;, —§&;) and (7 +
87, m — &), so the ground states point almost to the North, namely in North-East
and North-West direction, or almost to the South. In general one of them is a local
minimum and one is a global one. One determines §; and §; in such a way that the
configurations (8;, —§;) and ( + §;, w — §;) are the only minima. To make them
both global, we specify € = £(h, t) such that the following equation is true:

0=®%° (8, —8:) — cpge(n +8, 7 —8))
=—1(Ri(8, 7w +8) — Ri(8], &) + R (=8, m — &) — R((=8], ¢)).
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In contrast to the zero-field situation, the spin flip between o; and = — o; is not
a symmetry of the Hamiltonian anymore. Indeed, for the particular choice of the
time ¢ and ¢ two ground states occur which are not related by any symmetry. As
we described above, the conditioning more or less cancels in the direction of the
original field, and one ends up with a model having alternating single-site terms
(external fields), which are pointing in directions which are almost perpendicular
to those of the original fields. The coexistence of the ground states can, for low
enough temperature T, be extended to coexistence of two Gibbs measures, now
not related by any spin-flip symmetry, for a slightly different choice of ¢ = ¢(#, ¢).
As the choice of the “bad” conditioning configuration which contains the ¢(h, t)
can be continuously varied, we can deduce the existence of a time-interval of non-
Gibbsianness. U

We remark that, unlike the two previous cases where one could use the reflection
positivity property of the measure (as well as the spin-flip symmetry), in this case
unfortunately we cannot. The interaction is not invariant under lattice reflections,
so the measure is not reflection positive. We have to use other techniques. We will
use a general contour argument from [29]. Let us recall the statement.

Theorem 2.8 (Theorem 6 from [29]). Ler S =[0,1] C R, and let YV (s, 52, uq,
...,un—1) be an (N-1)-parameter family of potentials, defined for u = (uq, ...,
un—1) € RN=1 varying in a neighborhood of 0 in RN=1. Assuming the family
W (s, 82, u) satisfies the following conditions:
1. the function YV (s1, s2, u) is smooth in all its variables,
2. for u =0 the function ¥ (s1, 52, 0) has N absolute minima at points situated on

the diagonal of the square S x S, that is,

Y(m;,m;,0)=0 foralli,
W(s1,52,0) >0 forall (s, s52) # (mi, m;),

3. at the minima (m;, m;) the second differential of the function ¥ (s, s2,0) is

strictly positive and moreover

d>w
dsidsy

d*w
dsl2

<7

b
S|=Sp=m;

S1=Sy=m;

where n is a sufficiently small constant,
4. at points (m;, m;), the differentials of ¥V (s1, s2, u) at u = 0 are nonzero.

THEN there exists a point ug = uo(B) such that for the system described by the
potential V (s1, 52, ug) there exist at least N distinct limit Gibbs distributions.

Proof. We want to apply the above theorem. For the assumptions to be satisfied
we have to transform and shift our potential ® g, which allows us to generalize the
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statement about translation-invariant potentials to a statement which also applies
to periodic ones. We will define our new potential ¥ on S? x S2 instead of S x §
as required in the assumptions. This does not affect the proof in any essential
way. Our spin space S' is isomorphic to [0, 1] by the isomorphism o + o/27,
where 0 and 1 are considered to be the same points. We abbreviate o’ := o /2.
Let u be a smooth function around a small neighborhood of 0 in R and let m :=
inf(,?g{cbgs(a, £)}. We define the new potential \Ilfg’e(al/ ,¢{,05,¢5,u) as being a
sufficiently smooth function of all its variables. Furthermore let the differentials of
II’IZB’S (m;, m;,u) at u = 0 be nonzero. For u = 0 the potential is given by

W (0. 81, 03. 83.0) := (0, &) + @ (03, &) — 2m; @n

note that it is physically equivalent to CD?. Then obviously W!-¢ inherits the two
minima from CIDig"9 which we call m and m»>. The second assumption is satisfied
by the definition of W€, Let us further examine the determinant of the Hessian
matrix to check the third condition. We call Hess(\Il;’e(al/, ¢{,05,¢5,0)) the Hes-

sian matrix for the function lIJfg"s. Then one observes that for the determinant of
the Hessian

det(Hess (¥ (01, £{, 03, 13, 0)))
= det(Hess(®};* (0], £{))) det(Hess(®}° (0. £5)))

= (det(Hess(®5° (0], £))))?

which is strictly positive at the minimal points (m, m1) and (m3, m) for the pa-
rameters ¢ and ¢ chosen above and B big enough. Then using the theorem we
deduce that for a sufficiently large § there exists a ug such that for the system de-
scribed by \Ilfg’g(al’, ¢{, 05, &5, up) there exist at least two distinct Gibbs measures.

Since \Ilfg’g(al/, ¢{, 05,85, up) and \Ilfg’s(al’, ¢{,05,¢5,0) are physically equivalent
this follows also for our potential CD;S’E. U

Let us now present a recovery result which will be valid for all strengths of the
initial field at sufficiently low temperatures.

Proposition 2.9. Let h be given, then for t large enough and B large enough,
for example of order O(e’z), there is a unique constrained first-layer measure

uniformly in the conditionings on the second layer. Thus the evolved measure is
Gibbsian.

Proof. We want to prove that for large enough times the constrained first-layer
measure is unique, uniformly in the conditionings on the second layer. To prove
this we want to use Theorem 7 from [29] which is a Pirogov—Sinai type argument
for continuous models with one ground state. Let us cite their Theorem 7. g
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Theorem 2.10 (Theorem 7 from [29]). Let S =[—1, +1] C R and let us consider
the lattice 72 . Suppose that the function W (s1, s2) is smooth in a neighborhood of
(0,0) and on S x S achieves an absolute minimum at (0, 0). Let us also suppose
that W (0,0) = 0. Moreover let the expansion of V(s1, s2) in a neighborhood of
(0, 0) have the form

W(sy,52) =57 +2ns152 + 53 + O(s3 +53), (22)

where n is a small (positive OR negative constant).
THEN there exists a temperature By = Bo(V, d) such that for B > By there exists
a unique limit Gibbs distribution which depends analytically on B.

Proof. S is the state space of the spins and W is the potential on the product space
S x S. So all we have to do is again rewrite our potential and prove the assumptions
given in the theorem. Our original potential without approximation is given by

Bh
Dg(0;, §iy1) = —PJ cos(o; — Gig1) — T(COS(Ui) + cos(Zi41))

— 2(log(pP (07, ni)) — 1og(p® (Cit1, Mi+1)))-
It is defined including the inverse temperature 8, which does not pose a prob-
lem. For ¢ large enough the unique minimum of ®g is equal to (0, 0). Let us
rescale the potential ®g(0;, £i4+1) by 0’ : 0 — o/27 and consider the isomorphism
[0,27]/27m ~[—1, 1] where —1 and 1 are considered to be the same points. More-
over we subtract a constant from the potential to ensure that ®4(0,0) = 0, that
is,

’ h ’ /
(1);3(0',', Civ1) =—BJ COS(Ui/ - §i+1) - IBT(COS(Gi) + COS(CZ‘_H))

1 1
— 7 log(p? (0], mD) = 7 10g(pP (&1, i)

1 o 1 o
+BJ +Bh/2+ Zlog(pt 0,n:)) + Zlog(pt (0, m;41))-

We call f'(o],n)) := §log(pP(0,n1)) — 1 log(pS (0!, n})) and write the above
potential as

/ / / / h / /
<I>;3(cri v Ciy) = —pBJ[cos(o; — ¢ q) — 1] — %[cos(cri) —1+cos(¢ ) —1]

+ ft(ai/s {,'/) + ft(§[/+1, 77,{+1)-
Around the absolute minimum (0,0), we have the following expansion of

@ (07, &/, 1), using the abbreviation c(J, h) := fé:)hz:

)o{;‘{H +Be(J, )@y )’

(2m)?
+O((a))* + &/ +0iis1(e7).

®(0f.6/11) = Bets. ) + B
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We clearly see that the expansion gives us for ¢ large enough, at least bigger than
log(c(J, h)), the desired quadratic form required for Theorem 7. Il

3 Gibbsianness of n-vector mean-field models and their transforms

Mean-field models are spin systems whose distribution is permutation-invariant. In
[18,20,23] the Gibbs properties of various mean-field models (with finitely many
spin values) were investigated when subjected to various transformations. In the
recent study in [22], extensions to more general mean-field models with compact
Polish spaces as their single-site spin space are discussed. We describe these results
in this section, restricting to the case where the spins take values on a sphere. Let
us start by recalling the general notion of mean-field models and what it takes for
them to be Gibbsian.

3.1 General mean-field models and mean-field Gibbsianness

We now present the definition of general mean-field models and mean-field
Gibbsianness for such models for n-vector spins [22]. We write Viy ={1,2, ..., N}
for the volume at size N.

Definition 3.1. For each N € N, let uy be a probability measure on the space
(SMHN.

1. We refer to the sequence of the probability measures ((ty)yeN as a mean-field
model if the px’s are permutation invariant.

2. A mean-field model (1) yen is said to be Gibbsian if the following holds:
(a) The limit of conditional probabilities

T N
yi(dx|r) :== AIIITIEO mn (dxy|xy 1), (23)
exists for any sequence x"}'N\l = (xiN )ievy\1 of conditionings for which
the empirical distribution converges weakly as N tends to infinity, A =
limyyoo = 3N 8
Ntoo N 2ui=2 xiN :
(b) The function A — y1(+|A) is weakly continuous.

Above, Gibbsianness of mean-field models is defined in terms of the asymptotic
behavior of a sequence of measures instead of a single limiting measure. This is
in contrast to the lattice case where we just investigated the single infinite-volume
measure. The results one would get by only looking at the infinite-volume limit
measures for mean-field systems would provide a lot less, and in some sense mis-
leading, information. Indeed, such limit measures are either product measures, and
thus trivially Gibbsian, or nontrivial mixtures of product measures and thus highly
non-Gibbsian (see for this fact [6]).
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The notion of Gibbsianness given in Definition 3.1 is equivalent to the one con-
sidered in [20,23] for the corresponding Curie—Weiss model (for which of course
one has a simpler single-site spin space and measure). This is the case since the
distribution of a binary random variable is uniquely determined by its mean. Hence
for the Curie—Weiss model conditioning on the empirical averages gives the same
information as conditioning on empirical measures. For the rest of this section the
term “Gibbsian” should be taken in the sense provided by Definition 3.1.

3.1.1 Mean-field interactions. In the above we have defined general mean-field
models. We are now going to prescribe a class of mean-field models given via some
potential functionals defined on the space of measures on the single-site spin space
introduced in [22]. In the following we have denoted by M (S") and M (S") the
spaces of finite signed measures and finite measures on S" respectively.

Definition 3.2. We shall refer to a map ®: M, (S") — R as a proper mean-field
interaction if:

1. it is weakly continuous,

2. it satisfies the uniform directional differentiability condition, meaning that, for
each v € M (§") the derivative &M (v, ) at v in direction u exists and we
have

W+ p) — dw) — VW, W) =r(w) (24)

with lim,_, o+ r(tt—“) = 0 uniformly in u € M(S") for which v + ru € M4 (S"),
for r € [0, 1] and
3. WDy, /4) is a continuous function of v.

Standard examples are the quadratic interactions for the g-state mean-field Potts
and the Curie—-Weiss model (which are defined on the product spaces of finite
single-site spin spaces, instead of n-spheres, with symmetric a priori measure) and
which are respectively given by

1 & 1
() =—= > and OV(v) = ——m©v)?, 25
(v) ZEU(Z) n (V) = —Zm() (25)
where m(v) is the mean of the measure v.
For each mean-field interaction @ and each N € N we define the finite-volume

Hamiltonian Hy [a real-valued function on the product space (SHN] as
Hy(oyy) :=N®(Ly(ovy)), (26)

where Ly (oyy) = % ZlN:l d5; 1s the empirical measure of the configuration ovy,,.
Observe from the permutation invariance of the empirical measures that Hy is per-
mutation invariant. With this notation the sequence of probability measures pg n
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associated with the finite-volume Hamiltonians Hy at inverse temperature 8 given
by

e—ﬁHN(GvN)a@)N(d&vN)

up,N(doyy) = 27

Sy e PV QBN Gy, )
is a mean-field model (on S" associated with @ and the a priori measure «). In
the above we have used ® to denote the product measure, which is the product
of single-site measures «. In the following, unless otherwise stated, the inverse
temperature 8 will be absorbed into the interaction & and we write py instead
of pug n. We will, with abuse of notation, write uy for the sequence (uy)yen.
It is show in Proposition 2.4 of [22] that the mean-field models obtained in this
way are Gibbsian. Now we finished the discussion on Gibbsianness for general n-
vector mean-field models, we can turn our attention to discussing Gibbs properties
of transforms of Gibbsian n-vector mean-field models.

3.2 Gibbsianness of transformed rn-vector mean-field models

We now review the notion of Gibbsianness for transformed Gibbsian n-vector
mean-field models as found in [22]. We take S’ as the single-site spin space for
the transformed system, which we also assume to be a compact complete sepa-
rable metrizable space. Further, we let @’ be some appropriately chosen a priori
probability measure on S’. Now we take K (do;, dn;) as the joint a priori probabil-
ity measure on S"” x S’ given by

K (doi, dn;) :=k(oi, ni)a(doy)a’'(dn;) € P(S" x §), (28)
where
k:S" x 8" — (0, 00)

just as we had before for the corresponding transformed lattice spin models. Now
the question of interest is the following. Starting with an initial sequence of mean-
field Gibbs measures wpy, associated to a fixed general mean-field interaction ®,

will the transformed sequence of measures 'y with (o’ )N density
N gy = [ T keimmy@o) (29)
d(o{/)N (SN iy i» Ni)WN

.....

be Gibbsian? In other words, will the transformed single-site kernel (a) exist, and
(b) be a continuous function of the empirical measures of the conditionings?

It is shown in Theorem 3.10 of [22] that the transformed mean-field model :“3\/
will remain Gibbsian if a certain constrained potential function has a unique global
minimizer, uniformly over the domain of the constraint variable. The ideology be-
hind this theorem is the same as in the lattice: absence of hidden phase transition
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in the initial system, constrained to be mapped to a fixed configuration in the trans-
formed system implies Gibbsianity for the transformed system. In the mean-field
situation estimates can be made explicitly. To see something concrete, the authors
in [22] focused attention on mean-field interactions @ of the form

Q) =Flgil, ..., vlgD, (30)

where g; are some fixed bounded nonconstant real-valued measurable functions
defined on ", 7 > 1 and F:R! — R is some twice continuously differentiable
function. In the above we have denoted by m; = v[g;] the expectation of g; with

respect to v. We further set F;(m) = %F(m} and Fj,(m) = amj’izmuF(m).

Additionally, we assume that g = (g1, ..., g) is a Lipschitz function from S"
to R!, with Lipschitz-norm
lg(oi) — g(0i)ll2
lglla.2 = sup ——————=, 31

0 F£0; d(U[ ) Gi)
where d is the metric on S”. We also denote by §(g) the sum of the oscillations of
the components of g, that is,
l

8(g)=7 sup l|gj(oi) —g;(@)l. (32)

j=10i: o;eS"
For any g satisfying the above conditions we set
Dy ={v[g]:v e P(S")}. (33)

Note that D, is a compact subset of R! by the boundedness of g. In the sequel we

will write ||32F lmax oo for the supremum of the matrix max-norm of the Hessian
92 F, that is,

19° Fllmax.co = sup [19°F (m)llmax, ~ where

meD,
) (34)

[0°F(m)|lmax = max |[F;;j(m)]|.

1<i,j<l
Furthermore, we also set
8F.g= sup sup ZF (m)(g(oi) — gj(5i))‘~ (35)
meDg 0;,0,€S"

With the above interaction, it is proved in [22] that the transformed system associ-
ated to any K (doj, n;) = k(o;, n;)a(do;)a’ (dn;) will remain Gibbsian if a certain
quantity is small. Before we make the above result more precise, some more nota-
tion is in order. We set

1/2

stdy (k) := sup inf (/ dz(a,-,a,-)k(ai,m)a(da,-)) and
S/ ai € NE

" (36)

. 2 SF,g
C(F,g) :=2[0"F|lmax,008(g)1glla,2 €xp - )
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With this notation we have the following theorem.

Theorem 3.3. Consider the transformed system 'y, associated to the initial mean-
field model py (given by the interaction ® satisfying the above conditions) and
joint a priori measure K described above. Suppose that

C(F, g)stdy (k) < 1. 37
Then:

1. the transformed system is Gibbsian and
2. the single-site kernel y| of the transformed system satisfies the continuity
estimate

IV CIvD) = ¥ Gl Il < C(F, 8)* stdg (k) stdy [[v] — v3ll, (38)

where stdy, = stdy (1) and ||v] — V5| is the variational distance between v| and v),.

The above theorem is found in [22] as Theorem 4.3. The smallness of the quan-
tity C(F, g) stdy (k) may come from two sources; namely:

(1) the smallness of C(F, g), arising from the weakness of the interaction ¢
among the components of the initial system and

(2) the smallness of stdy (k), coming from the good concentration property of
the conditional measures «,, (do1) := k(o1, n1)a(dor), uniformly in n; € §'.

Thus we could start with a very strong interaction, but if the measures «;), (do) are
close to delta measures then the transformed system will be Gibbsian. An advan-
tage of this result is that it provides explicit continuity estimates for y; whenever
the transformed system is Gibbsian, which were lacking in all the results before.
However, it has the drawback that the estimates it provides for the regions in pa-
rameter space where the transformed system is Gibbsian might not be sharp, as
techniques employed in [18] and [23] do provide.

We now review two examples discussed in [22], which are reminiscent of some
of the results found in [18,23].

3.2.1 Short-time Gibbsianness of n-vector mean-field models under diffusive time-
evolution. Here we present the result found in [22] but for general mean-field
interactions & given in terms of F' and g. We study the Gibbs properties of the
transformed (time-evolved) system g, ,, obtained upon application of infinite-
temperature diffusive dynamics to the initial Gibbsian mean-field model UN, as-
sociated with @. In this set-up S’ = S". The joint single-site a priori measure K is
then given as in (14) of Section 2.2.1. The following theorem is the result about
the short-time conservation of Gibbsianness for the time-evolved system ,u; N
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Theorem 3.4. Suppose we have \/EC(F, g1 — e "2 < 1, then the time-
evolved system w;  will be Gibbsian and yy ,, the single-site kernel for w; v,
has the continuity estimate

lyf  ClvD) =y CIvp Il < 2C(F, g)*(1 — e ")V |vf — v L. (39)

Observe from Theorem 3.4 that the time-evolved measure will be Gibbsian
whenever either the initial interaction is weak or ¢ is small enough. The above re-
sult was only stated in [22] for the corresponding Curie—Weiss model. We present
this case below. For the Curie—Weiss rotator model the interaction for the initial
system is given by

. B ZYJH:_% V[O'ij]z

dw) = Flo}l,...,v[o"]) = > ,

(40)
where g;(0;) = a[j is the jth coordinate of the point o; € S" and  =n + 1. As a
corollary to Theorem 3.4 we have the following short-time Gibbsianness result for
the Curie—Weiss rotator model under diffusive time evolution.

Corollary 3.5. Suppose we have 4/28(n + 1)eP (1 — e ")V/2 < 1, then the time-
evolved system p;  will be Gibbsian and | ,, the single-site kernel for ; y has
the continuity estimate

71 CIvD = 71 G <3287+ D2 (1 — e ™)V2 v — bl (4D)

Corollary 3.5 is found in [22] as Lemma 5.1. This corollary is reminiscent of
the result in Theorem 2.2 of [23], where the Curie—Weiss model under independent
spin-flip dynamics was studied. It is shown therein that if 8 is small enough (weak
initial interaction), then the time-evolved system will be Gibbsian forever, but if 8
is large, then the time-evolved system will only be Gibbsian for short times.

3.2.2 Conservation of Gibbsianness for n-vector mean-field models under fine lo-

cal approximations. Consider general F and g as above, and decompose S" into

countably many pairwise disjoint subsets (countries) as in Section 2.2.2 above.
Then with this notation it follows from Theorem 3.3 that

Proposition 3.6. If the quantity pC(F, g) < 1, then the transformed system is
Gibbsian and the single-site kernel y| satisfies the continuity estimate

Y1 CIvD) = ¥ Gyl < pC(F, g)* stdg vy — v3ll. (42)

The above proposition can be found in Lemma 5.2 of [22]. Thus the transformed
system 1/, will be Gibbsian if either the initial interaction & is weak or the local
coarse-grainings (i.e., the S;) are fine enough. In other words: If we have initial
Gibbsian mean-field system with spins living on the sphere and we partition the
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sphere into countries, representing each country by a distinct point in §’, then the
resulting transformed system will be Gibbsian if the countries are small enough.
Let us mention in this context the result of Theorem 1.2 of [18] for the corre-
sponding fuzzy Potts mean-field model. In that paper it was shown that the trans-
formed system will be Gibbsian at all temperatures whenever the sets of points
contracted into single points by the fuzzy map have cardinality at most 2.

3.3 Mean-field rotators in nonvanishing external magnetic field: Loss and
recovery of Gibbsianness

In this section we specialize to the quadratic mean-field rotator model on the circle,
where we focus now on the interesting case & # 0. In fact, although we do not
treat the simpler case 2 = 0 here, one can in a very similar way prove loss of
Gibbsianness, again just as in the lattice situation.

We start with the measure

up.nN(doy, ..., doy)
43)

1
=2 exp(NBm(o1, ..., on) + NBh -m(ay, ..., on)) [ a(doy),

h N i=1

where
1 n
m(oy,...,0N) = —Zai
Ni—l

is a vector-sum in R? and «a(do;) is the equidistribution. We take a time-evolution
with the transition kernels p;(o;, n;) describing Brownian motion on the circle, as
above.

We are interested in the Gibbsian character of the time-evolved measures

N
ughe NN, .. dny) = / wgnn(dot, ... doy) [ ] pi(oi.dn;)
i=1
in the sense of continuity of limiting conditional kernels, as described above. The
virtue of mean-field models is that we can describe the limiting kernels explicitly.
By this we mean a description in terms of a minimization problem of an explicit
expression. This has been done in the general setup of site-wise independent trans-
formations in [22]. For the present case we get the following concrete results.

Proposition 3.7. The limiting kernels yl/’ 8. n..(dn1|X) of the time-evolved mean-
field models g 1 N are given by the formula

V1,80, \AN1IA) = [ eBor-m* (Bt 0+ g (doy)

(44)
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for all choices of the (nonnegative) parameters B, h,t and the conditioning A (in
the probability measures on the circle), for which the minimizer (in the closed unit
disk)

m* (B, h,t, 1) =argmin{m — F(m; B, h,1, 1)}

is unique with
2
m = -
F(m; B, h,t,2) = ﬂ% — fx(dm)log/eﬁ‘”’"*h)pxm,da>. 45)

We do not give a proof of (44) here (which can be deduced from the general re-
sult in [22]), but we briefly sketch a heuristics which explains what happens: Note
first that F(m; B, h, t, A) denotes the rate function (up to an additive constant) of
the initial model, constrained to have an empirical distribution A in the transformed
model. Conditioning the empirical distribution of the transformed spins outside the
site 1 to A produces a quenched system involving the initial spins which acquires
the magnetization m* (8, h, t, A). The propagation of the corresponding distribu-
tion of o7 to n; with the kernel p; gives the desired conditional probability distri-
bution y{’ﬂ’h’t(dml)\).

3.3.1 Gibbsianness at large times. Compare the rate function (45) to the well-
known rate-function of the initial model (43) given by

2
Fo(m; B, h) = ﬂ% —log f ePT M g (d5). (46)

The map m +— Fy(m; B8, h) has a unique minimizer m™* (8, h), if h # 0 is arbitrary,
pointing in the direction of /.

The input to understand the large time-behavior is the fact that the kernel
p:(ni, do;) converges to the equidistribution «(do;), uniformly in #;.

From this we see that, at fixed S, &, the functions m — F(m; 8, h,t,A) con-
verge to m — Fo(m; B, h), uniformly in A. The same holds for higher derivatives
w.r.t. m. These statements imply that, for ¢ sufficiently large, for all choices of
A there is only one minimizer m™* (8, h, t, A). Looking at the linear appearance of
the measure A in (45), we see that m*(8, h, t, A) changes continuously under a
variation of A.

By the form of (44) this implies Gibbsianness.

3.3.2 Non-Gibbsianness at intermediate times. To prove non-Gibbsianness at the
parameter-triple (8, &, t) we use the formula (44) for the limiting kernels for those
quadruples (B, h, t, A) where they are well defined and, for fixed (8, k, t) we show
that there exists a A = AP®¢ at which the limiting kernels are not continuous.

To do so, it suffices to exhibit a one-parameter trajectory € — A, which is con-
tinuous in the weak topology s.t.:
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1. F(m; B, h,t, ) has unique minimizers for ¢ in a neighborhood of £%P%¢, ex-
cluding &°P°¢;
2. limeTsSPeC m*(B,h,t, k) # limstPec m*(B,h,t, Ae).

So far, the reasoning is general. Now, to create a phase transition in the con-
strained model, a suitable choice of A which is able to balance the influence of the
external magnetic field / has to be found. We choose conditionings of the type

)"8 = %5e(n+€) + %ae(n—s)» (47)

where e(f) denotes the vector on the circle corresponding to the angle 6. This
conditioning mimics the choice of conditionings on Z? obtained by putting e( +
€) on the even sublattice and e(m — ¢) on the odd sublattice.

Proposition 3.8. Let h = he(0) # 0 be given. For B large enough there exists a
time interval such that for any t in this interval there exists an (B, h, t) for which
m> F(m; B, h,t,A) has two different global minimizers of the form m = ue(0),
pointing in the direction or in the opposite direction of h.

We provide an explanation of this phenomenon. Let us look at the rate-function
for magnetization-values pointing in the direction of A, in the conditioning A,
which reads

2
1 —
Fue(0); B, h,t,he) = ,3% -5 log/eﬂcosg(”"'h)q;(Q — (m +¢8))do
1 —
_ 5log/eﬂcosG(u+h)qt(9 — (7 — 8)) de

with the diffusion kernel on the sphere written in angular coordinates 6 as
1 1 o —k2t
q:1(0) = z—+—=Y_ e " cos(kb).
2r 7w

For fixed parameters 3, h, we use the new magnetization variable U = B(u + }_z)
to rewrite

Bh> U? _
F(ue(0); B, h,t,he) ———=~——Uh—L(U;¢,1), (48)
2 28
where
1 1
L(U;e, 1) = 51og / eV cosO+ @+ (9) do + 51og / eV cosO+T=9)y (9) do.

The second term on the l.h.s. of (48) is an unimportant constant. This choice of
parameters is handy because we have separated their influence, and moreover, two
of them are appearing only linearly in our four-parameter family.
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Figure3 (a)=5,h=0.16,6=04,1=1.(b)=5,h=0.16,6=0.3,1=1.

Let us explain how a balance between ¢ and / can be used to create a situation
of a pair of different equal depth-minimizers, without going into the details of the
analysis of the regions in parameter-space where this can be done.

For this heuristic argument, let us fix the ¢ first. We note that U — L(U; &, t) is

2 ..
convex, so lzj—ﬁ — L(U; &, t) has a chance to have more than one local minimum, for

good choices of 8, ¢, t. Having found such a situation, a tuning of the h will result
in a tilting of the rate-function which can create a situation where this pair has an

equal depth in the full function IZJ—; — Uh — L(U; ¢,t). The mechanism described

provides us with a curve in the space of & and /& where the two minima have
equal depth. Now, fixing a value of # and varying the ¢ across this curve, yields
a jump of the global minimizer which implies non-Gibbsianness. (Similarly, due
to the continuity of the above expression in the variables ¢, 2 and ¢, at a given h
slightly varying the time ¢ gives a slightly varying ¢ for which two equal-depth
minimizers occur.) In Figure 3, showing the plot of U — G(U; B!, h, e, 1) we
see this mechanism at work.

It is clear from the above diagram that for 8 =5, h =0.16, andt = 1 there is
a choice of ¢* such that F(ue(0);5,0.16, 1, A.4) has two global minimizers. Nu-
merically we find ¢* € (0.33481860, 0.33481863). Hence at such values for 8,
and ¢, the transformed system will be non-Gibbsian.
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