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Abstract. There is a one-to-one correspondence between classical one-
dimensional infinitely divisible distributions and free infinitely divisible
distributions. In this work we study the free infinitely divisible distributions
corresponding to the one-dimensional type G distributions. A new character-
ization of classical type G distributions is given first and the class of type A

classical infinitely divisible distributions is introduced. The corresponding
free type A distributions are studied and the role of a special symmetric beta
distribution is shown as a building block for free type A distributions. It is
proved that this symmetric beta distribution is the free multiplicative convo-
lution of an arcsine distribution with the Marchenko–Pastur distribution.

1 Introduction

The distribution of a one-dimensional random variable X is said to be a variance
mixture of the normal distribution if it is the distribution of V 1/2Z, where Z and V

are independent random variables with V being positive and Z having the standard
normal distribution. When the mixing distribution of V is infinitely divisible, X is
also infinitely divisible [12,16]. In this case we say that X has a type G distri-
bution or belongs to the class CTG of classical type G distributions, and write
L(V 1/2Z) ∈ CTG. Such distributions are also called B(V ) distributions in [20]
and Gaussian transforms in [10]. A type G distribution is the law of the subordi-
nated Brownian motion BVt at time t = 1, where {Bt : t ≥ 0} is a Brownian mo-
tion independent of a nondecreasing Lévy process (subordinator) {Vt : t ≥ 0}, such
that V1 has the same distribution as V.

Many important examples of classical infinitely divisible symmetric distribu-
tions are of type G: symmetric α-stable distributions, 0 < α < 2, where V is a
positive α/2-stable random variable, and more generally, convolutions of sym-
metric stable distributions of different stability indices; the Laplace distribution,
where V has the exponential distribution, and more generally, symmetric gamma
distributions, where V has the gamma distribution; Student t , where V has the
distribution of the reciprocal chi-square distribution; symmetric normal inverse
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Gaussian, with inverse Gaussian distribution for V ; and more generally, all the
symmetric generalized hyperbolic distributions.

The Bercovici–Pata [8] bijection is a homeomorphism � from the set of clas-
sical one-dimensional infinitely divisible distributions I (∗) to the set of free in-
finitely divisible distributions I (�). The bijection � is such that if μ is a dis-
tribution in I (∗) with classical characteristic triplet (a, ν, c), then �(μ) has free
characteristic triplet (a, ν, c); see also [7]. For an introduction to free probability
see the monographs [11,14].

The purpose of this paper is to study the class of free infinitely divisible distri-
butions corresponding to the classical type G distributions under the bijection �,

which we call free type G distributions. An important role is played by the theory
of Upsilon transformations of classical infinitely divisible distributions as recently
studied in [2,4,6,13,18] and [19].

We first take a new look to classical type G distributions. This is done by in-
troducing the class CTA of type A distributions on R as those classical infinitely
divisible distributions whose Lévy measures are mixtures of the symmetric arc-
sine distribution. The building block example is the symmetric compound Poisson
arcsine distribution which is the distribution of the random variable R = ∑N

i=1 Yi ,
where N is a random variable with classical Poisson distribution of mean one and
independent of a sequence Y1, Y2, . . . of random variables with the arcsine dis-
tribution on (−1,1). We then prove a new characterization of Lévy measures in
CTG showing that CTG is the image of (the ancestor class) CTA under an appro-
priate Upsilon type transformation. We conclude that any classical type G random
variable has a random integral representation with respect to a Lévy process with
type A distribution at time 1.

In the second part of this work we introduce the class of free type G (denoted
by FTG) and free type A (denoted by FTA) distributions as free infinitely divis-
ible distributions which are the image of CTG and CTA under �, respectively.
Analogous characterizations as for the classical case are given in terms of the
Lévy measure and the free cumulant transform. We identify the symmetric beta
distribution with shape parameter α = 3/2 and scale parameter β = 1/2 as a free
infinitely divisible distribution in FTA, but not in FTG, being the image of the
classical compound Poisson arcsine distribution under �. Moreover, this distri-
bution is identified as the free multiplicative convolution of an arcsine distribution
with the Marchenko–Pastur distribution. Its role as a building block for free type G

distributions is shown.
The paper is organized as follows. Section 2 recalls basic facts about Upsilon

transformations of Lévy measures, free infinite divisibility, multiplicative convolu-
tions and free compound Poisson distributions. In Section 3 we take a new look to
classical type G distributions and introduce a new class of classical type A distri-
butions. Section 4 characterizes the free infinitely divisible distributions given by
the image of the Bercovici–Pata bijection of CTA and CTG. Finally, in Section 5
we present examples of free type G and free type A distributions, as well as their
interpretations as free multiplicative convolutions.
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2 Background and notation

2.1 Upsilon transformations and ancestors

Let I (∗) be the class of all infinitely divisible distributions on R. For μ ∈ I (∗),
the Lévy–Khintchine representation of its classical cumulant function Cμ(z) =
log μ̂(z) is given by

Cμ(t) = ict − 1

2
at2 +

∫
R

(
eitx − 1 − itx1{|x|≤1}

)
ν(dx), t ∈ R, (1)

where c ∈ R, a ≥ 0, and ν is a measure on R (called the Lévy measure) satisfying
ν({0}) = 0 and ∫

R

min(1, |x|2)ν(dx) < ∞. (2)

The triplet (a, ν, c) is called the generating triplet of μ ∈ I (∗). Let ML(R) be the
class of all Lévy measures of elements in I (∗) and let ML(R+) be the class of
Lévy measures on R+ with ν(−∞,0) = 0 and

∫
R+(1 ∧ x)ν(dx) < ∞. See [17]

for a detailed study of classical infinitely divisible distributions on R
d .

The Upsilon transformation ϒ0, introduced in Barndorff-Nielsen and Thorb-
jørnsen [5,6] and studied further in [2–4], is defined as the mapping on ML(R)

into ML(R), given by

ϒ0(ν)(dx) =
∫ ∞

0
ν(s−1dx)e−s ds. (3)

This mapping is one-to-one, smooth and strongly regularizing, and hence
ϒ0(ML(R)) is a proper subset of ML(R). For ρ ∈ ML(R+), ϒ0(ρ) ∈ ML(R+)

and ϒ0(ML(R+)) = B(R+), which is the smallest class which contains all mix-
tures of classical exponential distributions and is closed under convolution and
weak convergence. Moreover, B(R+) is the class of distributions whose Lévy
measures have completely monotone densities and it is called the Goldie–Steutel–
Bondesson class. In this work we call an infinitely divisible distribution with Lévy
measure ν the ϒ0-ancestor of the infinitely divisible distribution with Lévy mea-
sure ϒ0(ν).

More specifically, we have the following result, which is used several times in
this work. It is a special case of (2.16) and (2.18) in Theorem A of [2].

Lemma 1. (a) Let ρ ∈ ML(R+). Then the Lévy measure ϒ0(ρ) is absolutely con-
tinuous with completely monotone density η(s;ρ) given by

η(s;ρ) =
∫

R+
τ−1e−sτ−1

ρ(dτ). (4)

Moreover,

η(s;ρ) =
∫

R+
e−srQ(dr), (5)
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where Q is a measure given by

Q(dr) = r ρ
←(dr), (6)

and ←ρ is the measure on R+ induced from ρ by the mapping s → s−1.

(b) Conversely, let η : R+ → R+ be a completely monotone function satisfying∫ ∞
0

min(1, r)η(r) dr < ∞. (7)

Then there exist a Lévy measure ρ ∈ ML(R+) such that ϒ0(ρ) has density η and
therefore η is represented by (4).

The theory of general Upsilon transformations of Lévy measures is discussed
in [4]. Of particular interest in the present work is the generalized Upsilon trans-
formation ϒ1−α, 0 < α ≤ 1, defined on ML(R) into ML(R) by

ϒ1−α(ν)(dx) =
∫ ∞

0
ν(s−α dx)e−s ds. (8)

Like for ϒ0 we call ν the ϒ1−α-ancestor of ϒ1−α(ν).1

2.2 Free infinite divisibility

In this section we present several facts about free additive and multiplicative con-
volutions as well as free infinitely divisible distributions and, in particular, some
useful results about free compound Poisson distributions. We refer to [1,7,9,11]
and [14] for details and further material.

2.2.1 Transforms of probability measures. We first recall several transforms of
probability measures that are useful in the analytic theory of free probability. The
basic one is the Cauchy transform of a probability measure μ on R, defined, for
z ∈ C \ R, by

Gμ(z) =
∫

R

1

z − x
μ(dx). (9)

It is known that Gμ is analytic in C\R, Gμ : C+ → C
−, where C

+ := {z : Im(z) >

0}, C
− := {z : Im(z) < 0}, and that limy→∞ iyGμ(iy) = 1. Moreover, the follow-

ing inversion formula holds when the density u of μ exists

u(x) = − 1

π
lim
y→0

ImGμ(x + iy). (10)

1In [13] what is here denoted by ϒ1/2 is called �−2,2.
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In connection to free infinite divisibility, the reciprocal of the Cauchy transform
is useful. It is the function Fμ(z) : C+ → C

+ defined by

Fμ(z) = 1

Gμ(z)
.

The free cumulant transform of a probability measure μ is

C�
μ (z) = zF−1

μ (z−1) − 1 (11)

for z in a domain Dμ of C
−.

On the other hand, for the study of multiplicative convolutions of measures, the
�μ-transform and the Sμ-transform are useful. The first one is defined by

�μ(z) = z−1Gμ(z−1) − 1. (12)

It was proved in [9] that for probability measures with support on R+ and such that
μ({0}) < 1, the function �μ(z) has a unique inverse χμ(z) in the left-half plane
iC+ and �μ(iC+) is a region contained in the circle with diameter (μ({0})−1,0).
In this case the S-transform of μ is defined as

Sμ(z) = χμ(z)
1 + z

z
.

Let

H = {z ∈ C+; |Re(z)| < Im(z)}, H̃ = {z ∈ C−; |Re(z)| < | Im(z)|}.
Recently, it was proved in [1] that when μ is a symmetric probability measure on R

with μ({0}) < 1, the transform �μ has a unique inverse on H , χμ :�μ(H) →
H and a unique inverse on H̃ , χ̃μ :�μ(H̃ ) → H̃ . In this case there are two
S-transforms for μ given by

Sμ(z) = χμ(z)
1 + z

z
and S̃μ(z) = χ̃μ(z)

1 + z

z

and these are such that

S2
μ(z) = 1 + z

z
Sμ2(z) and S̃2

μ(z) = 1 + z

z
Sμ2(z) (13)

for z in �μ(H) and �μ(H̃ ), respectively, where μ2 is the measure on R+ induced
by the transformation t → t2. Moreover,

z = C�
μ (zSμ(z)) and z = C�

μ (zS̃μ(z)) (14)

for z in �μ(H) and �μ(H̃ ), respectively.
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2.2.2 Additive and multiplicative free convolutions. The free additive convolu-
tion of two probability measures μ1,μ2 on R is defined as the probability measure
μ1 � μ2 on R such that

C�
μ1�μ2

(z) = C�
μ1

(z) + C�
μ2

(z) (15)

for z in the common domain where C�
μ1

and C�
μ2

are defined.
On the other hand, following [1], the free multiplicative convolution of a proba-

bility measure μ1 supported on R+ with a symmetric probability measure μ2 on R

is defined as the symmetric probability measure μ1 � μ2 on R such that

Sμ1�μ2(z) = Sμ1(z)Sμ2(z) and S̃μ1�μ2(z) = Sμ1(z)S̃μ2(z). (16)

2.2.3 Relation between free and classical infinite divisibility. A probability mea-
sure μ on R is free infinitely divisible if for n > 1 there exists a probability measure
μ1/n on R such that μ = μ1/n � · · · � μ1/n (n times). There is a free Lévy–
Khintchine formula for the free cumulant transform similar to the classical cumu-
lant function (1). Specifically, μ is free infinitely divisible if and only if

C�
μ (z) = cz + az2 +

∫
R

(
1

1 − zx
− 1 − zx1[−1,1](x)

)
ν(dx), z ∈ C

−, (17)

where c ∈ R, a ≥ 0, and ν is a Lévy measure [7], Proposition 4.16. As in the
classical case, the triplet (a, ν, c) is unique.

The Bercovici–Pata bijection � between classical and free infinitely divisible
distributions is such that if μ is infinitely divisible in the classical sense with Lévy–
Khintchine representation (1) and characteristic triplet (a, ν, c), then �(μ) is free
infinitely divisible with free Lévy–Khintchine representation (17) and free charac-
teristic triplet (a, ν, c). This bijection is such that �(μ1 ∗ μ2) = �(μ1) � �(μ2),

� is preserved under affine transforms, and it is a homeomorphism w.r.t. weak con-
vergence, that is, μn ⇒ μ if and only if �(μn) ⇒ �(μ). The Cauchy distribution
is a fixed point of �.

The most well-known examples of free infinitely divisible distributions are the
semicircle and the free Poisson distributions. More specifically, if Z is a classical
random variable with the standard Gaussian distribution L(Z), then w = �(L(Z))

is the standard semicircle distribution on (−2,2) given by

w(dx) = 1

2π

√
4 − x21[−2,2](x) dx.

In this case C�
w (z) = z2 and Sw(z) = 1/

√
z.

When L(N) is the classical Poisson distribution with mean one, m = �(L(N))

is the Marchenko–Pastur distribution (a special case of the so-called free Poisson
distribution)

m(dx) = 1

2πx

√
x(4 − x)1[0,4](x) dx. (18)
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The free cumulant and S-transforms are given, respectively, by C�
m(z) = z

1−z
and

Sm(z) = 1

z + 1
. (19)

2.2.4 Free compound Poisson distributions. When μ is a classical compound
Poisson distribution, the Lévy measure ν is a finite measure and the classical Lévy–
Khintchine representation (1) takes the form

Cμ(t) =
∫

R

(eitx − 1)ν(dx).

In this case we say that μ has CCP(ν) distribution. The corresponding free in-
finitely divisible distribution �(μ) is called the free compound Poisson distribu-
tion—denoted by FCP(ν)— with free cumulant transform

C�
�(μ)(z) =

∫
R

(
1

1 − zx
− 1

)
ν(dx). (20)

The first part of the following theorem is useful to identify some free compound
Poisson distributions. The second part gives an interpretation of some symmet-
ric FCP(ν) distributions as the multiplicative convolution of the Marchenko–Pastur
distribution m = �(L(N)) with the measure ν. The latter is an extension of Propo-
sition 12.18 in [14] for compactly supported probability measures to symmetric
probability measures with unbounded support.

Theorem 2. Let ν be a probability distribution on R.

(a) If μ has the classical compound distribution FCP(ν), the Cauchy trans-
form G�(μ) of the free compound Poisson distribution FCP(ν) satisfies the equa-
tion

G�(μ)(z
2Gν(z)) = z−1, z ∈ C \ R. (21)

(b) If ν is a symmetric probability distribution on R, the distribution FCP(ν)

is symmetric and FCP(ν) = m � ν.

Proof. (a) From (20), since ν is a probability measure we have

C�
�(μ)(z) =

∫
R

1

1 − zx
ν(dx) − 1 (22)

= z−1
∫

R

1

z−1 − x
ν(dx) − 1

= z−1Gν(z
−1) − 1 (23)

= �ν(z). (24)
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Taken together with (11) this gives

F−1
�(μ)(z) = z2Gν(z) (25)

which is equivalent to (21).
(b) From (16) and (19) the S-transform of λ = �(L(N)) � ν is given by

Sλ(z) = 1

z + 1
Sν = χν(z)

z
.

Then

zSλ(z) = χν(z),

�ν(zSλ(z)) = �ν(χν(z)) = z

and similarly for S̃ν and χ̃ν . This means by equation (14) that

C�
λ (z) = �ν(z)

which by (23) and the uniqueness of the Lévy–Khintchine representation gives that
λ = �(μ). �

3 A new look to classical type G distributions

3.1 Alternative expression for the Lévy measure

Let X have a classical type G distribution L(V 1/2Z) and let ρ be the Lévy mea-
sure of V. When V is nondegenerate, X has a symmetric non-Gaussian infinitely
divisible distribution with characteristic triplet (0, ν,0), where ν has a symmetric
Lévy density υ given by

υ(x) =
∫

R+
ϕ(x; τ)ρ(dτ), x ∈ R, (26)

and where ϕ(x, τ ) denotes the density function of the one-dimensional Gaussian
distribution with zero mean and variance τ (see [16,20]). Moreover, it is well
known that the classical cumulant transform of a type G distribution is given by

C∗
μ(t) =

∫
R+

(e−t2τ/2 − 1)ρ(dτ), t ∈ R. (27)

The following result expresses the Lévy measure of a type G distribution in
terms of mixtures of arcsine distributions and the Upsilon transformation ϒ0 of
the Lévy measure ρ. Recall

a(x, s) =
⎧⎨⎩

1

π
(s − x2)−1/2, |x| < √

s,

0, |x| > √
s,

(28)



114 O. Arizmendi, O. E. Barndorff-Nielsen and V. Pérez-Abreu

is the density of the arcsine distribution as on (−√
s,

√
s); in particular, a2 is the

standard arcsine distribution, that is, a2 has zero mean and variance one.
Following the notation in Lemma 1, for ρ ∈ ML(R+), we denote by η(·;ρ) the

Lévy density of ϒ0(ρ).

Proposition 3. Let μ be a classical type G distribution L(V 1/2Z), with V having
Lévy measure ρ. The Lévy measure ν of μ has a density υ given by

υ(x) =
∫ ∞

0
a(x; s)η(s;ρ)ds. (29)

Proof. From a well-known result by Box and Muller, the standard Gaussian dis-
tribution is the distribution of E1/2A, where A and E are independent random
variables with E having the exponential distribution with mean 2 and A having
the arcsine distribution on (−1,1). In fact, it is easy to prove that

ϕ(x;1) =
∫ ∞

0

1

2
e−s/2a(s1/2x,1)s−1 ds =

∫ ∞
0

e−sa(x, s) ds

and therefore for t > 0

ϕ(x; t) =
∫ ∞

0

1

t
e−s/ta(x, s) ds, x ∈ R. (30)

Thus, using the last expression in (26), we obtain

υ(x) =
∫

R+

1

τ

∫ ∞
0

e−s/τ a(x, s) ds ρ(dτ)

=
∫ ∞

0
a(x, s)

∫
R+

1

τ
e−s/τ ρ(dτ) ds

=
∫ ∞

0
a(x, s)η(s;ρ)ds,

which proves the result. �

3.2 Characterization

Rosinski [16] proved the following characterization for Lévy measures of type G

distributions.

Theorem 4. A symmetric probability measure μ on R is of type G if and only if it
is infinitely divisible and its Lévy measure ν is either zero or

ν(dr) = g(r2) dr, (31)

where g(r) is a completely monotone function in r ∈ (0,∞) such that∫ ∞
0

min(1, r2)g(r2) dr < ∞.
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The following result is a new characterization of Lévy measures of type G dis-
tributions. It is useful to identify the ancestor class of type G distributions under
the transformation ϒ1/2.

Theorem 5. A symmetric probability measure μ on R is of type G if and only if it
is infinitely divisible and its Lévy measure ν is either zero or has a Lévy density υ

representable as

υ(dx) =
∫ ∞

0
a(x; s)η(s) ds, (32)

where η is a completely monotone function in s ∈ (0,∞) such that∫ ∞
0

min(1, s)η(s) ds < ∞. (33)

Proof. The only if part is given by Proposition 3 and Lemma 1(a). On the other
hand, suppose υ is the Lévy density of an infinitely divisible symmetric distri-
bution μ satisfying (32) and (33). From Lemma 1(b), η is the Lévy density of
ϒ0(ρ) for a Lévy measure ρ in ML(R+). Therefore from (26) and (29), μ is the
distribution L(V 1/2Z) where V is infinitely divisible with Lévy measure ρ. �

Since a completely monotone function does not have bounded support, we ob-
tain:

Corollary 6. A type G Lévy measure is not a finite range mixture of arcsine mea-
sures.

3.3 The ϒ1/2-ancestor class of CTG: Type A distributions

We now define the class of type A distributions on R as those symmetric infinitely
divisible distributions whose Lévy measure ν is either zero or has a density υ of
the form

υ(x) =
∫

R+
a(x; s)ρ(ds) (34)

for some Lévy measure ρ ∈ ML(R+). We denote by CTA the class of type A

distributions on R and observe that it is indeed well defined. When we talk about
free type A distributions, which will appear later, we refer to type A distributions
as classical type A distributions.

Lemma 7. For any ρ ∈ ML(R+) the function υ given by the expression (34) de-
fines a symmetric Lévy density.
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Proof. ∫ ∞
−∞

min(1, x2)υ(x) dx =
∫ ∞
−∞

min(1, x2)

∫
R+

a(x; s)ρ(ds) dx

= 1

π

∫ 1

−1

1√
1 − y2

∫
R+

min(1, sy2)ρ(ds) dy

≤ 1

π

∫ 1

−1

1√
1 − y2

∫
R+

min(1, s)ρ(ds) dy

=
∫

R+
min(1, s)ρ(ds) < ∞,

since ρ is a Lévy measure on R+. �

From Proposition 3(a) we have that CTG is a subclass of CTA. Examples of
type A distributions that are not type G are obtained when the Lévy measure ρ has
bounded support. This follows from Corollary 6. Concrete examples of this are
obtained when υ is the arcsine distribution a(x, τ ) corresponding to ρ = δτ , or υ

is the semicircle distribution w(x,1) obtained from (34) when ρ is the distribution
of U1/2, where U has uniform distribution on (0,1).

The following result gives a characterization of type G distributions as the im-
age of type A distributions under the transformation ϒ1/2. We recall that the map-
ping ϒ1/2 is defined in (8).

Theorem 8. CTG = ϒ1/2(CTA).

Proof. Let ν ∈ CTA. Using (8), (34) and Lemma 1(a)

ϒ1/2(ν)(dx) =
∫ ∞

0
υ(r−1/2x)r−1/2e−r dr dx

=
∫ ∞

0

∫
R+

r−1/2a(r−1/2x; s)e−rρ(ds) dr dx

=
∫ ∞

0

∫
R+

a(x; rs)e−rρ(ds) dr dx (35)

=
∫ ∞

0
a(x;y)

∫ ∞
0

e−rρ(r−1dy)dr dx

=
∫ ∞

0
a(x; s)η(s;ρ)ds dx. (36)

Since, by the second part of Lemma 1(a), η(s;ρ) is completely monotone in s,

on account of Theorem 5, ϒ1/2(ν) is the Lévy measure of a type G distribution.
Hence ϒ1/2(CTA) ⊂ CTG.
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On the other hand, let μ be a type G distribution L(V 1/2Z) with V having Lévy
measure ρ and let ν̃ be the Lévy measure of μ. From Proposition 3(a) we have that
the Lévy density υ̃ of ν̃ is given by

υ̃(x) =
∫ ∞

0
a(x; s)η(s;ρ)ds.

Let ν be the Lévy measure whose density is given by (34). Then from (36)
and the uniqueness of Lévy measures we have ν̃ = ϒ1/2(ν), that is, CTG ⊂
ϒ1/2(CTA). �

As a consequence of the above theorem and Theorem 2.1 in [13] we deduce the
following integral representation of type G distributions.

Theorem 9. An infinitely divisible random variable X is of type G if and only if
there is a Lévy process {At ; t ≥ 0} with type A distribution at time 1 such that

L(X) = L
(∫ 1/2

0
(− log(2t))1/2 dAt

)
.

Proof. Let ν be a Levy measure on R. Using change of variables y = s2 and (8)
with α = 1/2 we have∫ ∞

0
ν(s−1 dx)se−s2

ds = 1

2

∫ ∞
0

ν(s−1/2 dx)e−s ds = 1

2
ϒ1/2(ν)(dx). (37)

If ν is the Lévy measure of a type G, from Theorem 8 there is a Lévy mea-
sure ν0 of a type A distribution such that ν = ϒ1/2(ν0). Using the same no-
tation ϒ1/2 for mappings of Lévy measures and mappings of their correspond-
ing classical infinitely divisible distributions, we observe that in the notation
in [13], g(u) = G−2,2(u) = ∫ ∞

u xe−x2
dx = 1

2 exp(−u2) and ϒ1/2 = 2�−2,2. Let
{At ; t ≥ 0} be a Lévy process such that L(A1) = L(A). From Theorem 2.1 in
[13] ϒ1/2(L(A)) = L(

∫ 1/2
0 f (t) dAt), where f is the inverse function of g(u),

that is, f (t) = (− log(2t))1/2. The result follows by the relation between Upsilon
transformations of Lévy measures and the random integral representations of their
corresponding distributions, as explained in Section 9 of [4] and by observing that
the triplet (0, ν,0) of a type G distribution and the triplet (0, ν0,0) of a type A

distribution only depend on their Lévy measures. �

4 Free type A and free type G distributions

We say that a free infinitely divisible distribution λ is free type G if there is a
classical type G probability measure μ such that λ = �(μ). Similarly, we say
that a free infinitely divisible distribution λ is free type A if there is a classical
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type A probability measure μ such that λ = �(μ). We denote by FTG and FTA

the classes of free type G and free type A distributions on R, respectively.
The semicircle distribution is a free type G and a free type A distribution. Ad-

ditional examples are provided in the last section of this paper.
By the Bercovici–Pata bijection �, the characterization of Lévy measures of

classical type G and classical type A distributions given in Section 3 hold as well
in the free case. We next present a characterization in terms of the free cumulant
transform. In view of Theorem 8 we first consider the ancestor class of free type A

distributions.

4.1 The free ϒ1/2-ancestor class

The arcsine probability measure plays an important role in the study of free type A

distributions. It is then of interest to study the corresponding free compound Pois-
son arcsine distribution which we are able to identify in an explicit manner.

Let λs be the free compound Poisson distribution FCP(as), for s > 0. We
first derive the Cauchy transform and then the density of FCP(as). Recall (see,
e.g., [11]) that the Cauchy transform of the arcsine measure as on (−√

s,
√

s) is
given by

Gas (z) = (√
z2 − s

)−1
. (38)

Lemma 10. The Cauchy transform of the probability measure λs of the free com-
pound Poisson distribution FCP(as) is given by

Gλs (z) = 1√
2s

√
1 −

√
z−2(z2 − 4s). (39)

Proof. Using (38) in (21), we have that λs is such that

Gλs

(
z2

√
z2 − s

)
= z−1.

Making the change of variable

r = z2
√

z2 − s
,

we observe that r ∈ C
+ when z ∈ C

+ and that r and z satisfy

z4 − z2r2 + r2s = 0.

Solving for z2,

z2 = r2 ± √
r2(r2 − 4s)

2
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and hence

z = ±
√

r2 ± √
r2(r2 − 4s)

2
.

Then, the potential candidates for Gλ are
√

2

±
√

z2 ± √
z2(z2 − 4s)

.

Since Gλs must be such that Gλs : C+ → C
− and |z|Gλs (z) → 1 when |z| → ∞,

we deduce that

Gλs (z) =
√

2√
z2 + √

z2(z2 − 4s)

.

Then, multiplying and dividing by (
√

z2 − (z2(z2 − 4s))1/2),

Gλs (z) =
√

2
√

z2 − √
z2(z2 − 4s)√

z4 − z2(z2 − 4s)

=
√

2
√

z2 − √
z2(z2 − 4s)√

4sz2

= 1√
2s

√
1 −

√
z−2(z2 − 4s),

as we wanted to prove. �

We next identify the distribution λs as the symmetric beta distribution SBs(
3
2 , 1

2)

on (−2
√

s,2
√

s). Recall that for α,β > 0, a probability measure has the symmetric
beta distribution SBs(α,β) on (−2

√
s,2

√
s) if it is absolutely continuous with

density

g(x) = 1

2B(α,β)
√

s
|x|α−1(

2
√

s − |x|)β−1
, |x| < 2

√
s.

Proposition 11. The probability measure λs with Cauchy transform (39) has the
symmetric beta distribution SBs(

3
2 , 1

2) with density

gλs (x) = 1

2π
√

s
|x|−1/2(

2
√

s − |x|)1/2
, |x| < 2

√
s. (40)

Proof. From the inversion formula (10), the density of Gλs is given by

gλs (x) = − 1

π
√

2s
Im

√
1 −

√
x−2(x2 − 4s).
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We notice that there is an imaginary part when |x| < 2
√

s and x = 0. Thus, we are
looking for b < 0 such that√

1 −
√

x−2(x2 − 4s) = a + ib.

That is,

1 − i

√
x−2(4s − x2) = a2 − b2 + 2iab;

so a2 = b2 + 1, and √
x−2(4s − x2) = −2ab

if and only if

x−2(4s − x2) = 4a2b2 = 4b4 + 4b2.

Then, solving for b2 in the equation

b4 + b2 − 1
4x−2(4s − x2) = 0

we obtain

b2 = −1 ±
√

1 + x−2
(
4s − x2

)
2

.

Since b2 is real and nonnegative, we have

b2 = 1
2 |x|−1(√

4s − |x|)
and therefore

b = −
√

1
2 |x|−1

(√
4s − |x|),

from where we obtain (40). �

The above result gives a concrete example of a free infinitely divisible distribu-
tion which belongs to FTA but not to FTG. This follows from Corollary 6 since
FTG = �(CTG). An interpretation of this distribution as the multiplicative convo-
lution of the Marchenko–Pastur and an arcsine distribution is proved in Section 5.

Since the symmetric beta distribution has been derived as the symmetric free
infinitely divisible distribution with arcsine Lévy measure, we trivially have the
following result.

Proposition 12. For each s > 0 the symmetric beta distribution SBs(
3
2 , 1

2) has
free cumulant transform

C�
λs

(z) = 1√
1 − sz2

− 1. (41)
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Proof. Taking ν = as in (23) and using (38) we obtain

C�
λs

(z) =
∫

R

(
1

1 − zx
− 1

)
a(x; s) dx

= z−1Gν(z
−1) − 1

= 1√
1 − sz2

− 1

as we wanted to prove. �

4.2 Free type A distributions

We begin with a characterization of free infinitely divisible distributions in FTA. It
gives the free cumulant of a distribution in FTA as a mixture of the free cumulant
transforms of the symmetric beta distributions SBs(

3
2 , 1

2), s > 0.

Theorem 13. A symmetric free probability distribution λ belongs to FTA if and
only if its cumulant transform is expressible as

C�
λ (z) =

∫
R+

C�
λs

(z)ρ(ds) =
∫

R+

(
1√

1 − sz2
− 1

)
ρ(ds) (42)

for some Lévy measure ρ ∈ ML(R+), and where λs is the symmetric beta distri-
bution SBs(1/2,3/2) with density (40). Moreover

C�
λ (z) =

∫
R+

C�
m�as

(z)ρ(ds), (43)

where m is the Marchenko–Pastur distribution and as the arcsine distribution on
(−√

s,
√

s).

Proof. Let V be a nonnegative infinitely divisible random variable with Lévy mea-
sure ρ. Let μ ∈ CTA with Lévy measure given by (34). Then, from (22) and (41)
we obtain

C�
�(μ)(z) =

∫
R

(
1

1 − zx
− 1

)
ν(dx)

=
∫

R+

{∫
R

(
1

1 − zx
− 1

)
a(x; s) dx

}
ρ(ds)

=
∫

R+
C�

λs
(z)ρ(ds)

=
∫

R+

(
1√

1 − sz2
− 1

)
ρ(ds)

which, by the uniqueness of the free cumulant transform, shows that λ = �(μ),
and conversely. To prove (43) we use Proposition 17 in Section 5 to obtain C�

λs
(z) =

C�
m�as

(z). The result then follows from the first equality in (42). �
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4.3 Free type G distributions

The free cumulant transforms of free type G distributions are also mixtures of the
free cumulant transforms of the symmetric beta distributions SBs(

3
2 , 1

2), s > 0.

Theorem 14. A symmetric probability measure τ in R is FTG if and only if it is
the semicircle distribution or its free cumulant transform is given by

C�
τ (z) =

∫
R+

C�
λs

(z)ρ(ds) =
∫ ∞

0

(
1√

1 − sz2
− 1

)
η(s) ds, (44)

where η is a completely monotone function in R+ such that
∫ ∞

0 min(1, r)η(r) dr <

∞. Moreover

C�
τ (z) =

∫
R+

C�
m�as

(z)η(s) ds, (45)

where m is the Marchenko–Pastur distribution and as the arcsine distribution on
(−√

s,
√

s).

Proof. Suppose τ ∈ FTG. Then τ = �(μ), where μ ∈ CTG, that is, μ is the
distribution of L(V 1/2Z) with V having Lévy measure ρ. Then the Lévy measure
ν of μ (and τ ) has a Lévy density υ giving by (29). Therefore using (22) and (41)
we obtain

C�
�(μ)(z) =

∫
R

(
1

1 − zx
− 1

)
υ(x) dx

=
∫

R

∫ ∞
0

(
1

1 − zx
− 1

)
a(x; s)η(s;ρ)ds dx

=
∫ ∞

0
η(s;ρ)ds

∫
R

(
1

1 − zx
− 1

)
a(x; s) dx

=
∫ ∞

0

(
1√

1 − sz2
− 1

)
η(s;ρ)ds,

where from Lemma 1(a), η(s;ρ) is completely monotone in R+. Conversely,
if (44) is satisfied with η a completely monotone Lévy density, then by Lemma 1(b)
there is a Lévy measure ρ in R+ such that η is the density of ϒ0(ρ). Tak-
ing μ ∈ CTG of the form L(V 1/2Z) with V having Lévy measure ρ, from the
above calculations we have that (44) is the free cumulant transform of �(μ) and
therefore �(μ) belongs to FT G. To prove (45) we use Proposition 17 in Sec-
tion 5 to obtain C�

λs
(z) = C�

m�as
(z). The result then follows from the first equality

in (44). �
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5 Examples and multiplicative convolutions

In this section we describe some free type A distributions in terms of multiplica-
tive convolutions. As before we use the notation L(X) for the distribution of a
classical random variable X. In particular, we denote by Z,N and As , s > 0,

classical random variables with standard Gaussian distribution L(Z), Poisson dis-
tribution L(N) of mean one and arcsine distribution as = L(As) on (−√

s,
√

s).
Then w = �(L(Z)) is the semicircle distribution on (−2,2) and m = �(L(N)) is
the Marchenko–Pastur distribution on (0,4) given by (18).

Using the characterization Theorem 5 of classical type G distributions, we first
obtain the following interpretation of some symmetric free compound Poisson
type G distributions and some symmetric free compound Poisson type A distri-
butions. Recall that distributions in CTG and in CTA are symmetric and therefore
they have symmetric Lévy measures.

Proposition 15. Let L(V 1/2Z) ∈ CTG have a Lévy measure ν with density

υ(x) =
∫ ∞

0
a(x; s)η(s) ds, (46)

where η is a probability density. Then

�(L(V 1/2Z)) = m � L(AH), (47)

where H is a random variable with distribution η independent of the arcsine ran-
dom variable A on (−1,1).

Proof. The measure ν is a (symmetric) probability measure on R, since η is a
probability density on R+. Then we can apply Theorem 2 to obtain

�(L(V 1/2Z)) = m � ν.

Finally, υ given by (46) is the density of the scale mixture A1H , where H has
distribution with density η independent of the arcsine random variable A on
(−1,1). �

In a very similar manner we can obtain the more general result for free com-
pound Poisson type A distributions.

Proposition 16. Let μ ∈ FTA have a symmetric Lévy measure ν with density

υ(dx) =
∫ ∞

0
a(x; s)ρ(ds) (48)

for some probability measure ρ on R+. Then �(μ) = m � L(AH), where H is a
random variable with distribution ρ independent of the arcsine random variable A.
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Next, we use Proposition 15 to describe some free type A distributions in terms
of multiplicative convolution.

5.1 A symmetric beta distribution

In Proposition 11 we showed that the FCP(as) distribution has the density of the
symmetric beta distribution SBs(3/2,1/2) on (−2

√
s,2

√
s) given by

gλs (x) = 1

2π
√

s
|x|−1/2(

2
√

s − |x|)1/2
, |x| < 2

√
s.

The following result shows that the free type A ϒ1/2-ancestor given by the sym-
metric beta distribution SBs(3/2,1/2) on (−2

√
s,2

√
s), has a representation as

the multiplicative convolution of the Marchenko–Pastur distribution on (0,4) with
the arcsine distribution as on (−√

s,
√

s).

Proposition 17. Let λs be the symmetric beta distribution SBs(3/2,1/2) on
(−2

√
s,2

√
s). Then λs = m � as .

Proof. From Theorem 2 we have that m � as has the same distribution as FCP(as)

which is a SBs(3/2,1/2) distribution on (−2
√

s,2
√

s) by Proposition 11. �

Remark 18. (a) From the above proposition we are able to give an interpre-
tation of the symmetric beta distribution in terms of nonconmutative random
variables. Let s and a be nonconmutative random variables in free relation
in a nonconmutative probability space (A, τ), where a is a Haar unitary ele-
ment with ∗-distribution a4 on (−2,2) and s is a semicircular element with
∗-distribution w on (−2,2); see, for example, [15]. Then the above proposition
says that SB4(3/2,1/2) is the ∗-distribution of the nonconmutative random vari-
able s2(a + a∗).

(b) The symmetric beta SBs(3/2,1/2) is an explicit example of a distribution
in FTA which is not in FTG. This is a consequence of Corollary 6. since m has
finite range.

5.2 Free Normal Poisson distribution

Consider the Normal Poisson type G distribution L(N1/2Z). We will show that
the corresponding free type G distribution �(L(N1/2Z)), called the free Normal
Poisson distribution, has an interpretation as the multiplicative convolution of the
Marchenko–Pastur distribution with the Gaussian distribution.

Recall that N1/2Z is a symmetric CCP(ν) distribution with Lévy measure ν

equal to the standard Gaussian measure.
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Proposition 19. The following two representations of the free Normal Poisson
distribution �(L(N1/2Z)) hold:

(a)

�(L(N1/2Z)) = m � L(Z),

(b)

�(L(N1/2Z)) = m � L(E1/2A),

where E is an exponential random variable of mean 2 independent of the arcsine
random variable A on (−1,1).

Proof. (a) Since L(N1/2Z) is a symmetric CCP(ν) distribution with the Gaussian
distribution as its Lévy measure ν, by the Bercovici–Pata bijection �(L(N1/2Z))

is a FCP(ν) with the same Gaussian Lévy measure ν. From Theorem 2
�(L(N1/2Z)) is the free multiplicative convolution of L(N) and the Gaussian
distribution L(Z). The proof of (b) follows from (a) and the fact that the standard
Gaussian distribution L(Z) is the distribution of E1/2A, where A and E are in-
dependent random variables, E having the exponential distribution with mean 2
and A with the arcsine distribution on (−1,1). �

5.3 Semicircle Marchenko–Pastur distribution

Finally, we present another example of a distribution in FTA which is not in FTG.

It is the multiplicative convolution of the Marchenko–Pastur distribution with the
semicircle distribution, recently considered in [15]. Here we show that this dis-
tribution is free type A. We recall that semicircle distribution ws on (−2s,2s) is
given by

ws(dx) = 1

2πs2

√
4s2 − x21[−2s,2s](x) dx.

Proposition 20. For each s > 0, let μs be the FCP(ws) distribution where ws is
the semicircle distribution on (−2s,2s). Then �(μs) ∈ FTA and �(μs) = m�ws .

Furthermore, �(μs) does not belong to FTG.

Proof. Using Theorem 2 we have �(μs) = m�ws . The fact that �(μs) is in FTA

but not in FTG follows from Corollary 6, since it is well known and easy to check
that the semicircle distribution w1 is the law of L(U1/2A), where U is a random
variable with uniform distribution on (0,1) independent of A, and since U has
finite range. �
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