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Abstract. An optimal alternative bivariate ranked set sample designs for the
matched pairs sign test are obtained. Our investigation revealed that the opti-
mal bivariate ranked set sample designs for matched pairs sign test are those
with quantifying order statistics with labels {( r+1

2 , r+1
2 )} when the set size

r is odd and {( r
2 , r

2 ), ( r
2 + 1, r

2 + 1)} when the set size r is even. The exact
null distributions, asymptotic distributions and Pitman efficiencies of those
designs are derived. Numerical analysis of the power of the proposed optimal
designs is included. An illustration using real data with a bootstrap algorithm
for P -value estimation is used.

1 Introduction

Hennekens and Buring (1987) argued that matching as a technique for the con-
trol of confounding has great intuitive appeal and has been widely used over the
years in many epidemiological studies clinical trials. Unlike randomization and
restriction, which used to control for confounding in the design stage of a study,
matching is a strategy that must include elements of both design and analysis. Ex-
amples for matched pairs studies are found in identical twins, before and after and
other studies, where subjects are matched based on some confounding factors.

These types of studies produce data consisting of observations in a bivariate ran-
dom sample {(Xi, Yi), i = 1,2, . . . , n}, where there are n pairs of observations. As
in Hettmansperger (1984), assume that the bivariate cumulative distribution func-
tion (CDF) F is absolutely continuous with absolutely continuous marginal CDFs.
Thus, within each pair (Xi, Yi) a comparison is made, and the pair is classified
as “+” if Xi < Yi , “−” if Xi > Yi or “0” if Xi = Yi . Here the measurement scale
needs only to be ordinal. Other needed assumptions are: (1) The bivariate variables
(Xi, Yi), i = 1,2, . . . , n, are mutually independent. (2) The pairs (Xi, Yi) are inter-
nally consistent in that if P(+) > P (−) for one pair (Xi, Yi), then P(+) > P (−)

for all pairs. The same is true for P(+) < P (−) and P(+) = P(−); see Conover
(1980) and Samawi et al. (2008).

The types of null hypotheses that can be tested using the matched pairs sign test
are:
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(1) H0 :P(+) = P(−) = 1
2 .

(2) H0 :E(Xi) = E(Yi) for all i, which is interpreted as Xi and Yi have the same
location parameter.

(3) H0 : The median of Xi equals the median of Yi for all i (see Conover (1980)).

The matched pairs sign test statistic which denoted by TBVSRS, for testing the
above hypotheses equals the number of “+” pairs, that is

TBVSRS =
n∑

i=1

I (Xi < Yi),

where

I (Xi < Yi) =
{

1, if Xi < Yi ,
0, otherwise.

Discarding all tied pairs and let n equal the number of the remaining pairs (see
Conover (1980)). Depending on whether the alternative hypothesis is one-tailed or
two-tailed, and if n ≤ 20, then one can use the binomial distribution with the values
n and p = 1/2 for finding the critical region of approximately size α. For n larger
than 20 and when the null hypothesis is true then TBVSRS ∼ N(n

2 , n
4 ). Therefore the

critical region can be defined based on the normal distribution. It has been argued
that TBVSRS is an unbiased and a consistent test statistic when testing

H0 :P(+) = P(−).

However, for testing

H0 :E(Xi) = E(Yi)

for all i, which is interpreted as Xi and Yi have the same location parameter and

H0 : The median of Xi equals the median of Yi for all i,

TBVSRS is neither unbiased nor consistent (see Conover (1980)).

In most statistical applications the data used is assumed to consist of a sim-
ple random sample (SRS). However, it becomes obvious in some situations that
quantification of sampling units with respect to the variable of interest is costly
as compared with the physical acquisition of the unit. Cost savings of quantify-
ing sampling units can be achieved by using ranked set sampling (RSS) method
which was introduced first by McIntyre (1952) without any mathematical proof, to
estimate the population mean and later called RSS by Halls and Dell (1966).

The RSS procedure can be described as follows: randomly sample a group of
sampling units from the target population. Then randomly partition the group
into disjoint subsets each having a preassigned size r . In most practical situa-
tions, the size r will be 2,3 or 4. Rank the elements in each subset by a suitable
method of ranking, such as prior information, visual inspection or by the sub-
ject matter experimenter himself, . . . , etc. Then the ith order statistic from the
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ith subset, Xi(i), i = 1, . . . , r , will be quantified (actual measurement). Therefore,
X1(1),X2(2), . . . ,Xr(r) constitutes the RSS. This represents one cycle. The whole
procedure can be repeated m-times as needed, to get a RSS of size n = mr . For the
theoretical aspects of RSS, see Takahasi and Wakimoto (1968) or Dell and Clutter
(1972). For more about univariate RSS and its variations, see Kaur et al. (1995)
and Patil, Sinha and Tillie (1999).

Recently, ranked set samples were used for quantiles and distribution estimation
by Stokes and Sager (1988), Chen (2000), Samawi (2001) and Samawi and Al-
Saleh (2004). Optimality of ranked set sample scheme for inference on population
quantiles was suggested by Chen (2001). Other authors have used the RSS sam-
pling method to improve parametric and nonparametric statistical inference. For
nonparametric methods, RSS was considered by Bohn and Wolfe (1992, 1994),
Kvam and Samaniego (1994) and Hettmansperger (1995). Koti and Babu (1996)
showed that the RSS sign test provides a more powerful test than the SRS sign
test. Barabesi (1998) provided a simpler and faster method for computing the ex-
act distribution of the RSS sign test.

The optimality of the RSS sign test has been established by several researchers
in the literature via Pitman asymptotic efficacy. It was shown that the median
ranked set sample (MRSS) is the best among all possible sampling schemes
in the ranked set sampling environment for the sign test procedure; for exam-
ple, see Öztürk (1999), Öztürk and Wolfe (2000) and Samawi and Abu-Dayyeh
(2003).

Another RSS procedure for estimation of bivariate characteristics using bivari-
ate ranked set sampling (BVRSS) was introduced by Al-Saleh and Zheng (2002).
Their procedure can be described as follows:

Suppose (X,Y ) is a bivariate random vector with the joint probability density
function (PDF) f (x, y).

1. A random sample of size r4 is identified from the population and randomly
allocated into r2 pools each of size r2, where each pool is a square matrix with
r rows and r columns.

2. In the first pool, identify the minimum value by judgment with respect to the
first characteristic X, for each of the r rows.

3. For the r minima obtained in step 2, choose the pair that corresponds to the min-
imum value of the second characteristic Y , identified by judgment, for actual
quantification. This pair, which resembles the label (1,1), is the first element
of the BVRSS sample.

4. Repeat steps 2 and 3 for the second pool, but in step 3, the pair that corresponds
to the second minimum value with respect to the second characteristic, Y, is
chosen for actual quantification. This pair resembles the label (1,2).

5. The process continues until the label (r, r) is resembled from the r2th (last)
pool.
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This will produce a BVRSS of size r2. The procedure can be repeated m times
to obtain a sample of size n = mr2.

Let {(Xz
ijk, Y

z
ijk), i = 1, . . . , r , j = 1, . . . , r , k = 1, . . . ,m, z = 1,2, . . . , r2},

be mr4 i.i.d. ordered pairs from a bivariate probability density function, say
f (x, y); (x, y) ∈ R2. Again, assume that the bivariate CDF F is absolutely
continuous with absolutely continuous marginal CDFs. Following the Al-Saleh
and Zheng (2002) definition of BVRSS let {(X[i](j)k, Y(i)[j ]k), i = 1, . . . , r, j =
1, . . . , r, k = 1, . . . ,m} denote such a sample from f (x, y). Note that the nota-
tion (·) indicates that the ranking is perfect and [·] indicates that the ranking is
imperfect. Therefore, the pair (X[i](j), Y(i)[j ]) is the measurement of the matched-
pair (j, i) subjects with respect to X and Y characteristics, respectively, from the
kth cycle, the j th perfect ranking order statistics with respect to X and imper-
fect ranking with respect to Y and the ith perfect ranking order statistic with
respect to Y and imperfect ranking with respect to X. Let fX[i](j),Y(i)[j ](x, y) be
the joint PDF of (X[i](j)k, Y(i)[j ]k), k = 1,2, . . . ,m. Note that, as in Al-Saleh and
Zheng (2002),

fX[i](j),Y(i)[j ](x, y) = fY(i)[j ](y)fX(j)
(x)fY |X(y|x)

fY[j ](y)
, (1)

where fX(j)
(x) is the density of the j th order statistic for a SRS sample of

size r from the marginal density of fX and given by fX(j)
(x) = r!

(j−1)!(r−j)! ×
[F(x)]j−1[1−F(x)]r−j f (x), fY[j ](y) is the density of the corresponding Y -value
given by

fY[j ](y) =
∫ ∞
−∞

fX(j)
(x)fY |X(y|x)dx,

and fY(i)[j ](y) is the density of the ith order statistic of an i.i.d. sample from
fY[j ](y), that is,

fY(i)[j ](y) = r!
(i − 1)!(r − i)!

[
FY[j ](y)

]i−1[
1 − FY[j ](y)

]r−i
fY[j ](y)

with FY[j ](x) = ∫ y
−∞

∫ ∞
−∞ fX(j)

(x)fY |X(w|x)dx dw.

Using the above results and that fY |X(y|x) = f (x,y)
fX(x)

we can rewrite equation (1)
as

fX[i](j),Y(i)[j ](x, y)
(2)

= c1
[
FY[j ](y)

]i−1[
1 − FY[j ](y)

]r−i[F(x)]j−1[1 − F(x)]r−j f (x, y),

where c1 = r!r!
(i−1)!(r−i)!(j−1)!(r−j)! .



28 H. M. Samawi and M. Pararai

Note that from Al-Saleh and Zheng (2002) we have the following results:

1

r2

r∑
j=1

r∑
i=1

fX[i](j),Y(i)[j ](x, y) = fX,Y (x, y),

fX(x) = 1

r2

r∑
j=1

r∑
i=1

fX[i](j)
(x)

and

fY (y) = 1

r2

r∑
j=1

r∑
i=1

fY(i)[j ](y).

Samawi et al. (2006) used the idea of BVRSS to improve the efficiency of bi-
variate sign test for one-sample bivariate location model.

This paper introduces an optimal BVRSS designs (OBVRSS) for matched
pairs sign test. Numerical comparisons between the performance of the OBVRSS
matched pairs sign test and the performance of the BVSRS and BVRSS sign tests
via Pitman’s asymptotic efficiency and asymptotic power are investigated. The ex-
act null distribution and the asymptotic null distribution and power of the OBVRSS
sign test are derived. It will be shown that OBVRSS substantially improves the ef-
ficiency and the power of the matched pairs sign test. We also introduce a bootstrap
method for finding the P -value of the matched pairs test for small sample sizes and
demonstrate the procedure using real data from the Iowa 65+ Rural Health Study
(RHS).

2 Alternative BVRSS designs for matched pairs sign test

An alternative bivariate ranked set sampling (ABVRSS) is a sampling protocol that
quantifies the same order statistics in each pool using similar BVRSS protocol.
Samawi at el. (2009) described ABVRSS as follows: Define L(A) to be the cardi-
nality of a set A, then L(A) = the number of elements in a set A. Let JABVRSS =
{set of all possible alternative BVRSS designs} = {J1, J2, . . . , JL(JABVRSS)}, for
example, when r = 2, then JABVRSS = {{(1,1)}, {(1,2)}, {(2,1)}, {(2,2)}, {(1,1),

(1,2)}, {(1,1), (2,1)}, {(1,1), (2,2)}, {(1,2), (2,1)}, {(1,2), (2,2)}, {(2,1), (2,

2)}, {(1,1), (1,2), (2,1)}, {(1,1), (1,2), (2,2)}, {(1,1), (2,1), (2,2)}, {(1,2), (2,

1), (2,2)}, {(1,1), (1,2), (2,1), (2,2)}}.
Then for r = 2, L(JABVRSS) = ∑4

i=1
(4
i

) = 15. In general, for a set of size r ,

L(JABVRSS) = ∑r2

i=1
(r2

i

) = 2r2 − 1.

Now, for an integer s, s ∈ {1,2, . . . ,2r2 − 1} let Js ∈ JABVRSS be the set of
judgment ranks of ordered pairs labels for the observations to be quantified. Our
sampling protocol involves selecting mL(Js)r

2 units from an infinite population.
These units are partitioned into mL(Js) pools each having r2 units.
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From each pool, by using the same procedure discussed for a BVRSS protocol
by Al-Saleh and Zheng (2002), we quantify only one of the ordered pair’s labels in
Js ; therefore, they are mutually independent. To insure a balance design we need
to have equal number of measurement from each label in the symmetric design.

Let Js = {(c1, d1), . . . , (cL(Js), dL(Js))}, then{(
X[c1](d1)k, Y(c1)[d1]k

)
, . . . ,

(
X[cL(Js )](dL(Js ))k, Y(cL(Js ))[dL(Js)]k

)}
,

where k = 1, . . . ,m, will be ABVRSS from with F(x, y) with n = mL(Js). The
ABVRSS sign test statistic can be defined as TABVRSS = the number of “+” pairs,
or TABVRSS = #(X[cu](du)k < Y(cu)[du]k) for all u and k, that is,

TABVRSS =
L(Js)∑
u=1

m∑
k=1

I
(
X[cu](du)k < Y(cu)[du]k

) =
L(Js)∑
u=1

Tu, (3)

where

Tu =
m∑

k=1

I
(
X[cu](du)k < Y(cu)[du]k

)
.

Clearly, Tu, u = 1,2, . . . , L(Js), are stochastically independent and each has
a binomial distribution with parameters m and pu = P(X[cu](du) < Y(cu)[du]). The
mean and the variance of are, respectively,

E(TABVRSS) = E

[L(Js)∑
u=1

m∑
k=1

I
(
X[cu](du)k < Y(cu)[du]k

)] = m

L(Js)∑
u=1

Pu (4)

and

V (TABVRSS) = V

[L(Js)∑
u=1

m∑
k=1

I
(
X[cu](du)k < Y(cu)[du]k

)]

(5)

= m

L(Js)∑
u=1

Pu(1 − Pu).

Also, the exact distribution of TABVRSS is given by

P(TABVRSS = t) = ∑
lxy

L(Js)∏
u=1

(
m

vu

)
P vu

u (1 − Pu)
m−vu (6)

for t = 0,1,2, . . . , L(Js), where lxy = {vu :u = 1,2, . . . , L(Js)}.
According to our setting, ordinary BVRSS is a special case when Js =

JL(JABVRSS).

Unfortunately, most of the exact distributions in (6) and the results in (4) and
(5) from the ABVRSS designs, Js, s = 1,2, . . . , L(JABVRSS), depend on the given
underlying bivariate distribution function even under the null hypothesis. Thus,
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finding the exact critical value and the P -value of the test requires knowledge
of the underlying distribution function. However, under the null hypothesis, for
some of the alternative designs, TABVRSS, has binomial distribution. Similar to
univariate case described by Öztürk (2001), ABVRSS design is called symmetric
if cu + cr−u+1 = r + 1 and du + dr−u+1 = r + 1 or cu = du = r+1

2 (when r is
odd). The first result we need to show is that the symmetric design preserves the
property of diagonally symmetric of the underlying distribution if needed. We only
state some of the symmetric design. The other symmetric designs can be showed
in similar manner.

Theorem 1. Assume that f (x, y) = f (−x,−y) is diagonally symmetric about 0.
If ABVRSS design is symmetric then the following are true:

(i) When r is odd,

fX[(r+1)/2]((r+1)/2),Y((r+1)/2)[(r+1)/2](x, y) = fX[(r+1)/2]((r+1)/2),Y((r+1)/2)[(r+1)/2](−x,−y);
diagonally symmetric.

(ii) When r is odd or even,

fX[cu](du),Y(cu)[du](x, y) = fX[r−cu+1](r−du+1),Y(r−cu+1)[r−du+1](−x,−y).

Proof. 1. Using equation (2) and let c = r!
((r−1)/2)!((r−1)/2)! ,

fX[(r+1)/2]((r+1)/2),Y((r+1)/2)[(r+1)/2](−x,−y)

= c1
[
FY[(r+1)/2](−y)

](r−1)/2[
1 − FY[(r+1)/2](−y)

](r−1)/2[F(−x)](r−1)/2

× [1 − F(−x)](r−1)/2f (−x,−y)

now, FY[(r+1)/2](−y) = 1 − FY[(r+1)/2](y), because

fY[(r+1)/2](−y) =
∫ ∞
−∞

c[F(−x)](r−1)/2[1 − F(−x)](r−1)/2f (−x,−y)dx

=
∫ ∞
−∞

c[1 − F(x)](r−1)/2[F(x)](r−1)/2f (x, y) dx = fY[(r+1)/2](y)

is symmetric about 0. Therefore, by the diagonally symmetric assumption of
f (x, y),

fX[(r+1)/2]((r+1)/2),Y((r+1)/2)[(r+1)/2](−x,−y) = fX[(r+1)/2]((r+1)/2),Y((r+1)/2)[(r+1)/2](x, y).

2. Again by (2)

fX[cu](du),Y(cu)[du](−x,−y)

= c1
[
FY[du](−y)

]cu−1[
1 − FY[du](−y)

]r−cu[F(−x)]du[1 − F(−x)]du

× f (−x,−y)
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by using similar argument as in Proof 1, we have

fX[cu](du),Y(cu)[du](−x,−y) = c1
[
1 − FY[r−du+1](y)

]cu−1[
FY[r−du+1](y)

]r−cu

× [1 − F(x)]du[F(x)]duf (x, y)

= fX[r−cu+1](r−du+1),Y(r−cu+1)[r−du+1](x, y)

because also,

fY[du](−y) =
∫ ∞
−∞

c[F(−x)]du−1[1 − F(−x)]r−duf (−x,−y)dx

=
∫ ∞
−∞

c[1 − F(x)]du−1[F(x)]r−duf (x, y) dx = fY[r−du+1](y). �

Theorem 2. Assuming no tied pairs (X[cu](du)k = Y(cu)[du]k). Under the null hy-
pothesis H0 :P(+) = P(−) = 1

2 and the assumption of symmetric ABVRSS design,
for fixed r we have the following:

1. E(TABVRSS) = n
2 = mL(Js)

2 .

2. Vo = V (TABVRSS) = mL(Js)
2 [1 − 2

L(Js)

∑L(Js)
u=1 P 2

u ] = mL(Js)
4 [2 − 4

L(Js)
×∑L(Js)

u=1 P 2
u ].

A special case is Vo = mL(Js)
4 {if Js = ( r+1

2 , r+1
2 ), when r is odd}.

3. For large m,TABVRSS has approximately N(n
2 ,Vo) where n = mL(Js).

Proof. Proving 1 and 2 is just simple algebra.
Proof 3. Discard all tied pairs and let n equal the number of pairs that are not ties.

From parts 1 and 2 in the theorem, and noting that [2 − 4
L(Js)

∑L(Js)
u=1 P 2

u ] is finite
fixed number. Therefore, using similar argument as in Hettmansperger (1995) the
proof follows.

Clearly, when r is odd, TABVRSS has a binomial distribution with n = mL(Js) =
number of trials, and probability of success p = 0.5. Again, similar to Conover
(1980), discard all tied pairs and let n equal the number of the remaining pairs.
Depending on whether the alternative hypothesis is one-tailed or two-tailed, and if
n ≤ 20, then use the binomial distribution with the values n and p = 0.5 for finding
the critical region of approximately test size α. For n larger than 20 use normal
approximation in Theorem 2 part 3. For r even, a consistent estimator for Vo is
given by V̂o = mL(Js)

4 [2 − 4
L(Js)

∑L(Js)
u=1 P̂ 2

u ], where P̂u = 1
m

∑m
k=1 I (X[cu](du)k <

Y(cu)[du]k).
Depending on whether the alternative hypothesis it is one-tailed or two-tailed

and if n ≥ 20, the asymptotic test procedure is to reject the null hypothesis in
H0 :P(+) = P(−) = 1

2 favor of the alternative {e.g., Ha :P(+) > P (−)} if Z0 =
TABVRSS−n/2√

V̂o

> Zα, where Zα is the 100(1 − α)% quantile of the standard normal

distribution. �
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3 The asymptotic relative efficiency

The performance of the matched pairs sign test using ABVRSS will be compared
with the matched pairs sign test using BVSRS based on the criterion of Pitman’s
asymptotic relative efficiency (ARE). The Pitman’s regularity conditions are satis-
fied for both TABVRSS and TBVSRS because all moments of the tests are in terms of
probabilities, and hence are bounded above by 1. Let e(T ) denotes the asymptotic
efficiency of a test statistics T . Then Pitman’s efficiency of a test statistics T is
given by

e(T ) = Lim
n→∞

dE(T )
dθ√

nV (T Y )

∣∣∣∣
H0

,

where θ could be the central parameter or the shifted parameter such that P(X <

Y + θ) = 0.5 under the null hypothesis.
Therefore, the Pitman’s ARE of TABVRSS versus TBVSRS is

ARE(TABVRSS, TBVSRS) = e2(TABVRSS)

e2(TBVSRS)
. (7)

Using the above definition and letting FD(·) denote the CDF of the random
variable D, where D = X−Y and FD(0) = P(X < Y) = P(X−Y < 0) = P(D <

0), then the efficiencies of TABVRSS and TBVSRS are obtained as

e(TABVRSS) = 2
∑L(Js)

u=1 fDu(0)/L(Js)√
[2 − (4/L(Js))

∑L(Js)
u=1 P 2

u ]

∣∣∣∣
H0

(8)

and

e(TBVSRS) = 2fD(0), (9)

respectively. Therefore, by (7), (8) and (9)

ARE(TABVRSS, TBVSRS) = (
∑L(Js)

u=1 fDu(0)/L(Js))
2

f 2
D(0)[2 − (4/L(Js))

∑L(Js)
u=1 P 2

u ]
∣∣∣∣
H0

,

where

FDu(0) = P
(
X[cu](du) < Y(cu)[du]

) = P
(
X[cu](du) − Y(cu)[du] < 0

) = P(Du < 0).

3.1 Numerical comparisons

Two types of underlying bivariate distributions are used to investigate the perfor-
mance of the matched-pair sign test by using different symmetric BVRSS designs
with respect to Pitman’s asymptotic relative efficiency.
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1. Assume that the bivariate random variable (X,Y ) has a bivariate normal distri-
bution. We computed ARE(TABVRSS, TBVSRS) for {r = 2,3, and 4, and corre-
lation coefficient (ρ = ±0.5 and ρ = ±0.9)}. Note that bivariate normal distri-
bution has the property of diagonal symmetry.

2. However, to depart from diagonal symmetry assumptions and symmetrical
marginal distributions, Gumbel’s bivariate exponential distribution is used.
Note that we only need to assume that the marginal’s have the same median
under the null hypothesis (see Johnson (1987)).

The density function is given by

f (x, y; θ) = [(1 + θx)(1 + θy)] exp[−x − y − θxy], x, y > 0; 0 ≤ θ ≤ 1.

The marginal distributions are stander exponential distribution, and θ equals
zero then the components are independent. However, when θ = 1, the correlation
between X and Y is −0.43, which indicates a relatively weak negative dependence.
Two values of θ = 0.1,1 are considered.

Table 1 shows Pitman’s asymptotic relative efficiency ARE(TABVRSS, TBVSRS),
for only the most efficient ABVRSS symmetrical designs, for both underlying
bivariate distributions.

From Table 1 an optimal bivariate ranked set sample designs for matched pairs
sign test are those with quantifying order statistics with labels {( r+1

2 , r+1
2 )} when

the set size r is odd and {( r
2 , r

2), ( r
2 + 1, r

2 + 1)} when the set size r is even. The
matched pairs sign tests using this optimal designs will be denoted by TOBVRSS.
Clearly, via Pitman’s asymptotic relative efficiency, the performance of TOBVRSS
is superior to TBVSRS, the ordinary TBVRSS and all alternative symmetrical de-
signs (TABVRSS). However, in order to show other designs that not symmetrical and
slightly more efficient than the proposed designs, Table 1 shows that {(2,1), (2,3)}
is slightly more efficient than the optimal design for low negative correlation in

Table 1 Pitman’s asymptotic relative efficiency ARE(TABVRSS, TBVSRS)

Bivariate Normal Bivariate Gumble’s

ABVRSS designs r ρ = ±0.5 ρ = ±0.9 θ = 0.1 θ = 1

Ordinary BVRSS 2 1.15 (1.43) 1.04 (1.59) 1.31 1.45
{(1,2), (2,1)} 2 1.08 (1.12) 1.02 (1.06) 0.50 1.17
{(1,1), (2,2)} 2 1.23 (1.80) 1.05 (2.14) 1.83 2.75
Ordinary BVRSS 3 1.29 (1.77) 1.09 (2.38) 1.55 1.81
{(2,1), (2,3)} 3 1.42 (1.67) 1.10 (1.57) 2.34 2.70
{(2,2)} 3 1.67 (3.02) 1.16 (4.28) 2.32 3.28
Ordinary BVRSS 4 1.43 (2.14) 1.12 (2.56) 1.76 2.11
{(2,2), (3,3)} 4 1.96 (3.94) 1.24 (5.97) 2.41 4.12

The results for negative correlation coefficients are in bold and parenthesis.
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case of bivariate Gumbel’s distribution and r = 3. However, this design is not sym-
metrical, therefore, the expected value of the sign test depends on the underlying
distribution (not free of parameters) even under the null hypothesis. Moreover, note
that all proposed alternative designs including ordinary BVRSS performed better
for negative correlation in bivariate normal case. The asymptotic relative efficiency
ARE(TABVRSS, TBVSRS) increases as the set size r increases in all cases. Also, it is
clear that the ARE(TABVRSS, TBVSRS) increases as the negative ρ decreases away
from zero. When the correlation coefficient ρ is positive, ARE(TABVRSS, TBVSRS),
decreases as ρ increases in case of bivariate normal distribution. However, AB-
VRSS is still more efficient than BVSRS. For Gumbel’s bivariate, the efficiency
increases as r increases. Also, the efficiency increases as θ increases away from
zero.

4 Matched pairs sign tests using optimal designs

In this section we introduce the optimal bivariate ranked set sampling protocols
(OBVRSS) for the matched pairs sign test. Some theoretical results of the test
using those (OBVRSS) designs are derived. Also, we investigate the power of the
test for those designs.

Case 1. Set size r is odd.
Let {(X[(r+1)/2]((r+1)/2)k, Y((r+1)/2)[(r+1)/2]k), k = 1,2, . . . , n} be OBVRSSo

from F(x, y). Then the sign test statistic based on OBVRSSo is

TOBVRSSo =
n∑

k=1

I
(
X[(r+1)/2]((r+1)/2)k < Y((r+1)/2)[(r+1)/2]k

)
. (10)

By Theorem 2 and under the null hypothesis, TOBVRSSo has a binomial dis-
tribution with parameters n and P = 1

2 . Also, under the alternative hypothesis,
Ha :P(+) > P (−), TOBVRSSo has a binomial distribution with parameters n and
p0 = P(X[(r+1)/2]((r+1)/2) < Y((r+1)/2)[(r+1)/2]).

Moreover, for n > 20, by Theorem 2, the asymptotic power of testing the hy-
pothesis H0 :P(+) = P(−) versus the alternative {without loss of generality con-
sider Ha :P(+) > P (−)} for TOBVRSSo and TBVSRS are defined by

βOBVRSSo = 1 − �

[(
zα

√
n

4
+ n

2
− np0

)/√
Va0

]
,

where Va0 = np0(1 − p0) is the variance of TOBVRSSo under the alternative hy-
potheses and

βBVSRS = 1 − �

[(
zα

√
n

4
+ n

2
− nP (X < Y)

)/√
nP (X < Y)

(
1 − P(X < Y)

)]
.

Therefore, under the null hypothesis βOBVRSSo = 1 − �[zα] = α and βBVSRS =
1 − �[zα] = α.
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Case 2. Set size r is even.
Let {(X[r/2](r/2)k, Y(r/2)[r/2]k), (X[r/2+1](r/2+1)k, Y(r/2+1)[r/2+1]k), k = 1,2, . . . ,

m} be OBVRSSE from F(x, y). Then the sign test statistic based on OBVRSSE is

TOBVRSSE =
m∑

k=1

[
I
(
X[r/2](r/2)k < Y(r/2)[r/2]k

)
(11)

+ I
(
X[r/2+1](r/2+1)k < Y(r/2+1)[r/2+1]k

)]
.

Also, the exact distribution of TOBVRSSE is given by

P(TOBVRSSE = t)
(12)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∑
j=0

(
m

j

)
p

j
10(1 − p10)

m−j

(
m

t − j

)
p

t−j
20 (1 − p20)

m−1+j ,

if t ≤ m,
m∑

j=t−m

(
m

j

)
p

j
10(1 − p10)

m−j

(
m

t − j

)
p

t−j
20 (1 − p20)

m−1+j ,

if m < t ≤ n,

where

p10 = P
(
X[r/2](r/2) < Y(r/2)[r/2]

)
and

p20 = P
(
X[r/2+1](r/2+1) < Y(r/2+1)[r/2+1]

)
.

Unfortunately, the exact null distribution as well as the alternative distribution
depends on the underlying bivariate distribution. Therefore, for large m use the
asymptotic z-test similar to that introduced in Section 2. For small m < 20, a boot-
strap algorithm will be introduced.

Moreover, by Theorem 2, the asymptotic power of testing the hypothesis
H0 :P(+) = P(−) versus the alternative {without loss of generality consider
Ha :P(+) > P (−)} for TOBVRSSE is defined by

βOBVRSSE = 1 − �

[(
zα

√
Vo + n

2
− m(p1 + p2)

)/√
Va

]
,

where Va = m[p1(1 − p1)+ p2(1 − p2)] is the variance of TOBVRSSE un-
der the alternative hypotheses p1 = P(X[r/2](r/2) < Y(r/2)[r/2]) and p2 =
P(X[r/2+1](r/2+1) < Y(r/2+1)[r/2+1]). Also, V0 (as in Theorem 2).

Table 2 shows the asymptotic power for {(r = 2,m = 10), (r = 2,m = 12), (r =
3,m = 27) and (r = 4,m = 18)}, shifted parameter of center of the two marginal
distributions (θ = 0,0.1,0.5, and 1), level of significance {α = 0.5} and correla-
tion coefficient (ρ = ±0.5, ρ = ±0.9) for the case of bivariate normal distribution.
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Table 2 Asymptotic power for TOBVRSS and TBVSRS, when α = 0.5

ρ = ±0.5 ρ = ±0.9

n = mr2 θ OBVRSS BVSRS OBVRSS BVSRS

n = 24 (r = 2, m = 12) 0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500)
0.1 0.3083 (0.2904) 0.3033 (0.2807) 0.3741 (0.2867) 0.3708 (0.2768)
0.5 0.5822 (0.4677) 0.5431 (0.4101) 0.9688 (0.4605) 0.9596 (0.3901)
1.0 0.9564 (0.7414) 0.9023 (0.5977) 1.0000 (0.7262) 1.0000 (0.5528)

n = 24 (r = 2, m = 12) 0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500)
0.1 0.3323 (0.3170) 0.3170 (0.2938) 0.3964 (0.3197) 0.3859 (0.2898)
0.5 0.6668 (0.5628) 0.5609 (0.4259) 0.9879 (0.5828) 0.9664 (0.4056)
1.0 0.9968 (0.9141) 0.9141 (0.6160) 1.0000 (0.9456) 1.0000 (0.5707)

The results for negative correlation coefficients are in bold and are in parenthesis.

Table 2 gives evidence towards TBVSRS being unbiased and consistent in this
case, although such evidence is not a conclusive proof. The power of TBVSRS in-
creases as the sample size n increases and the shift parameter on the variable Y

increases away from 0.

Also, Table 2 shows that TOBVRSS is more powerful than TBVSRS for all studied
sample sizes, shifted parameter and ρ values. There is a draw back of power when
ρ is negative, TOBVRSS gained more efficiency when ρ is negative than when ρ is
positive (see also Table 1). Also, the superiority of TOBVRSS over TBVSRS increases
as the set size r increases. There is evidence towards TOBVRSS being unbiased and
consistent in this case; such evidence is again not a conclusive proof. From The-
orem 2 TOBVRSS has a similar asymptotic distribution as TBVSRS but with smaller
asymptotic variance. Therefore, it is safe to say that TOBVRSS has similar asymp-
totic properties as for testing H0 :P(+) = P(−), that is, TOBVRSS is also unbiased
and a consistent test procedure. However, TOBVRSS is more efficient and more
powerful than TBVSRS and TBVRSS.

Remark. This paper provides both cases when r is odd and when r is even. How-
ever, in practice, since the case when r is odd, OBVRSS is similar to BVSRS
without any extra complications in computation, and using OBVRSS for matched
pairs sign test is more efficient and more powerful than using BVSRS, it is recom-
mended to choose r to be odd.

4.1 Bootstrap algorithm for estimating the P -value of the test

The null distribution of our nonparametric tests, TOBVRSS, in Section 4 depend on
the underlying bivariate distribution function, especially when r is even. Thus, the
exact P -value calculation for sample size n < 20 is not feasible without knowing
the underlying distribution. In this section we introduce a simple bootstrap method
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for calculating the P -value of the sign test for any given bivariate data. For general
description of the bootstrap method of estimation see Efron and Tibshirani (1993).

Suppose that a bivariate random sample of size n < 20 is drawn from a
population using the BVSRS sampling method. This implies that {(Xi, Yi), i =
1,2, . . . , n} is a random sample. The bootstrap algorithm for approximating the
bootstrap P -value of the test for testing the hypothesis H0 :P(+) = P(−) versus
the alternative {e.g. Ha :P(+) > P (−)} is:

(1) Calculate the sample test statistic (say T = ∑n
i=1 I (Xi < Yi)) from the original

sample.
(2) Estimate θ from the data, say θ̂ . Shift Yi , to Yi − θ̂ , i = 1,2, . . . , n, where

θ = median(Y − X).

(3) Define F̂ (x, y) by placing a mass probability pi = 1
n

on (Xi, Yi), i =
1,2, . . . , n.

(4) Generate a resample (X∗
i , Y

∗
i ), i = 1,2, . . . , n, from F̂ (x, y).

(5) Find T ∗
b = ∑n

i=1 I (X∗
i < Y ∗

i ).
(6) Repeat steps 3 and 4 B times.

Then the bootstrap P -value, P ∗ = P(T ∗ ≥ T |F̂ (x, y)), can be approximated
by P̂ ∗ = 1

B

∑B
b=1 I (T ∗

b ≥ T ). However, since OBVRSSE has two different ordered
pair labels, slight modification of the above algorithm is needed as follows:

1. Divide the sample into 2 mutually exclusive strata each containing m i.i.d. (only
one of the labels) ordered pair labels.

2. Independently from each stratum generate a resample with replacement of size
m by placing a mass probability ( 1

m
) on each original observation in that stra-

tum.
3. Combine both resamples and does similar steps as in (5) and (6) above.

5 Illustration using real data from the Iowa Rural Health Study
(RHS)

The Iowa Rural Heath Study (RHS) is a prospective longitudinal cohort study of 8
years from 1981 to 1989 of 3673 individuals (1420 men and 2253 women) aged 65
or older living in Washington and Iowa counties of the state of Iowa. This study is
one of four supported by the National Institute on Aging and collectively referred
to as Established Populations for Epidemiological Studies of the Elderly (EPESE);
see Rubenstein and Lemke (1993) and Brock et al. (1986).

The life histories of 2717 noninstitutional individuals who could walk across
a small room without any help were obtained from RHS and divided into two
cohorts, one containing 1134 who exercised daily by walking and the other con-
taining 1583 who did not exercise daily by walking. The purpose of this illus-
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tration is to test the hypothesis that those elderly people (age 65+) who exer-
cise by outdoor daily walking tend to be younger than those who do not ex-
ercise by outdoor daily walking in the Iowa 65+ RHS. Hence, we are inter-
ested in testing H0 :P(+) = P(−) versus the alternative Ha :P(+) > P (−),
where “+” if Xi < Yi , “−” if Xi > Yi . Although we rounded ages to the near-
est integer, age is considered continuous variable. Therefore, we assume no
ties.

We created matched pairs of the cohort of daily walking with the cohort of
non-daily walking based on their gender and some health conditions. Thus the to-
tal number of pairs included in our target population was 1134. Let the random
variable X represent the age at baseline of the elderly who exercised by outdoor
daily walking and Y represent the age at baseline of the elderly who did not ex-
ercise by outdoor daily walking. Due to the availability of the age at baseline for
all matched pairs in this illustration, ranking was done on both variables X and Y

using the actual ages. However, in real life situation, selecting BVRSS should be
done as follows: for example, when r = 3, nine prematched pairs of the elderly
should be randomly selected. From the first three pairs select the pair with the sec-
ond youngest age with respect to X (age at baseline of the elderly who exercised
by outdoor daily walking). From the second three pairs, again the pair with the
second youngest age with respect to X and so on. Quantify the values of X and Y

for the pair with the second youngest age with respect to Y (the age at baseline of
the elderly who did not exercise by outdoor daily walking). This resemble the label
(2, 2). Repeat this 16 times. Two samples, OBVRSS and BVSRS, of size n = 16,

were drawn from the population of matched pairs (Table 3).
The observed test statistics from the observed samples are TOBVRSS = 13 and

TBVSRS = 13. The exact P -values of TOBVRSS and TBVSRS and can be obtained by
using the binomial distribution for n = 16 and p = 0.5. The P -value for both tests
is found to be 0.0105. For illustration purposes, we use the bootstrap method with
5000 bootstrap replications to obtain the P -value for both TOBVRSS and TBVSRS.
The results of our simulations are as follows: the approximate bootstrap P -value of
TOBVRSS is 0.0192 with bootstrap MSE (based on 1000 iterations) equal 0.000019.
However, the approximate bootstrap P -value of TBVSRS is 0.0281 with bootstrap
MSE (based on 1000 iterations) equal 0.000052. Thus the P -value of the RSS is
less than the P -value of the SRS and therefore one is more likely to reject H0 with
RSS and that may be due the fact that TOBVRSS is more powerful than TBVSRS. It
seems that bootstrap method for estimating the P -value, tends to over estimating
the P -value of the test.

In conclusion, whenever OBVRSS, especially when r is odd, can be obtained,
it is recommended to be used instead of BVSRS for the bivariate matched pairs
sign test.
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Table 3 The drawn samples of size 16

OBVRSS sample of (r = 3, and m = 16) BVSRS of size n = 16

Daily walking Non-daily walking Daily walking Non-daily walking

No. Age X Gender Age Y Gender Age X Gender Age Y Gender

1 73 Male 72 Male 67 Male 72 Male
2 72 Male 74 Male 72 Male 74 Male
3 74 Male 77 Male 74 Male 77 Male
4 68 Male 74 Male 76 Male 83 Male
5 66 Male 67 Male 66 Male 67 Male
6 67 Male 71 Male 79 Male 66 Male
7 75 Male 74 Male 66 Female 68 Female
8 77 Female 79 Female 83 Female 78 Female
9 77 Female 69 Female 79 Female 78 Female

10 75 Female 79 Female 72 Female 74 Female
11 70 Female 72 Female 66 Female 73 Female
12 66 Female 72 Female 76 Female 81 Female
13 67 Female 69 Female 68 Female 75 Female
14 72 Female 80 Female 67 Female 76 Female
15 71 Female 78 Female 79 Female 86 Female
16 67 Female 73 Female 67 Female 73 Female

∗The parenthesis is the observation label according to the OBVRSS procedure.
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