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Bayesian analysis to correct false-negative errors in
capture–recapture photo-ID abundance estimates
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Campus Universitário Darcy Ribeiro

Abstract. Capture–recapture methods are largely used for estimating the
size of some cetacean populations. The application of those methods for
photo-identification data of recognizable individuals is very common. Poor
quality photographs may lead the analyst to identify two sightings of the same
individual as being different (false-negative errors). This kind of matching
error inflates population size estimates. We develop a Bayesian approach to
obtain bias corrected estimates of the population size N . The method can be
used for Mt type capture–recapture models (Otis et al. Wildlife Monographs
62 (1978) 1–135) involving two or more sampling occasions. We used the
methodology for simulated data.

1 Introduction

Population size estimation using capture–recapture models for photo-identification
data may present some problems related to the identifiability of the individuals.
As photo-ID data used for animal recognition is based on natural markings, such
as scars, colour pattern, or any trait related to species characteristics that can be
used to distinguish the individuals, it could be the case that identification of a
poorly marked individual may be overlooked. Consider, for example, a particular
poorly marked individual that has already been captured in a previous sampling
occasion. If that animal is photographed on a future occasion, but the analyst fails
to recognize the correct match, two possibilities of mismatch may occur: (i) the
photo may be associated to another individual already included in the data set,
leading to a false-positive error, or (ii) the analyst can consider the photo as being
from a new individual, resulting in a false-negative error, and, in this case, a new
line in the data set will be created. Abundance estimates based on data which
incorporate false-negative errors tend to be positively biased.

Some work to evaluate relative rates and sources of errors in capture–recapture
studies using photographic and genetic data were pioneered by Stevick, Palsboll
and Allen (1998). The authors worked with data of doubly tagged humpback
whales, Megaptera vaeangliae. The identification tags used in the study were the
natural markings of the whales and a genetic marker. The results of their experi-
ment revealed the ocurrence of no false-positive errors either in the genetic or the
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photographic data. However, false-negative errors were identified in both kinds of
data. The matching protocols make false-positive errors highly unlikely. The study
also revealed that photographic error rates were strongly correlated with image
quality.

Working with a double-marking experiment using photo-ID data and mi-
crosatellite genetic markers to identify humpback whales, Stevick et al. (2001)
proposed a correction for abundance estimates based on a Petersen–Lincoln type
estimator. Since both photo-ID and genetic data were available for a group of indi-
viduals, evaluating false-negative errors was possible. This kind of error was taken
into account in order to bias correct abundance estimates.

In this work we suggest a Bayesian approach to correct the positive bias in
abundance estimates caused by false-negative errors. The main advantage of the
proposed methodology compared to the one suggested by Stevick et al. (2001) is
the possibility of allowing for data from more than two sampling occasions.

In Section 2, we introduce some notation. In Section 3, we present two Bayesian
procedures meant to bias correct population size estimates of a closed population.
The structural model that served as a basis for this work was due to Darroch (1958),
representing a Mt type model (see Otis et al. (1978)). In Section 4, we describe a
simulation experiment aimed to produce capture–recapture data in several different
scenarios. In Section 5, we analyze the data using the proposed methodology.

2 Notation

We now introduce some notation:

• N : population size.
• pj : the capture probability at time j .
• γ : the probability of correctly identifying a captured individual.
• t : number of sampling occasions.
• Xj : number of good quality photos of naturally marked individuals at time j .
• nj : observed sample size at time j .
• bj : actual sample size at time j .
• aj : true number of resightings in sample j .
• r : observed number of different individuals captured over the experiment.
• h: actual number of different individuals captured over the experiment.
• ω: a subset of {1, . . . , s}, representing a given capture history.
• uω: is the number of individuals with capture history ω.

In this work, the probability γ = 1 − P (false-negative error) of correctly identify-
ing a captured individual is considered known and fixed in the sampling occasions.
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3 Correcting for identification bias

Consider that for a capture–recapture data analysed using a Mt type model, it is
assumed that all individuals are uniquely identified. Thus, according to Darroch
(1958), the vector {uω} can be modeled using the following expression which de-
pends only on the sufficient statistics h and {bj },

P [{uω}|{pj },N] = N !
(N − h)!∏ω uω!

t∏
j=1

p
bj

j (1 − pj )
N−bj . (1)

In the case of photo-ID data, instead of observing {bj } and h, no rare we observe,
respectively, {nj } and r , with nj ≥ bj and r ≥ h. This may happen because a given
individual that is photographed more than once may not be recognized as so. As a
result, a new line in the data set for a supposedly new capture is created, causing
positively biased estimates for the population size. The statistics h and {bj } are,
actually, latent data (unknowns). The same is true for the vector {aj }, relating the
true number of resightings in the sampling occasions.

The analysis we propose for correcting inflated estimates of N is to consider the
latent data as missing observations, using statistical models to fill in likely values
for these unobserved data. These generated data will then be taken into account in
a capture–recapture model aimed to produce bias corrected estimates of N . Our
approach is an adaptation of multiple imputation methods (Rubin and Schenker
(1986); Tanner and Wong (1987); Heitjan and Landis (1994)).

The methodological innovation in the present study is the idea of treating the
sets of unobserved true values or missing values ({aj }, h) and ({bj }, h) as incom-
plete data. For each of these sets, different model strategies are suggested for filling
in likely values for these unobserved data and attacking the problem of bias cor-
recting N . This methodology is described in Sections 3.1.1 and 3.1.2.

The approach we are considering for bias correcting N presents some similari-
ties with the methodology proposed by Givens, Smith and Tweedie (1997). In this
work the authors used a data augmentation methodology within a Bayesian hierar-
chical model to estimate and adjust for publication bias (expressed by the log of a
relative risk) caused either by a researcher that would not submit a nonstatistically
significant result for publication or a given study which goes unpublished because
it does not contain statistically significant results. In their study, the authors aug-
mented the observed data by simulating the outcomes for the missing data (latent
data). The joint posterior distribution involving the parameters in the model and
the latent data made it possible to obtain posterior distributions for quantities of
interest which were then marginalized across the latent variables. The idea was to
obtain improved estimates of the parameters of interest by combining information
from the observed data along with the effect of the estimated publication bias.
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3.1 Multiple imputation strategy

According to Rubin and Schenker (1986), let Yobs be the set of observed values and
Ymis be the set of missing values. The posterior density of a population quantity θ

can be written as

P(θ |Yobs) =
∫

g(θ |Yobs, Ymis)f (Ymis|Yobs) dYmis, (2)

where f (·) is the posterior density of the missing values and g(·) is the complete-
data posterior density of θ . Multiple imputations are simulated from the posterior
distribution of missing data f (·).

Bearing in mind the scheme above, bias corrected estimates for N will be ob-
tained by using a two-step data augmentation approach as suggested by model (2).
In the first step we obtain a Bayesian estimate of Ymis = ({aj }, h) (or Ymis =
({bj }, h)) and, in the second step, we obtain a Bayesian estimate of θ = (N, {pj })
using model (1). In this missing data problem a Markov chain is created by iterat-
ing the two steps a large number of times. Using a notation introduced in Schafer
(1997), at the t th iteration the steps can be defined as:

• Step I (imputation step)—Draw Y
(t+1)
mis from P(Ymis|Yobs, θ

(t));
• Step II (posterior step)—Draw θ(t+1) from P(θ |Yobs, Y

(t+1)
mis ).

Considering some initial value θ(0), we generate a sequence ({Y (t)
mis, θ

(t)}, t =
1,2, . . .). According to Tanner and Wong (1987), data patterns generated across
iterations will converge to the P(θ |Yobs).

For Ymis = ({aj }, h) and Ymis = ({bj }, h), a Poisson model and a binomial
model will be used, respectively, for describing p(Ymis|Yobs). The advantages of
each model strategy will be discussed in Section 5.

It is advisable to draw a sample of size k from P(Ymis|Yobs, θ
(t)) each time

step I is performed. In this case Y
(t+1)
mis would be the average of these k values.

Using k > 1 (a multiple imputation approach) may improve the inferences. In this
work we used k = 5.

3.1.1 Modeling Ymis|Yobs using a binomial model. Let Ymis = ({bj }, h) be the
vector of latent data, and let the conditional joint distribution of the latent data
given the observed data, Yobs = ({Xj }, {nj }, r, γ ), be such that

p(Ymis|Yobs) = P({bj }, h|{Xj }, {nj }, r, γ )

= P(h|{nj }, {bj }, r, γ ) × P({bj }|{nj }, γ )
(3)

=
(r
h

)
γ h(1 − γ )r−h × I [h ∈ {max{bj }, . . . , r}]∑r

k=max{bj }
(r
k

)
γ k(1 − γ )r−k

×
t∏

j=1

(nj

bj

)
γ bj (1 − γ )nj−bj × I [bj ∈ {1, . . . , nj }]∑nj

i=1

(nj

i

)
γ i(1 − γ )nj−i

.
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In model (3) the truncated binomial distributions reflect the restrictions among
{bj }, {nj }, h, and r . Each correctly identified new individual is considered a suc-
cess, which may happen considering a specific sampling occasion, or considering
the whole capture–recapture study.

Step 1: In this step our target distribution is the joint posterior distribution of the
latent data, implied by the assumed priors and the conditional likelihood given by
the model in expression (3), π({bj }, h|{Xj }, {nj }, r, γ ).

Since 1 ≤ bj ≤ nj , j = 1, . . . , t and max{bj } ≤ h ≤ r , we consider uniform
prior distributions for bj , j = 1, . . . , t and for h defined on these respective inter-
vals. Therefore, considering that the bj ’s are independent a priori, since sample
size values observed in earlier times should not inform anything about these quan-
tities in future times, the full conditional distributions for bj , j = 1, . . . , t and for
h are, respectively,

π(bj |{nj }, γ ) = p(Ymis|Yobs)π(bj )
(4)

∝
t∏

j=1

(
nj

bj

)
γ bj (1 − γ )nj−bj × I [bj ∈ {1, . . . , nj }],

π(h|{bj }, r, γ ) = p(Ymis|Yobs)π(h)
(5)

∝
(

r

h

)
γ h(1 − γ )r−h × I [h ∈ {max{bj }, . . . , r}].

Step 2: Now our target distribution is the joint posterior distribution associated to
{pj } and N , π({pj },N |{uω}, {bj }, h), implied by the convenient priors and model
(1). Consider the prior distributions pj ∼ Beta(c1, c2), j = 1, . . . , t , and π(N) ∝
1
N

, where c1 and c2 are taken to express vague prior information. Thus, the full
conditional distributions of N − h and pj are, respectively,

N − h|{pj }, h ∼ Neg-Bin

(
h,1 −

t∏
j=1

(1 − pj )

)
, (6)

pj |N,bj , c1, c2 ∼ Beta(bj + c1,N − bj + c2), j = 1, . . . , t. (7)

We use the Gibbs sampler to draw observations from all the distributions involved
in the Bayesian formulation.

3.1.2 Modeling Ymis|Yobs using a Poisson model. Now, let Ymis = ({aj }, h) be
the vector of latent data, and let the conditional joint distribution of the latent data
given the observed data, Yobs = ({Xj }, {nj }, r, γ ), be such that

p(Ymis|Yobs) = P({aj }, h|{Xj }, {nj }, r, γ )

= P(h|{Xj }, {aj }, {nj }, r, γ ) × P({aj }|{Xj }, {nj }, r, γ ) (8)

= (e−φφh/h!)I (h ≥ max{Xj − aj })∑
I [h∈{max{Xj−aj },...,r}] e−φφh/h! ×

[
t∏

j=1

e−λj λ
aj

j

aj !
]
,
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where λj = Xj−nj

γ
, j = 1, . . . , t , and φ = γ r .

In model (8) the truncated Poisson distribution reflects the restrictions among
{aj }, {nj }, h and r . Besides that, following Stevick et al. (2001), who estimated aj ,

by âj = Xj−nj

γ
, j = 1,2, we formulated the conditional distribution of Ymis|Yobs

so that λj , the average rate of the true number of resightings in sample j, would
be represented by a plausible guess since we are describing λj as âj . Additionally,
since there is no other information that suggests a better guess for the average rate
of the true number of distinct individuals captured over the experiment, φ, it was
assumed to equal γ r , where γ = 1 − P (false-negative error).

The full conditional posterior distributions for the current approach are obtained
in a two-step procedure:

Step 1: In this step, our target distribution is the joint posterior distribution of the
latent data, implied by the assumed priors and the conditional likelihood given by
the model in expression (8), π({aj }, h|{Xj }, {nj }, r, γ ). Since Xj −nj ≤ aj ≤ Xj ,
j = 1, . . . , t and max{Xj − aj } ≤ h ≤ r , we consider uniform prior distributions
for aj , j = 1, . . . , t and for h defined on these respective intervals. Therefore,
considering that the aj ’s are independent a priori, since the true number of resight-
ings observed in earlier times should not inform anything about these quantities in
future times, the full conditional distributions for aj , j = 1, . . . , t and for h are,
respectively,

π(aj |{Xj }, {nj }, r, γ ) = p(Ymis|Yobs)π(aj ),
(9)

∝ e−λj λ
aj

j

aj ! × I (aj ∈ {Xj − nj , . . . ,Xj }),

π(h|{Xj }, {aj }, r, γ ) = p(Ymis|Yobs)π(h)
(10)

∝ e−φφh

h! × I (h ∈ {max{Xj − aj }, . . . , r}).
Step 2: Now our target distribution is the joint posterior distribution associated to
{pj } and N , π({pj },N |{uω}, {bj }, h), implied by the convenient priors and model
(1). Since bj = Xj − aj , j = 1, . . . , then consider again the prior distributions
pj ∼ Beta(c1, c2), j = 1, . . . , t and π(N) ∝ 1

N
, where c1 and c2 are taken to ex-

press vague prior information. The full conditional distributions of N − h and pj

are respectively given by expressions (6) and (7).
We used vague beta prior Beta(0.5,0.5) for pj , j = 1, . . . , t , since it is known

to have a small impact in the Bayesian inferences of capture–recapture data (see
da-Silva et al. (2003) and Smith (1991)).

4 Simulation experiment

Capture–recapture simulated data for this study were produced by considering first
a true simulated data set, TSDS, where both false-positive or false-negative errors
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in the identification process of the individuals were not allowed. In a second in-
stance, the first data set is then debased when one allows the occurence of false-
negative errors only. The resulting data set will be called error simulated data set,
ESDS. A routine written in S-PLUS was developed to simulate the data.

The TSDS were produced under the following conditions:

(i) Each individual in a sample had an average of two photos.
(ii) The probability of taking a good photo of any individual was fixed at 0.75.

(iii) Four sampling occasions were considered and the capture probabilities
were fixed at 0.25, 0.15, 0.15, and 0.10.

(iv) Population size was fixed at three levels: N = 1000, N = 5000, and N =
10,000.

(v) For each set of conditions above, 50 TSDS sets were generated.

The ESDS were obtained by corrupting the data sets produced above by consider-
ing:

(a) Three levels of false-negative errors: 0.02, 0.05, and 0.10. Therefore, a to-
tal of nine ESDS cases were described by the combination of the three levels of
population size and those three levels of false-negative errors.

(b) Each photo erroneously assigned as being of a new individual was never
matched to the photos of the same animal or to the photos of any other individual
at any time. Such restriction was to prevent the occurrence of positive errors.

(c) For each TSDS generated under a given set of conditions, 50 ESDS sets
were then generated. Therefore, for each of the nine cases above, 2500 ESDS data
sets were generated. This procedure enabled us to evaluate the variance of the
estimated latent data.

5 Results

Using the methodology presented in Section 3, for each of the 2500 ESDS data sets
of each of the nine cases, we obtained the corresponding bias corrected, BC, esti-
mates of N , the true, TR, estimates of N , which were calculated using the original
simulated datasets, and the error, ER, estimates of N , calculated using the cor-
rupted datasets. The codes used in the analysis were developed in FORTRAN77.

5.1 Results obtained with the binomial model

Table 1 summarises some results for the binomial model. The notation BC–TR de-
notes the bias between the estimated N calculated using bias corrected and TSDS
generated data. More specifically, for each case and each of the 50 TSDS we cal-
culated the discrepancies between the estimated value of N , calculated from a true
simulated data set, and each of the 50 corresponding bias corrected estimated val-
ues of N . Considering the derived 50 discrepancies, we calculated some summary
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Table 1 Summary statistics related to the bias correcting methodology using the binomial model

Summary
statistics

1000 5000 10,000

P (error) BC–TR ER–TR BC–TR ER–TR BC–TR ER–TR

0.02 x̄ 19.1 39.7 98.5 202.7 194.0 402.2
s.d. 2.5 3.7 5.6 7.7 9.8 14.6
c.v. 0.131 0.09 0.06 0.04 0.05 0.04

0.05 x̄ 46.7 101.9 235.3 509.8 471.4 1023.0
s.d. 5.8 8.4 15.5 22.7 19.1 31.8
c.v. 0.124 0.08 0.06 0.04 0.04 0.03

0.10 x̄ 88.7 210.0 445.0 1050.0 879.0 2086.0
s.d. 11.3 19.3 28.2 52.3 41.5 65.8
c.v. 0.127 0.09 0.06 0.05 0.05 0.03

Notes: ER–TR is the bias between estimated N calculated using the ESDS and TSDS generated data.
BC–TR is the bias between estimated N calculated using bias corrected and TSDS generated data.

statistics like the average, x̄, standard deviation, SD, and coefficient of variation,
CV . In Table 1 notation ER–TR denotes the bias between estimated N calculated
using the ESDS and TSDS generated data. That is, for each case and each of the
50 TSDS we calculated the discrepancies between the estimated value of N , cal-
culated from a true simulated data set, and each of the 50 corresponding estimated
values of N calculated from the debased datasets.

As the values of the summary statistics described in Table 1 relating the BC–
TR biases indicate, for all of the nine cases, the methodology suggested in Sec-
tion 3.1.1 produced improved estimates of N . However, despite the improvement,
some positive bias in the bias corrected estimates of N are still observed, though
they are considerably smaller than the ones produced by the uncorrected estimates
of N . A comparison between the individual biases BC–TR and ER–TR, for each
of the nine cases, is shown in Figure 1. As we can observe from such figure, for
all population sizes and false-negative error levels, the ER–TR biases are larger
than the BC–TR ones. As can observed from Table 1, as it could be expected,
the larger the values of the probabilities of false-negative errors, the larger the ob-
served biases in the estimated values of N . Relatively larger variability among the
calculated discrepancies was observed when calculated under the smaller values
(0.02 and 0.05) of false-negative error probabilities.

5.2 Results obtained with the Poisson model

Similarly to the analyses presented in the last section, Table 2 summarises some
results for the Poisson model. The whole notation remains the same.

As the values of the summary statistics in Table 2 relating the BC–TR and ER–
TR biases indicate, for a probability of false-negative error of 0.02, regardless of
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Figure 1 Comparison among the estimated values of N -binomial model.

Table 2 Summary statistics related to the bias correcting methodology—Poisson model

Summary
statistics

1000 5000 10,000

P (error) BC–TR ER–TR BC–TR ER–TR BC–TR ER–TR

0.02 x̄ 166.8 39.7 339.9 202.7 490.1 402.2
s.d. 48.0 3.7 33.1 7.7 33.8 14.6
c.v. 0.29 0.09 0.10 0.04 0.07 0.04

0.05 x̄ 185.7 101.9 305.8 509.8 370.5 1023.0
s.d. 49.7 8.4 42.5 22.7 31.50 31.8
c.v. 0.28 0.08 0.14 0.04 0.14 0.03

0.10 x̄ 131.6 210.0 136.6 1050.0 198.7 2086.0
s.d. 39.8 19.3 68.7 52.3 102.9 65.8
c.v. 0.30 0.09 0.06 0.05 0.51 0.03

Notes: ER–TR is the bias between estimated N calculated using the ESDS and TSDS generated data.
BC–TR is the bias between estimated N calculated using bias corrected and TSDS data.

the true population size, the bias correcting methodology using the Poisson model
is not profitable. It even accentuates the positive bias in the estimated values of N .
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Figure 2 Comparison among the estimated values of N -Poisson model.

Figure 2 illustrates such aspects, since the curves described by the BC–TR biases
are always above the ones described by the ER–TR ones. For a probability of false-
negative error of 0.05, the proposed methodology is useful only for the population
sizes N = 5000 and N = 10,000, and, in the case of N = 10,000, the methodology
is more effective than the one obtained when we use the binomial model. Finally,
for a probability of false-negative error of 0.10, the bias correcting methodology
using the Poisson model is effective for all the population sizes in study. More-
over, for N = 5000 and N = 10,000, the benefit of using the Poisson model as
opposed to the binomial model is evident. For these cases, the comparison of the
profiles described in Figures 1 and 2 elucidates these observations, since the Pois-
son BC–TR biases vary around zero while the binomial BC–TR biases describe
profiles varing around y-values vary far from zero. For a given case, an approxi-
mate 100(1 − 2α)% credible set may be found using the percentile method which
consists of ordering the B = 2500 estimates of N , from smallest to largest, and tak-
ing as the lower and upper limits N̂(k) and N̂

(k
′
)
, respectively, where k = (B + 1)α

and k′ = (B + 1)(1 − α), both rounded to the nearest integer value. We obtained
95% credible sets for N . Besides that, for all the cases we estimated the coverage
of the credible sets constructed using the described methodology.
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Table 3 95% credible sets for N when Poisson and binomial bias correction are employed

Error Data type 1000 5000 10,000

0.02 error (881.04; 1203.04) (4905.07; 5564.92) (9809.06; 10,891.88)
% 96 84 74

0.02 B.C.-Poi. (949.81; 1405.72) (4901.81; 5608.74) (9857.77; 10,994.10)
% 63 66 91

0.02 B.C.-Bin. (863.34; 1177.04) (4806.97; 5456.61) (9612.95; 10,670.81)
% 98 95 94

0.02 true (849.98; 1147.99) (4718.53; 5325.44) (9429.00; 10,430.00)
% 95 98 93

0.05 error (943.46; 1283.88) (5113.24; 5938.07) (10,478.64; 11,712.38)
% 82 28 4

0.05 B.C.-Poi. (978.93; 1432.12) (4862.99; 5588.05) ( 9746.77; 10,877.13)
% 58 72 77

0.05 B.C.-Bin. (895.91; 1219.32) (4854.44; 5639.68) (9953.87; 11,124.19)
% 95 88 62

0.05 true (860.08; 1143.14) (4683.16; 5382.58) (9534.90; 10,572.36)
% 99 97 95

0.10 error (1011.11; 1445.50) (5552.25; 6622.68) (11,364.57; 12,691.28)
% 39 0 0

0.10 B.C.-Poi. (954.32; 1353.67) (4682.73; 5426.35) (9556.66; 10,648.63)
% 71 93 100

0.10 B.C.-Bin. (912.09; 1301.57) (4994.51; 5953.28) (10,231.86; 11,413.78)
% 90 54 17

0.10 true (863.32; 1211.47) (4619.25; 5447.96) (9429.00; 10,430.00)
% 94 87 93

Notes: Each interval is based on a sample of 2500 elements, for the cases (1) error—generated data
with error. (2) B.C.—bias corrected. (3) true—generated data without error. The percentages refer to
the observed coverage based on the 2500 samples.

As can observed from Table 3, for a probability of false-negative error of 0.02,
regardless of the population size, of whether or not bias correction was employed
or the model (binomial or Poisson), all the credible sets included the true value
of N . The smallest estimated coverage value was 63%, and it was due to a case
where the samples were bias corrected using the Poisson model. Nonetheless, the
result indicates that the effort to obtain bias corrected estimates of N , when the
negative error is that little, may not be worthwhile, even though some improvement
could be observed when the binomial model was used.

For a false-negative error of 0.05, Table 3 shows that for N = 5000 and N =
10,000, the credible sets based on the uncorrected samples did not contain the
true N . The respective estimated coverage were very far from the nominal level
of 95% (24% and 4%). The use of the bias correcting methodology, either using
the Poisson or the Binomial model, considerably improved the estimated coverage,
that changed from 28% to 72% (88%) and from 4% to 77% (62%), respectively.
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For a probability of false-negative error of 0.10, Table 3 shows that for N =
5000 and N = 10,000, the respective estimated coverage of the credible sets based
on the uncorrected samples was null in both cases. Again, the use of the bias cor-
rected methodology, either using the Poisson or the binomial model, considerably
improved the estimated coverage. However, in the present situation, the Poisson
approach is undoubtedly superior to the binomial one since for the former model
the produced estimated coverages are closer to the nominal level of 95%.

The convergence of the MCMC procedure was verified by Gelman and Rubin
(1992)’s convergence diagnostics available in the software CODA. In order to per-
form the diagnostic, two sequences with 21,000 elements were generated using the
procedures described above.

6 Discussion

In this paper, we suggest a Bayesian approach to correct the positive bias in abun-
dance estimates caused by false-negative errors present in capture–recapture data
obtained from a demographically closed population. The suggested methodology
was developed for the case where the capture probabilities vary only due to tem-
poral effects and the false-negative error probability, γ , is constant and known.
Based on the binomial and the Poisson models, two approaches are proposed for
bias correcting the estimated values of N .

The main advantage of the proposed methodology compared to the one devel-
oped by Stevick et al. (2001) is the possibility of dealing with capture–recapture
data from more than two sampling occasions. Besides that, a Bayesian approach al-
lows, through prior specification, that interdependent variables that are constrained
to a particular range of values be easily considered in the analysis. Such feature
contributed, for example, to a straightforward formulation of the dependencies be-
tween the “true” sample sizes, {bj } and the “true” number of distinct individuals
observed in the sampling occasions, h.

The proposed methodology is useful when the size of the false-negative error
probability is not too small. For false-negative error probabilities of approximately
0.05 or larger, the methodology seems very promising, yielding credible sets close
to the nominal level. For population sizes of 5000 and 10,000 and a false-negative
error probability of 0.10, the Poisson approach is superior to the binomial one.

Future work includes (1) a more complete study about the guesses for λj and φ

and their influences on the results. (2) The use of hierarchical Poisson models for
the formulations described by equations (9) and (10) considering non-informative
prior distributions. (3) A study of the impact of the probability of taking a good
quality photo (specially for small such probabilities) on the bias corrected esti-
mates of N . (4) The development of methodology for dealing with the estimation
of the false-negative error, γ , under distinct sampling occasions and as a func-
tion of photo quality. (5) Another important issue is the development of adequate



48 C. Q. da-Silva

methodology for bias correcting N when other sources besides the temporal ones
affect the capture probabilities.
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