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Abstract. Given a C∗-algebra A, let S(A+) denote the set of positive ele-
ments in the unit sphere of A. Let H1, H2, H3, and H4 be complex Hilbert
spaces, where H3 and H4 are infinite-dimensional and separable. In this article,
we prove a variant of Tingley’s problem by showing that every surjective isom-
etry ∆ : S(B(H1)

+) → S(B(H2)
+) (resp., ∆ : S(K(H3)

+) → S(K(H4)
+))

admits a unique extension to a surjective complex linear isometry from B(H1)
onto B(H2) (resp., from K(H3) onto K(H4)). This provides a positive answer
to a conjecture recently posed by Nagy.

1. Introduction

During the last thirty years, mathematicians have pursued an argument to
prove or discard a positive solution to Tingley’s problem (see the survey [23]). This
problem, in which geometry and functional analysis interplay, is just as attractive
as it is difficult. The concrete statement of the problem reads as follows. Let
S(X) and S(Y ) be the unit spheres of two normed spaces X and Y , respectively.
Suppose that ∆ : S(X) → S(Y ) is a surjective isometry. Does ∆ admit an
extension to a surjective real linear isometry from X onto Y ?

A wide list of references, obtained during the last thirty years, encompasses pos-
itive solutions to Tingley’s problem in the cases of sequence spaces (see [4]–[6]),
spaces of measurable functions on a σ-finite measure space (see [26]–[28]), spaces
of continuous functions (see [32]), finite-dimensional C∗-algebras (see [30], [31]),
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K(H) spaces (see [24]), spaces of trace class operators (see [7]), and B(H) spaces
(see [12], [9], [8]). The most recent achievements in this line establish that a sur-
jective isometry between the unit spheres of two arbitrary von Neumann algebras
admits a unique extension to a surjective real linear isometry between the corre-
sponding von Neumann algebras (see [10]), and an excellent contribution due to
Mori [18] contains a complete positive solution to Tingley’s problem for surjective
isometries between the unit spheres of von Neumann algebra preduals. Readers
interested in learning more details can consult our recent survey [23].

The particular setting of C∗-algebras, and especially the von Neumann alge-
bra B(H), of all bounded linear operators on a complex Hilbert space H, and
its Hermitian subalgebras and subspaces, offer the optimal conditions in which
to consider an interesting variant to Tingley’s problem. Let us introduce some
notation first. If B is a subset of a Banach space X, then we will write S(B)
for the intersection of B and S(X). Given a C∗-algebra A, the symbol A+ will
denote the cone of positive elements in A, while S(A+) will stand for the sphere
of positive norm 1 operators.

Problem 1.1. Let ∆ : S(A+) → S(B+) be a surjective isometry, where A and
B are C∗-algebras. Does ∆ admit an extension to a surjective complex linear
isometry T : A → B?

The hypotheses in Problem 1.1 are certainly weaker than the hypothesis in
Tingley’s problem. However, the required conclusion is also weaker, because the
goal is to find a surjective linear isometry T : A → B satisfying T |S(A+) ≡ ∆, and
we do not care about the behavior of T on the rest of S(A). For the moment,
both problems seem to be independent.

Problem 1.1 can also be considered when A and B are replaced with the space
(Cp(H), ‖ · ‖p) of all p-Schatten–von Neumann operators (1 ≤ p ≤ ∞). For a
finite-dimensional complex Hilbert spaceH and∞ > p ≥ 1, Molnár and Nagy [16,
Theorem 1] determined all surjective isometries on the space (S(C1(H)+), ‖ · ‖p).
Molnár and Timmermann [17, Theorem 4] solved Problem 1.1 for the space C1(H)
of trace class operators on an arbitrary complex Hilbert space H. Given p in the
interval (1,∞) and A = B = Cp(H), a complete solution to Problem 1.1 was
obtained by Nagy in [19, Theorem 1].

Following the usual notation, for each complex Hilbert space H, we identify
C∞(H) with the space B(H). In a very recent contribution, Nagy resumes the
study of Problem 1.1 for B(H). Applying deep geometric arguments in spectral
theory and projective geometry, Nagy solves this problem in the case in which
H is finite-dimensional. Concretely, if H is a finite-dimensional complex Hilbert
space, and ∆ : S(B(H)+) → S(B(H)+) is an isometry, then ∆ is surjective and
there exists a surjective complex linear isometry T : B(H) → B(H) satisfying
T (x) = ∆(x) for all x ∈ S(B(H)+) (see [20, Theorem]). In the third section of
[20], Nagy conjectures that an infinite-dimensional version of his result holds true
for surjective isometries on S(B(H)+).

In this article, we present an argument to prove Nagy’s conjecture. Concretely,
in Theorem 3.6 we prove that for any two complex Hilbert spacesH1 andH2, every
surjective isometry ∆ : S(B(H1)

+) → S(B(H2)
+) can be extended to a surjective
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complex linear isometry (actually, a ∗-isomorphism or a ∗-antiautomorphism) T :
B(H1) → B(H2).

A closer look at the technical arguments in recent papers dealing with Tingley’s
problem (see, e.g., [8]–[10], [24], [30], [31]) reveals a common strategy based on
a geometric tool asserting that a surjective isometry between the unit spheres of
two Banach spaces X and Y preserves maximal convex sets of the corresponding
spheres (see [3, Lemma 5.1(ii)], [29, Lemma 3.5]). This is a real obstacle in our
setting, because this geometric tool is not applicable for a surjective isometry
∆ : S(B(H1)

+) → S(B(H2)
+) where we can hardly identify a surjective isometry

between the unit spheres of two normed spaces. We will develop independent
arguments to prove Nagy’s conjecture. In this article, we introduce new arguments
built upon a recent abstract characterization of those elements in S(B(H)+)
which are projections in terms of their distances to positive elements in S(B(H)+)
(see [22]), and the Bunce–Wright Mackey–Gleason theorem (see [2, Theorem A]).

In Section 4, we also give a positive solution to Problem 1.1 in the case in
which A and B are spaces of compact operators on separable complex Hilbert
spaces (see Theorem 4.5). In this final section, the role played by the Bunce–
Wright Mackey–Gleason theorem will be played by a theorem due to Aarnes [1,
Corollary 2] which guarantees the linearity of quasistates on K(H).

2. Basic background and precedents

In our recent note [22], we establish a geometric characterization of those ele-
ments in the unit sphere of an atomic von Neumann algebra M (or in the unit
sphere of the space of compact operators on a separable complex Hilbert space)
which are projections in terms of the unit sphere of positive operators around an
element. Let us recall the basic definitions. Let E and P be subsets of a Banach
space X. We define the unit sphere around E in P as the set

Sph(E;P ) :=
{
x ∈ P : ‖x− b‖ = 1 for all b ∈ E

}
.

If x is an element in X, we write Sph(x;P ) for Sph({x};P ). If E is a subset of a
C∗-algebra A, we write Sph+(E) or Sph+

A(E) for the set Sph(E;S(A+)). For each
element a in A, we write Sph+(a) instead of Sph+({a}).

We recall that a nonzero projection p in a C∗-algebra A is called minimal
if pAp = Cp. A von Neumann algebra M is called atomic if it coincides with
the weak∗-closure of the linear span of its minimal projections. It is known that
for every atomic von Neumann algebra M there exists a family {Hi}i of complex

Hilbert spaces such that M =
⊕`∞

j B(Hj) (cf. [25, Section 2.2]). Every projection
p in an atomic von Neumann algebra M is the least upper bound of the set of all
minimal projections in M which are less than or equal to p.

Let a be a positive norm 1 element in an atomic von Neumann algebra M . In
[22, Theorem 2.3] we prove that

a is a projection ⇔ Sph+
M

(
Sph+

M(a)
)
= {a}.

This particularly holds true when M = B(H). Theorem 2.5 in [22] assures
that the same equivalence remains true for any positive element a in the unit
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sphere of K(H2), where H2 is a separable complex Hilbert space. Since, for every
E ⊆ S(A+), the set Sph+

A(E) is completely determined by the metric structure of
S(A+), the next results borrowed from [22] are direct consequences of the charac-
terizations just commented. We recall first that, for a C∗-algebra A, the symbol
Proj (A) will denote the set of all projections in A, and Proj (A)∗ will stand for
Proj (A)\{0}.

Corollary 2.1 ([22, Corollary 2.6]). Let ∆ : S(M+) → S(N+) be a surjective
isometry, where M and N are atomic von Neumann algebras. Then ∆ maps
Proj (M)∗ to Proj (N)∗, and the restriction ∆|Proj (M)∗ : Proj (M)∗ → Proj (N)∗

is a surjective isometry.

Corollary 2.2 ([22, Corollary 2.7]). Let H2 and H3 be separable complex Hilbert
spaces, and let us assume that ∆ : S(K(H2)

+) → S(K(H3)
+) is a surjective

isometry. Then ∆ maps Proj (K(H2))
∗ to Proj (K(H3))

∗, and the restriction

∆|Proj (K(H2))∗ : Proj
(
K(H2)

)∗ → Proj
(
K(H3)

)∗
is a surjective isometry.

Throughout this article, the closed unit ball and the dual space of a Banach
space X will be denoted by BX and X∗, respectively. The symbol X∗∗ will stand
for the second dual space of X. Given a subset B ⊂ X, we will write BB for
BX ∩ B. We will write Asa for the self-adjoint part of a C∗-algebra A, while the
symbol (A∗)+ will stand for the set of positive functionals on A. If A is unital, 1
will stand for its unit.

Suppose that a is a positive element in the unit sphere of a von Neumann
algebra M . The range projection of a in M (denoted by r(a)) is the smallest
projection p in M satisfying ap = a. It is known that the sequence ((1/n1 +
a)−1a)n tends monotone-increasingly to r(a), and hence it converges to r(a) in
the weak∗-topology of M . Actually, r(a) also coincides with the weak∗-limit of the
sequence (a1/n)n in M (see [21, 2.2.7, p. 23]). It is also known that the sequence
(an)n converges to a projection s(a) = sM(a) in M , which is called the support
projection of a in M . Let us observe that the support projection of a norm 1
element in M might be zero; however, for each positive element a in the unit
sphere of the bidual space of a C∗-algebra A, we have sA∗∗(a) 6= 0 (cf. [22, (2.3)]).

We recall next some known properties in C∗-algebra theory. Let p be a pro-
jection in a unital C∗-algebra A. Suppose that x ∈ S(A) satisfies pxp = p. Then
(see, e.g., [11, Lemma 3.1])

x = p+ (1− p)x(1− p). (2.1)

Suppose that b ∈ A+ satisfies pbp = 0. Then (see [22, (2.2)])

pb = bp = 0. (2.2)

If p is a nonzero projection in a C∗-algebra A, and a is an element in S(A+)
satisfying p ≤ a, then (see [22, (2.4)])

a = p+ (1− p)a(1− p). (2.3)
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3. Surjective isometries between normalized positive elements of
type I von Neumann factors

Throughout this section, H1 and H2 will be two complex Hilbert spaces. The
main goal here is to determine when a surjective isometry ∆ : S(B(H1)

+) →
S(B(H2)

+) can be extended to a surjective complex linear isometry from B(H1)
onto B(H2). The case in which H1 = H2 with dim(H1) < ∞ has been positively
solved by Nagy [20]. In the just quoted reference, Nagy conjectures that the same
statement holds true when H is infinite-dimensional. Corollary 2.1 above gives
a generalization of [20, Claim 1] for arbitrary complex Hilbert spaces. Our next
aim is to provide a proof of the whole conjecture posed by Nagy.

We recall next a tool that will be used throughout the rest of the article.
Henceforth, let the symbol `n2 stand for an n-dimensional complex Hilbert space.
If p is a rank 1 projection in B(`22), up to an appropriate representation, then we

can assume that p =
(
1 0
0 0

)
. Given t ∈ [0, 1], the element qt =

(
t

√
t(1−t)√

t(1−t) 1−t

)
also is a projection in B(`22) and ‖p− qt‖ =

√
1− t. Therefore, for each nontrivial

projection p in B(`22) we can find another nontrivial projection q in B(`22) with
0 < ‖p − q‖ < 1. Similar arguments show that if H is a complex Hilbert space
with dim(H) ≥ 2, then, for each nontrivial projection p in B(H), we can find
another nontrivial projection q in B(H) with 0 < ‖p− q‖ < 1.

Let A and B be C∗-algebras. A linear map Φ : A → B is called a Jordan
∗-homomorphism if Φ(a∗) = Φ(a)∗ and Φ(a ◦ b) = Φ(a) ◦ Φ(b) for all a, b ∈ A,
where a◦b denotes the natural Jordan product of a and b given by a◦b = 1

2
(ab+ba).

Elements a, b in a C∗-algebra A are called orthogonal (written a ⊥ b) if ab∗ =
b∗a = 0. It is known that ‖a+ b‖ = max{‖a‖, ‖b‖}, for every a, b ∈ A with a ⊥ b.
Clearly, self-adjoint elements a, b in A are orthogonal if and only if ab = 0.

The following technical result will be needed for later purposes.

Lemma 3.1. Suppose that ∆ : Proj (B(H1)) → Proj (B(H2)) is a (unital) iso-
metric order automorphism, where H1 and H2 are complex Hilbert spaces. Then
∆ preserves orthogonality, that is, ∆(p)∆(q) = 0 whenever pq = 0 in Proj (M).
Furthermore, the same conclusion holds for an isometric order automorphism
∆ : Proj (K(H1)) → Proj (K(H2)).

Proof. Let e1 and v1 be orthogonal minimal projections in B(H1). By hypothesis,
∆(e1) and ∆(v1) are minimal projections, and ∆(e1 + v1) is a projection with
∆(e1+v1) ≥ ∆(e1),∆(v1). Since ‖∆(e1)−∆(v1)‖ = ‖e1−v1‖ = 1, [22, Lemma 2.1]
assures the existence of a minimal projection ê ∈ B(H2)

∗∗ such that one of the
following statements holds:

(a) ê ≤ ∆(e1) and ê ⊥ ∆(v1) in B(H2)
∗∗;

(b) ê ≤ ∆(v1) and ê ⊥ ∆(e1) in B(H2)
∗∗.

Having in mind that ∆(e1) and ∆(v1) are minimal projections in B(H2)
∗∗, the

above statements are equivalent to

(a) ê = ∆(e1) and ê ⊥ ∆(v1) in B(H2)
∗∗, and hence ∆(e1) ⊥ ∆(v1);

(b) ê = ∆(v1) and ê ⊥ ∆(e1) in B(H2)
∗∗, and hence ∆(e1) ⊥ ∆(v1).
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Now let us take two arbitrary projections p, q ∈ B(H1) with pq = 0. We
pick two arbitrary minimal projections ê1 ≤ ∆(p) and v̂1 ≤ ∆(q). By hypothesis,
there exist minimal projections e1, v1 in B(H1) satisfying ∆(e1) = ê1, ∆(v1) = v̂1,
e1 ≤ p, and v1 ≤ q. The condition pq = 0 implies that e1v1 = 0. Applying the
conclusion in the first paragraph, we deduce that ∆(e1) = ê1 ⊥ ∆(v1) = v̂1. We
have therefore proved that ê1 ⊥ v̂1 whenever ê1 and v̂1 are minimal projections
with ê1 ≤ ∆(p) and v̂1 ≤ ∆(q). Since in B(H2) the projection ∆(p) (resp., ∆(q))
is the least upper bound of all minimal projections in B(H2) which are less than
or equal to ∆(p) (resp., ∆(q)), it follows that ∆(p) ⊥ ∆(q).

If ∆ : Proj (K(H1)) → Proj (K(H2)) is an isometric order automorphism, then
the conclusion follows with similar arguments. �

In 1951, Kadison [14, Theorem 7] proved that a surjective linear isometry T
from a unital C∗-algebra A onto another C∗-algebra B is of the form T = uΦ,
where u is a unitary element in B and Φ is a Jordan ∗-isomorphism from A
onto B. In particular, every unital surjective linear isometry T : A → B is a
Jordan ∗-isomorphism. Furthermore, if A is a factor von Neumann algebra, then
T is a ∗-isomorphism or a ∗-anti-isomorphism. In our next result, we begin with
weaker hypotheses.

Proposition 3.2. Let ∆ : S(B(H1)
+) → S(B(H2)

+) be a surjective isometry,
where H1 and H2 are complex Hilbert spaces. Then ∆ maps Proj (B(H1))

∗ to
Proj (B(H2))

∗,and the restriction ∆|Proj (B(H1))∗ : Proj (B(H1))
∗ → Proj (B(H2))

∗

is a surjective isometry and a unital order isomorphism. We further know that
∆|Proj (B(H1))∗ preserves orthogonality.

Consequently, if T : B(H1) → B(H2) is a bounded complex linear mapping such
that T (S(B(H1)

+)) = S(B(H2)
+) and T |S(B(H1)+) : S(B(H1)

+) → S(B(H2)
+) is

an isometry, then T is a ∗-isomorphism or a ∗-antiautomorphism.

Proof. Most of the first statement is given by Corollary 2.1. Following an idea
outlined by Nagy in [20, Proof of Claim 2], we will begin by proving that ∆ is
unital. By Corollary 2.1, ∆(1) is a nonzero projection. We recall that 1 is the
unique nonzero projection in B(H2) whose distance to any other projection is 0
or 1. If ∆(1) = q0 6= 1, then there exists a nonzero projection q1 ∈ B(H2) such
that 0 < ‖q1 − q0‖ = ‖∆(1)− q1‖ < 1. A new application of Corollary 2.1 to ∆−1

implies the existence of a nonzero projection p1 ∈ B(H1) such that ∆(p1) = q1.
In this case, we have p1 6= 1 and 1 = ‖1− p1‖ = ‖∆(1)−∆(p1)‖ = ‖q0− q1‖ < 1,
which is a contradiction.

Let us prove next that ∆|Proj (B(H1))∗ is an order automorphism. To this aim,
let us pick p, q ∈ Proj (B(H1))

∗ with p ≤ q. Let v be a minimal projection in
B(H2) such that v ≤ 1−∆(q) = ∆(1)−∆(q). The element z = v+ 1

2
(1− v) lies

in S(B(H2)
+). Pick x ∈ S(B(H1)

+) satisfying ∆(x) = z. Since

1

2
= ‖z − 1‖ =

∥∥∆(x)−∆(1)
∥∥ = ‖x− 1‖,

we deduce that x is invertible. Furthermore, since

1 ≥ ‖x− q‖ =
∥∥∆(x)−∆(q)

∥∥ =
∥∥z −∆(q)

∥∥ ≥
∥∥v(z −∆(q)

)
v
∥∥ = ‖v‖ = 1,
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by Lemma 2.1 in [22] there exists a minimal projection e in B(H1)
∗∗ such that

one of the following statements holds:

(a) e ≤ x and e ⊥ q in B(H1)
∗∗;

(b) e ≤ q and e ⊥ x in B(H1)
∗∗.

Case (b) is impossible because x is invertible in B(H1) (and hence in B(H1)
∗∗).

Therefore e ≤ x and e ⊥ q, which implies that e ⊥ p, because p ≤ q. Therefore,
[22, Lemma 2.1] implies that 1 = ‖x− p‖ = ‖∆(x)−∆(p)‖ = ‖z−∆(p)‖. A new
application of [22, Lemma 2.1] assures the existence of a minimal projection w in
B(H2)

∗∗ such that one of the following statements holds:

(a) w ≤ z and w ⊥ ∆(p) in B(H2)
∗∗;

(b) w ≤ ∆(p) and w ⊥ z in B(H2)
∗∗.

As before, case (b) is impossible because z is invertible in B(H2). Therefore,
w ≤ z = v+ 1

2
(1−v) and w ⊥ ∆(p). It can be easily deduced from the minimality

of w in B(H2)
∗∗ and the minimality of v in B(H2) that v = w ⊥ ∆(p). We have

therefore shown that ∆(p) is orthogonal to every minimal projection v in B(H2)
with v ≤ 1 − ∆(q), and consequently 1 − ∆(q) ≤ 1 − ∆(p), or equivalently,
∆(p) ≤ ∆(q). The statement affirming that ∆|Proj (B(H1))∗ preserves orthogonality
can be derived from Lemma 3.1.

To prove the final statement, let T : B(H1) → B(H2) be a linear mapping such
that T (S(B(H1)

+)) = S(B(H2)
+) and T |S(B(H1)+) : S(B(H1)

+) → S(B(H2)
+)

is an isometry. By applying the conclusion of the first statement, we deduce
that T |S(B(H1)+) maps Proj (B(H1))

∗ to Proj (B(H2))
∗, and the restricted map-

ping T |Proj (B(H1))∗ : Proj (B(H1))
∗ → Proj (B(H2))

∗ is a surjective isometry and
a unital order automorphism. Clearly, T preserves projections and orthogonal-
ity among them (just observe that the sum of two projections is a projection if
and only if they are orthogonal). Since every Hermitian element in a von Neu-
mann algebra can be approximated in norm by a finite real linear combination of
mutually orthogonal projections (see [25, Proposition 1.3.1]), and by the above
properties T (a2) = T (a)2 and T (a) = T (a)∗, whenever a is a finite real linear
combination of mutually orthogonal projections, we deduce that T (b2) = T (b)2

and T (b)∗ = T (b) for every Hermitian element b in B(H1). It is well known that
this is equivalent to saying that T is a Jordan ∗-isomorphism. The rest follows
from [14, Corollary 11] because B(H1) is a factor. �

We continue with an analogue of [20, Claim 3].

Lemma 3.3. Let ∆ : S(B(H1)
+) → S(B(H2)

+) be a surjective isometry, where
H1 and H2 are complex Hilbert spaces. Let p0, p1, . . . , pm be mutually orthogonal
projections with

∑m
k=0 pk = 1, and let λ1, . . . , λm be real numbers in the interval

(0, 1). Then sB(H2)(∆(p0 +
∑m

k=1 λkpk)) = ∆(p0).

Proof. Set a = p0+
∑m

k=1 λkpk. Since ∆(1) = 1 and ‖∆(a)−1‖ = ‖∆(a)−∆(1)‖ =
‖a− 1‖ = max{1− λk : k = 1, . . . ,m} < 1, we deduce that both a and ∆(a) are
invertible elements.

Let v̂ be a minimal projection in B(H2). By Proposition 3.2, there exists a
minimal projection v in B(H1) satisfying ∆(v) = v̂. By the hypothesis on ∆ and
Proposition 3.2, we have ‖a − (1 − v)‖ = 1 if and only if ‖∆(a) −∆(1 − v)‖ =
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‖∆(a) − (1 − ∆(v))‖ = 1. Combining the invertibility of a and ∆(a), and the
minimality of v and ∆(v) with Lemma 2.1 in [22], we deduce that

v ≤ p0 ⇔ v ≤ a ⇔
∥∥a−(1−v)

∥∥ = 1 ⇔
∥∥∆(a)−

(
1−∆(v)

)∥∥ = 1 ⇔ ∆(v) ≤ ∆(a).

Therefore, a minimal projection v satisfies v ≤ p0 if and only if v ≤ a if and only
if ∆(v) ≤ ∆(a) if and only if ∆(v) ≤ ∆(p0).

Take a minimal projection v̂ ∈ B(H2) such that v̂ = ∆(v) ≤ ∆(p0). We know
from the above that v̂ ≤ ∆(a), and v ≤ a. Since in B(H2) every projection q
is the least upper bound of all minimal projections v̂ with v̂ ≤ q, we deduce
that ∆(p0) ≤ ∆(a), and hence ∆(p0) ≤ sB(H2)(∆(a)). Another application of the
above property shows that v̂ ≤ ∆(p0) for every minimal projection v̂ ∈ B(H2)
with v̂ ≤ sB(H2)(∆(a)) ≤ ∆(a). Therefore sB(H2)(∆(a)) = ∆(p0). �

According to the usual notation, given a C∗-algebra A, the symbol S(Inv(A)+)
will denote the set of all positive invertible elements in S(A). A projection p in
a unital C∗-algebra A will be called cominimal if 1 − p is a minimal projection
inA. The symbol comin-Proj (A) will stand for the set of all cominimal projections
in A.

Theorem 3.4. Let a be an invertible element in S(B(H)+), where H is an
infinite-dimensional complex Hilbert space. Suppose that sB(H)(a) 6= 0. Then the
following statements hold:

(a) Sph(a; comin-Proj (B(H))) = {p ∈ comin-Proj (B(H)) : 1−p≤ sB(H)(a)};
(b) the identity

Sph
(
Sph

(
a; comin-Proj

(
B(H)

))
;S

(
Inv

(
B(H)

)+))
=

{
x ∈ S

(
Inv

(
B(H)

)+)
: sB(H)(a) ≤ x

}
holds.

Proof. (a) Let v be a minimal projection in B(H). Combining the invertibility of
a and the minimality of v with [22, Lemma 2.1], it can be seen that

v ≤ a ⇔
∥∥a− (1− v)

∥∥ = 1.

Therefore, for each minimal projection v in B(H) we have (cf. (2.3))

v ≤ sB(H)(a) ≤ a if and only if
∥∥a− (1− v)

∥∥ = 1. (3.1)

(⊇) Take p ∈ comin-Proj (B(H)) with 1 − p ≤ sB(H)(a). Applying (3.1) with
v = 1− p, we get ‖a− p‖ = 1.

(⊆) Now take p ∈ comin-Proj (B(H)) with ‖a− (1− (1− p))‖ = ‖a− p‖ = 1.
We deduce from (3.1) that 1− p ≤ sB(H)(a) ≤ a.

(b) (⊇) Let us take x ∈ S(Inv(B(H))+) satisfying sB(H)(a) ≤ x. For each
p ∈ comin-Proj (B(H))) with ‖a − p‖ = 1, we know from (a) that 1 − p ≤
sB(H)(a) ≤ x. Applying the statement in (2.3), we have 1− p ≤ sB(H)(x). A new
application of (a) to the element x gives ‖x − p‖ = 1. This shows that x lies in
Sph(Sph(a; comin-Proj (B(H)));S(Inv(B(H))+)).
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(⊆) Take x ∈ S(Inv(B(H))+) satisfying ‖x − p‖ = 1 for every projection p in
Sph(a; comin-Proj (B(H))). Applying (a), it can be seen that, for every minimal
projection v in B(H) with v ≤ sB(H)(a) we have

1− v ∈ Sph
(
a; comin-Proj

(
B(H)

))
,

and hence ‖x−(1−v)‖ = 1. Since x ∈ S(Inv(B(H))+) and v is minimal, it follows
from (a) that v ≤ sB(H)(x). We have proved that v ≤ sB(H)(x) ≤ x whenever v
is a minimal projection with v ≤ sB(H)(a). Therefore sB(H)(a) ≤ x. �

The next lemma is a simple observation.

Lemma 3.5. Let ∆ : S(A+) → S(B+) be a surjective isometry, where A and
B are unital C∗-algebras. Suppose that ∆(1) = 1. Then ∆(S(Inv(A)+)) =
S(Inv(B)+).

Proof. We observe that an element b ∈ S(A+) is invertible if and only if the
inequality ‖a−1‖ < 1 holds. Therefore, b ∈ S(Inv(A)+) if and only if ‖b−1‖ < 1 if
and only if ‖∆(b)−∆(1)‖ = ‖∆(b)−1‖ < 1 if and only if ∆(b) ∈ S(Inv(B)+). �

We are now in position to establish the main result of this section, which proves
the conjecture posed by Nagy [20, Section 3].

Theorem 3.6. Let ∆ : S(B(H1)
+) → S(B(H2)

+) be a surjective isometry,
where H1 and H2 are complex Hilbert spaces. Then there exists a surjective
complex linear isometry (actually, a ∗-isomorphism or a ∗-antiautomorphism)
T : B(H1) → B(H2) satisfying ∆(x) = T (x) for all x ∈ S(B(H1)

+).

Proof. Proposition 3.2 implies that

∆|Proj (B(H1))∗ : Proj
(
B(H1)

)∗ → Proj
(
B(H2)

)∗
is a surjective isometry and a unital order isomorphism.

If dim(H1) is finite, then it can be easily seen from the above that dim(H1) =
dim(H2) (just observe that dim(H) (< ∞) is precisely the cardinality of every
maximal set of minimal projections in B(H)). In this case, the desired conclusion
was established by Nagy [20, Theorem].

Let us assume that H1 is infinite-dimensional. We define a vector measure
µ : Proj (B(H1)) → B(H2) given by µ(0) = 0 and µ(p) = ∆(p) for all p in
Proj (B(H1))

∗. It is clear that µ(p) ∈ Proj (B(H2)) for every p in Proj (B(H1)).
In particular, {∥∥µ(p)∥∥ : p ∈ Proj

(
B(H1)

)}
= {0, 1}. (3.2)

We claim that µ is finitely additive, that is

µ
( m∑

j=1

pj

)
=

m∑
j=1

µ(pj), (3.3)

for every family {p1, . . . , pm} of mutually orthogonal projections in B(H1). Name-
ly, we can assume that pj 6= 0 for every j. Lemma 3.1 and Proposition 3.2 assure
that {∆(p1), . . . ,∆(pm)} are mutually orthogonal projections in B(H2). We also
know from Proposition 3.2 that µ(

∑m
j=1 pj) = ∆(

∑m
j=1 pj) and µ(pj) = ∆(pj)
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are projections in B(H2) with µ(
∑m

j=1 pj) = ∆(
∑m

j=1 pj) ≥ µ(pj) = ∆(pj) for

all j ∈ {1, . . . ,m}, and hence µ(
∑m

j=1 pj) ≥
∑m

j=1 µ(pj). Since
∑m

j=1 µ(pj) and∑m
j=1 pj are the least upper bounds of {∆(p1), . . . ,∆(pm)} and {p1, . . . , pm} in

B(H2) and B(H1), respectively, and ∆|Proj (B(H1))∗ is an order isomorphism (see
Proposition 3.2), we get µ(

∑m
j=1 pj) =

∑m
j=1 µ(pj).

We have therefore shown that µ is a bounded finitely additive measure. We
are in a position to apply the Bunce–Wright Mackey–Gleason theorem (see [2,
Theorem A]), and thus there exists a unique bounded complex linear operator
T : B(H1) → B(H2) satisfying

T (p) = µ(p) = ∆(p) for every p ∈ Proj
(
B(H1)

)∗
. (3.4)

Since T |Proj (B(H1))∗ = ∆|Proj (B(H1))∗ : Proj (B(H1))
∗ → Proj (B(H2))

∗ is a sur-
jective isometry and a unital order automorphism, the second part in Proposi-
tion 3.2 implies that T is a surjective isometry and a ∗-isomorphism or a ∗-anti-
isomorphism.

It only remains to prove that T (x) = ∆(x) for every x ∈ S(B(H1)). Let
us begin with an element of the form a = p0 +

∑m
j=1 λjpj, where λj ∈ (0, 1),

and p0, p1, . . . , pm are mutually orthogonal nonzero projections in B(H1) with∑m
j=0 pj = 1.

Under the condition that ∆(1) = 1, we can then apply Lemma 3.5 in order to
deduce that ∆(S(Inv(B(H1))

+)) = S(Inv(B(H2))
+). Furthermore, since the sets

Sph(a; comin-Proj (B(H1))) and

Sph
(
Sph

(
a; comin-Proj

(
B(H1)

))
;S

(
Inv

(
B(H1)

+
)))

are determined by the norm, the element a, the set S(Inv(B(H1))
+), and the

set Sph(a; comin-Proj (B(H1))), and all these structures are preserved by ∆, we
deduce that

∆
(
Sph

(
a; comin-Proj

(
B(H1)

)))
= Sph

(
∆(a); comin-Proj

(
B(H2)

))
and

∆(Sph
(
Sph

(
a; comin-Proj

(
B(H1)

))
;S

(
Inv

(
B(H1)

+
)))

= Sph
(
Sph

(
∆(a); comin-Proj

(
B(H2)

))
;S

(
Inv

(
B(H2)

+
)))

. (3.5)

Lemma 3.3 implies that sB(H2)(∆(a)) = ∆(p0). We have already commented that
∆(a) is invertible (cf. Lemma 3.5).

Now applying Theorem 3.4(b), we deduce that

Sph
(
Sph

(
a; comin-Proj

(
B(H1)

))
;S

(
Inv

(
B(H1)

+
))))

=
{
x ∈ S

(
Inv

(
B(H1)

)+)
: sB(H1)(a) = p0 ≤ x

}
= p0 + BInv((1−p0)B(H1)+(1−p0)) = p0 + BInv(B((1−p0)(H1))+)

and

Sph
(
Sph

(
∆(a); comin-Proj

(
B(H2)

))
;S

(
Inv

(
B(H2)

+
)))

= ∆(p0) + BInv(B((1−∆(p0))(H2))+).



ON THE UNIT SPHERE OF POSITIVE OPERATORS 101

To simplify the notation, let us denote K1 = (1 − p0)(H1) and K2 = (1 −
∆(p0))(H2). By combining the above identities with (3.5), we can consider the
following diagram of surjective isometries:

(3.6)

where τz denotes the translation by z, and ∆a is the surjective isometry making
the above diagram commutative.

Let us observe the following property. For each unital C∗-algebra A, the set
BInv(A+), of all positive invertible elements in the closed unit ball of A, is a convex
subset with nonempty interior in Asa. Actually, if a, b ∈ BInv(A+), then we know
that ta + (1 − t)b ∈ BA+ for every t ∈ [0, 1] (see [25, Theorem 1.4.2]). By the
invertibility of a, b, we can find positive constants m1, m2 such that m11 ≤ a and
m21 ≤ b. Therefore, (tm1 + (1 − t)m2)1 ≤ ta + (1 − t)b, which guarantees that
ta+ (1− t)b is invertible too. We note that the open unit ball in Asa with center
1
2
1 and radius 1

2
is contained in BInv(A+). Since ∆a : BInv(B(K1)+) → BInv(B(K2)+) is

a surjective isometry, we are in a position to apply Manckiewicz’s theorem (see
[15, Theorem 5, Remark 7]) to deduce the existence of a surjective real linear
isometry Ta : B(K1)sa → B(K2)sa and a z0 ∈ B(K2)sa such that

∆a(x) = Ta(x) + z0, for all x ∈ BInv(B(K1)+). (3.7)

Since ∆(1) = 1, it follows from the construction above that ∆a(1B(K1)) = 1B(K2),
and thus Ta(1B(K1)) + z0 = 1B(K2).

Let us recall that an element s in B(K2)sa is called a symmetry if s2 = 1.
Actually, every symmetry in B(K2)sa is of the form s = p1 − (1B(K2) − p1), where
p1 is a projection. The real Jordan Banach (JB) algebras B(K1)sa and B(K2)sa
(equipped with the natural Jordan product x ◦ y = 1

2
(xy + yx)) are prototypes

of JB-algebras in the sense employed in [33] and [13]. Since Ta : B(K1)sa →
B(K2)sa is a surjective isometry, by applying [13, Theorem 1.4], we deduce the
existence of a central symmetry s ∈ B(K2)sa and a unital Jordan ∗-isomorphism
Φa : B(K1)sa → B(K2)sa such that Ta(x) = sΦa(x), for all x ∈ B(K1)sa. However,
the unique central symmetries in B(K2)sa are 1B(K2) and −1B(K2). Summing up,
we have

1B(K2) − z0 = Ta(1B(K1)) = s1B(K2) = s = ±1B(K2).

Then one (and only one) of the following statements holds:

(1) z0 = 0, and thus Ta(1B(K1)) = 1B(K2), and Ta is a Jordan ∗-isomorphism;
(2) z0 = 21B(K2) ≡ 2(1 − ∆(p0)), and thus Ta(1B(K1)) = −1B(K2) ≡ −(1 −

∆(p0)), and Φa = −Ta is a Jordan ∗-isomorphism.

We claim that case (2) is impossible; otherwise, by inserting the element p0 +
1
2
(1− p0) (where

1
2
1B(K1) ≡ 1

2
(1− p0) ∈ BInv(B(K1)+)

∼= BInv(B((1−p0)(H1))+)) in the
diagram (3.6) (see also (3.7)) we get
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∆
(
p0 +

1

2
(1− p0)

)
= ∆(p0) + ∆a

(1
2
(1− p0)

)
= ∆(p0) + Ta

(1
2
(1− p0)

)
+ z0

= ∆(p0) + 2
(
1−∆(p0)

)
− 1

2
Φa

(
(1− p0)

)
= ∆(p0) + 2

(
1−∆(p0)

)
− 1

2

(
1−∆(p0)

)
= ∆(p0) +

3

2

(
1−∆(p0)

)
,

which proves that 3
2
= ‖∆(p0) +

3
2
(1 − ∆(p0))‖ = ‖∆(p0 +

1
2
(1 − p0))‖ = 1,

leading to a contradiction. Therefore, only case (1) holds, and hence Ta is a
Jordan ∗-isomorphism.

We will prove next that

∆(q) = Ta(q), for every projection q ≤ 1− p0. (3.8)

Namely, take a projection q ≤ 1−p0. By inserting the element b = p0+ q+ 1
2
(1−

q − p0) in the diagram (3.6) (see also (3.7)), we get

∆(b) = ∆
(
p0 + q +

1

2
(1− q − p0)

)
= ∆(p0) + ∆a

(
q +

1

2
(1− q − p0)

)
= ∆(p0) + Ta

(
q +

1

2
(1− q − p0)

)
= ∆(p0) + Ta(q) +

1

2
Ta(1− q − p0),

which assures that sB(H2)(∆(b)) = ∆(p0)+Ta(q). On the other hand, Lemma 3.3
implies that sB(H2)(∆(b)) = ∆(sB(H2)(b)) = ∆(p0 + q) = (by (3.3)) = ∆(p0) +
∆(q). We have therefore shown that ∆(p0) + Ta(q) = ∆(p0) + ∆(q), which con-
cludes the proof of (3.8).

Now, inserting our element a = p0+
∑m

j=1 λjpj (where λj ∈ R+, and p0, p1, . . . ,

pm are mutually orthogonal nonzero projections in B(H1) with
∑m

j=0 pj = 1) in

(3.6) (see also (3.7)), we deduce that

∆(a) = ∆
(
p0 +

m∑
j=1

λjpj

)
= ∆(p0) + ∆a

( m∑
j=1

λjpj

)
= ∆(p0) + Ta

( m∑
j=1

λjpj

)
= ∆(p0) +

m∑
j=1

λjTa(pj) = (by (3.8)) = ∆(p0) +
m∑
j=1

λj∆(pj)

= (by (3.4)) = T (p0) +
m∑
j=1

λjT (pj) = T (a).

Finally, it is well known that every positive element in the unit sphere of B(H1)
can be approximated in norm by elements of the form a = p0 +

∑m
j=1 λjpj,

where λj ∈ R+, and p0, p1, . . . , pm are mutually orthogonal nonzero projections in
B(H1) with

∑m
j=0 pj = 1. Therefore, since ∆ and T are continuous and coincide

on elements of the previous form, we deduce that ∆(x) = T (x), for every x ∈
S(B(H1)

+), which concludes the proof. �
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4. Surjective isometries between spaces of normalized positive
compact operators

Throughout this section, H3 and H4 will denote two separable infinite-dimen-
sional complex Hilbert spaces. Our goal here will consist in studying surjective
isometries ∆ : S(K(H3)

+) → S(K(H4)
+). We begin with a technical result.

Lemma 4.1. Let ∆ : BB(H1)+ → BB(H2)+ be a surjective isometry, where H1 and
H2 are complex Hilbert spaces. Suppose that ∆(Proj (B(H1))) = Proj (B(H2)).
Then there exists a surjective complex linear isometry (actually, a Jordan ∗-iso-
morphism) T : B(H1) → B(H2) such that one of the following statements holds:

(a) ∆(x) = T (x), for all x ∈ BB(H1)+;
(b) ∆(x) = 1− T (x), for all x ∈ BB(H1)+.

Furthermore, since B(H1) and B(H2) are factors, we can also deduce that T is a
∗-isomorphism or a ∗-anti-isomorphism.

Proof. We consider the real Banach spaces B(H1)sa and B(H2)sa as JB-algebras
in the sense employed in [33]. The proof is heavily based on a deep result due
to Mankiewicz [15, Theorem 5, Remark 7] asserting that every bijective isometry
between convex sets in normed linear spaces with nonempty interiors admits a
unique extension to a bijective affine isometry between the corresponding spaces.
Let us observe that BB(H1)+ ⊂ BB(H1)sa and BB(H2)+ ⊂ BB(H2)sa are convex sets
with nonempty interiors (just observe that the open unit ball in B(H)sa of radius
1/2 and center 1

2
1 is contained in BB(H)+). Thus, by Mankiewicz’s theorem, there

exists a bijective real linear isometry T : B(H1)sa → B(H2)sa and a z0 ∈ BB(H2)+

such that ∆(x) = T (x)+z0, for all x ∈ BB(H1)+ . We denote by the same symbol T
the bounded complex linear operator from B(H1) to B(H2) given by T (x+ iy) =
T (x) + iT (y) for all x, y ∈ B(H1)sa.

On the other hand, since, by hypothesis, ∆ preserves projections, we infer that
z0 is a projection and T (Proj (B(H1))) + z0 = ∆(Proj (B(H1))) = Proj (B(H2)).
The projections 0 and 1 are the unique projections in B(H1) (or in B(H2)) whose
distance to another projection is 0 or 1. If z0 = ∆(0) 6= 0,1, then there exists a
nontrivial projection q in B(H2) satisfying 0 < ‖∆(0)− q‖ < 1. This implies that

{0, 1} 3
∥∥0−∆−1(q)

∥∥ =
∥∥∆(0)− q

∥∥ ∈ (0, 1),

which is impossible. We have therefore proved that z0 = ∆(0) ∈ {0,1}. Similar
arguments show that ∆(1) = T (1) + z0 ∈ {0,1}. Applying the fact that ∆ is a
bijection, we deduce that precisely one of the following statements holds:

(a) ∆(0) = z0 = 0 and ∆(1) = 1;
(b) ∆(0) = z0 = 1 and ∆(1) = 0.

If z0 = ∆(0) = 0 and ∆(1) = T (1) + z0 = 1, then the mapping T : B(H1)sa →
B(H2)sa is a unital and surjective real linear isometry between JB-algebras.
Applying [33, Theorem 4], we deduce that T is a Jordan isomorphism. In particu-
lar, the complex linear extension T : B(H1) → B(H2) is a complex linear Jordan
∗-isomorphism and ∆(x) = T (x), for all x ∈ BB(H1)+ . We arrive at statement (a)
in our conclusion.
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If ∆(0) = z0 = 1 and ∆(1) = T (1) + z0 = 0, then we have T (1) = −1.
Therefore, −T : B(H1)sa → B(H2)sa is a unital and surjective real linear isometry.
The arguments in the previous case prove that the complex linear extension of−T ,
denoted by −T : B(H1) → B(H2), is a complex linear Jordan ∗-isomorphism and
∆(x) = 1− (−T (x)), for all x ∈ BB(H1)+ . We have therefore arrived at statement
(b) in our conclusion.

The last statement follows from Corollary 11 in [14]. �

Corollary 2.2 admits a strengthened version which was established in [22].

Theorem 4.2 ([22, Theorem 2.8]). Let H3 be a separable infinite-dimensional
complex Hilbert space. Then the identity

Sph+
K(H3)

(
Sph+

K(H3)
(a)

)
=

{
b ∈ S

(
K(H3)

+
)
:

sK(H3)(a) ≤ sK(H3)(b), and

1− rB(H3)(a) ≤ 1− rB(H3)(b)

}
holds for every a in the unit sphere of K(H3)

+.

We can now improve the conclusion of Corollary 2.2.

Proposition 4.3. Let H3 and H4 be separable complex Hilbert spaces. Let us
assume that H3 is infinite-dimensional. Let ∆ : S(K(H3)

+) → S(K(H4)
+) be a

surjective isometry. Then the following statements hold.

(a) The mapping ∆ preserves projections, that is, ∆(Proj (K(H3))
∗) =

Proj (K(H4))
∗, and the restricted mapping ∆|Proj (K(H3))∗ :

Proj (K(H3))
∗ → Proj (K(H4))

∗ is a surjective isometry and an order
automorphism. Furthermore,∆(p)∆(q) = 0 for every p, q ∈ Proj (K(H3))

∗

with pq = 0.
(b) For every finite family p1, . . . , pn of mutually orthogonal minimal projec-

tions in K(H3), and 1 = λ1 ≥ λ2, . . . , λn ≥ 0, we have

∆
( n∑

j=1

λjpj

)
=

n∑
j=1

λj∆(pj).

Proof. (a) The first part of the statement has been proved in Corollary 2.2. We
will show next that ∆ preserves the order between nonzero projections.

We claim that given p, e1 ∈ Proj (K(H3))
∗ with e1 minimal and e1 ⊥ p, we

have

∆(p+ e1) ≥ ∆(p). (4.1)

To prove the claim, let m0 ∈ N denote the rank of the projection ∆(p) ∈ K(H4).
Since H3 is infinite-dimensional, we can find a natural n with n > m0 and
mutually orthogonal minimal projections e2, . . . , en such that p + e1 ⊥ ej for
all j = 2, . . . , n.

We next apply Theorem 4.2 to the element a = p+
∑n

j=1
1
2
ej. Let us write qn =∑n

j=1 ej. Clearly, qn is a projection in K(H3) with qn ⊥ p, and since rB(H3)(a) =

p+
∑n

j=1 ej = p+ qn, we have

Sph+
K(H3)

(
Sph+

K(H3)
(a)

)
=

{
b ∈ S

(
K(H3)

+
)
:
sK(H3)(a) = p ≤ sK(H3)(b), and

1− p− qn ≤ 1− rB(H3)(b)

}
,
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=

{
b ∈ S

(
K(H3)

+
)
:
sK(H3)(a) = p ≤ sK(H3)(b), and

b ≤ p+ qn

}
= p+ {x ∈ BK(H3)+ : p ⊥ x ≤ qn} = p+ BqnK(H3)+qn ,

and the set BqnK(H3)+qn can be C∗-isometrically identified with BB(`n2 )
+ .

Clearly, the restriction of ∆ to Sph+
K(H3)

(Sph+
K(H3)

(a)) is a surjective isometry

from this set onto Sph+
K(H4)

(Sph+
K(H4)

(∆(a))). Similarly, by Theorem 4.2, we have

Sph+
K(H4)

(
Sph+

K(H4)

(
∆(a)

))
= sK(H4)

(
∆(a)

)
+ Bq̂K(H4)+q̂,

where q̂ = rB(H4)(∆(a)) − sK(H4)(∆(a)) ∈ B(H4) and the set Bq̂K(H4)+q̂ can be
C∗-isometrically identified with BB(H)+ , where H = q̂(H4) is a complex Hilbert
space whose dimension coincides with the rank of the projection q̂. Since every
translation x 7→ τz(x) = z + x is a surjective isometry, we can define a surjective
isometry ∆a : BB(`n2 )

+ → BB(H)+ making the following diagram commutative:

Actually, Bq̂K(H4)+q̂ can be identified with the set of the elements orthogonal to
sK(H4)(∆(a)) inside the set BrB(H4)

(∆(a))K(H4)+rB(H4)
(∆(a)).

Take a projection p + r in Sph+
K(H3)

(Sph+
K(H3)

(a)) (clearly, r can be any pro-

jection in K(H3) with r ≤ qn). We know from Corollary 2.2 that ∆(p + r) is a
projection in Sph+

K(H4)
(Sph+

K(H4)
(∆(a))), and consequently

∆a(r) = ∆(p+ r)− sK(H4)

(
∆(a)

)
must be a projection. We have therefore shown that the map ∆a above is a
surjective isometry mapping projections to projections.

We deduce from Lemma 4.1 that dim(H) = n, and by the same lemma there
exists a complex linear (unital) Jordan ∗-isomorphism

Ta : qnK(H3)qn ∼= B(`n2 ) → q̂K(H4)
+q̂ ∼= B(`n2 )

satisfying one of the following statements:

(1) ∆a(x) = Ta(x), for all x ∈ BqnK(H3)+qn ;
(2) ∆a(x) = 1q̂ − Ta(x), for all x ∈ BqnK(H3)+qn , where 1q̂ = rB(H4)(∆(a)) −

sK(H4)(∆(a)) is the unit of q̂K(H4)
+q̂ ∼= B(H).
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We claim that case (2) is impossible. Actually, if case (2) holds, then

∆(p) = sK(H4)

(
∆(a)

)
+∆a(0)

= sK(H4)

(
∆(a)

)
+
(
rB(H4)

(
∆(a)

)
− sK(H4)

(
∆(a)

))
− Ta(0)

= sK(H4)

(
∆(a)

)
+
(
rB(H4)

(
∆(a)

)
− sK(H4)

(
∆(a)

))
,

where (rB(H4)(∆(a)) − sK(H4)(∆(a))) and sK(H4)(∆(a)) are orthogonal, and the
rank of (rB(H4)(∆(a))− sK(H4)(∆(a))) is precisely the dimension of H which is n.
This shows that ∆(p) has rank greater than or equal to n + 1 > m0, which is
impossible because m0 is the rank of ∆(p).

Since case (1) holds, we have

∆(p+ e1) = sK(H4)

(
∆(a)

)
+ Ta(e1) ≥ sK(H4)

(
∆(a)

)
= ∆(p),

because Ta(e1) is a nonzero projection and Ta(e1) ⊥ sK(H4)(∆(a)). This proves
(4.1). We have also proved that

sK(H4)

(
∆(a)

)
= ∆(p) and ∆(p+ qn) = rB(H4)

(
∆(a)

)
.

Now, let p, q ∈ Proj (K(H3))
∗ with p ≤ q. In our context, we can find mutually

orthogonal minimal projections e1, . . . , em in K(H3) satisfying q = p +
∑m

j=1 ej.

Applying (4.1) in a finite number of steps, we get

∆(p) ≤ ∆(p+ e1) ≤ · · · ≤ ∆
(
p+

m∑
j=1

ej

)
= ∆(q).

Now take p, q ∈ Proj (K(H3))
∗ with pq = 0. Under these hypotheses, Lemma 3.1

assures that ∆(p)∆(q) = 0.
(b) Let us apply the arguments in the proof of (a) to the element a = p1 +∑n
j=2

1
2
pj. Let qn−1 =

∑n
j=2 pj and q̂ = ∆(qn−1) = rB(H4)(∆(a)) − sK(H4)(∆(a)).

We deduce from the above arguments the existence of a surjective isometry

∆a : Bqn−1K(H3)+qn−1
∼= BB(`n−1

2 )+ → Bq̂K(H4)+q̂
∼= BB(`n−1

2 )+

making the following diagram commutative:

Since, by (a), ∆|Proj (K(H3))∗ is an order automorphism, the reasonings in (a) and
Lemma 4.1 prove the existence of a complex linear (unital) Jordan ∗-isomorphism
Ta : B(`n−1

2 ) ∼= qn−1K(H3)qn−1 → B(`n−1
2 ) ∼= q̂K(H4)q̂ satisfying

∆a(x) = Ta(x), for all x ∈ BB(`n−1
2 )+

∼= Bqn−1K(H3)+qn−1
.
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Pick j ∈ {2, . . . , n}. Since ∆|Proj (K(H3))∗ is an order automorphism and pre-
serves orthogonality, the elements ∆(p1), ∆(pj), and ∆(p1 + pj) are nontrivial
projections in K(H3), ∆(p1) and ∆(pj) are minimal, ∆(p1) ⊥ ∆(pj), ∆(p1 + pj)
is a rank 2 projection, and ∆(p1 + pj) ≥ ∆(pj). We also know that pj lies in
Bqn−1K(H3)+qn−1

, Ta(pj) is a minimal projection, Ta(pj) ⊥ ∆(p1), and ∆(p1+pj) =
∆(p1) + Ta(pj). By applying that ∆(p1) ⊥ ∆(pj), we get

∆(pj) = ∆(p1 + pj)∆(pj) =
(
∆(p1) + Ta(pj)

)
∆(pj) = Ta(pj)∆(pj).

The minimality of Ta(pj) and ∆(pj) assures that Ta(pj) = ∆(pj).
Finally, given 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, the element

∑n
j=1 λjpj = p1 +∑n

j=2 λjpj lies in the set Sph+
K(H3)

(Sph+
K(H3)

(a)) and hence

∆
( n∑

j=1

λjpj

)
= ∆(p1) + ∆a

( n∑
j=2

λjpj

)
= ∆(p1) + Ta

( n∑
j=2

λjpj

)
= ∆(p1) +

n∑
j=2

λjTa(pj) = ∆(p1) +
n∑

j=2

λj∆(pj),

which finishes the proof of (b). �

Our next corollary is a first consequence of Proposition 4.3.

Corollary 4.4. Let H3 and H4 be separable complex Hilbert spaces. Let us assume
that H3 is infinite-dimensional. If T : K(H3) → K(H4) is a bounded (com-
plex) linear mapping such that T (S(K(H3)

+)) = S(K(H4)
+) and T |S(K(H3)+) :

S(K(H3)
+) → S(K(H4)

+) is a surjective isometry, then T is a ∗-isomorphism or
a ∗-anti-isomorphism.

Proof. Let T : K(H3) → K(H4) be a bounded linear map satisfying the hypoth-
esis of the corollary. We observe that T must be bijective by hypothesis.

We observe that T (Proj (K(H3))) = Proj (K(H4)) (see Corollary 2.2), and
by Proposition 4.3, T also preserves the order among projections. In particular,
T (p)T (q) = 0 for every p, q ∈ Proj (K(H3))

∗ with pq = 0 (just observe that the
sum of two projections is a projection if and only if they are orthogonal), and thus
T (a2) = T (a)2 and T (a)∗ = T (a), whenever a is a finite real linear combination
of mutually orthogonal minimal projections in K(H3). The continuity of T and
the norm density in K(H3)sa of elements which are finite real linear combinations
of mutually orthogonal minimal projections in K(H3), imply that T is a Jordan
∗-isomorphism. The rest is clear from [14, Corollary 11] because B(H3) is a factor.

�

In the main theorem of this section, we extend surjective isometries of the form
∆ : S(K(H3)

+) → S(K(H4)
+). In the proof, we will employ a technique based

on the study of the linearity of “physical states” on K(H) developed by Aarnes
[1]. We recall that a physical state or a quasistate on a C∗-algebra A is a function
ρ : Asa → R whose restriction to each singly generated subalgebra of Asa is a
positive linear functional and

sup
{
ρ(a) : a ∈ BA+

}
= 1.
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As remarked by Aarnes [1, p. 603], “It is far from evident that a physical state on
A must be (real) linear on Asa”; however, under a favorable hypothesis, linearity
is automatic and not an extra assumption.

Theorem 4.5. Let H3 and H4 be separable complex Hilbert spaces. Let us assume
that H3 is infinite-dimensional. Let ∆ : S(K(H3)

+) → S(K(H4)
+) be a surjective

isometry. Then there exists a surjective complex linear isometry T : K(H3) →
K(H4) satisfying T (x) = ∆(x) for all x ∈ S(K(H3)

+). We can further conclude
that T is a ∗-isomorphism or a ∗-anti-isomorphism.

Proof. Let a be an element in S(K(H3)
+), and let us consider the spectral reso-

lution of a in the form a =
∑∞

n=1 λnpn, where (λn)n is a decreasing sequence in
R+

0 converging to zero, λ1 = 1, and {pn : n ∈ N} is a family of mutually orthogo-
nal minimal projections in K(H3). Applying Proposition 4.3(a), we deduce that
{∆(pn) : n ∈ N} is a family of mutually orthogonal minimal projections inK(H4).
Keeping in mind that orthogonal elements are geometrically M -orthogonal, it can
be easily deduced that the series

∑∞
n=1 λn∆(pn) is norm-convergent. Furthermore,

since by Proposition 4.3(b) and the hypothesis we have∥∥∥∆(a)−
m∑

n=1

λn∆(pn)
∥∥∥ =

∥∥∥∆(a)−∆
( m∑
n=1

λnpn

)∥∥∥ =
∥∥∥a− m∑

n=1

λnpn

∥∥∥ = λm+1,

it follows that

∆(a) = ∆
( ∞∑
n=1

λnpn

)
=

∞∑
n=1

λn∆(pn). (4.2)

Combining (4.2) and Proposition 4.3(a), we can see that

a ⊥ b in S
(
K(`2)

+
)
⇒ ∆(a) ⊥ ∆(b). (4.3)

Every element b in K(H3)sa can be written uniquely in the form b = b+ − b−,
where b+, b− are orthogonal positive elements in K(H3). Having this property in
mind, we define a mapping T : K(H3)sa → K(H4)sa given by

T (b) := ‖b+‖∆
( b+

‖b+‖

)
− ‖b−‖∆

( b−

‖b−‖

)
if ‖b+‖‖b−‖ 6= 0,

T (b) := ‖b+‖∆
( b+

‖b+‖

)
if ‖b+‖ 6= 0, b− = 0,

T (b) := ‖b−‖∆
( b−

‖b−‖

)
if ‖b−‖ 6= 0, b+ = 0, and T (0) = 0.

It follows from definition that∥∥T (b)∥∥ ≤ ‖b+‖+ ‖b−‖ ≤ 2‖b‖. (4.4)

For each positive functional φ ∈ B(K(H4)∗)+ , we set Tφ := φ ◦ T : K(H3)sa → R,
Tφ(x) = φ(T (x)). We claim that Tφ is a positive multiple of a physical state.
Namely, it follows from (4.4) that sup{|Tφ(a)| : a ∈ BA+} ≤ 2. Therefore, we
only have to show that the restriction of Tφ to each singly generated subalgebra
of K(H3)sa is linear.
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Let b be an element in K(H3)sa. We will distinguish two cases.
Case (a): b has finite spectrum. In this case, b is a finite rank operator and

b =
∑m

n=1 µnpn, where µ1, . . . , µm ∈ R\{0}, and {pn : n = 1, . . . ,m} is a family
of mutually orthogonal minimal projections in K(H3). Elements x, y in the sub-
algebra of K(H3)sa generated by b can be written in the form x =

∑m
n=1 x(n)pn,

and y =
∑m

n=1 y(n)pn, where x(n), y(n) ∈ R. Let us set Θ+
x = {n ∈ {1, . . . ,m} :

x(n) ≥ 0} and Θ−
x = {n ∈ {1, . . . ,m} : x(n) < 0}. Suppose that x+, x− 6= 0. By

applying the definition of T , we obtain

T (x) = ‖x+‖∆
( x+

‖x+‖

)
− ‖x−‖∆

( x−

‖x−‖

)
= ‖x+‖∆

( ∑
n∈Θ+

x

x(n)

‖x+‖
pn

)
− ‖x−‖∆

( ∑
n∈Θ−

x

−x(n)

‖x−‖
pn

)
= ‖x+‖

∑
n∈Θ+

x

x(n)

‖x+‖
∆(pn)− ‖x−‖

∑
n∈Θ−

x

−x(n)

‖x−‖
∆(pn) =

m∑
n=1

x(n)∆(pn),

where the penultimate equality follows from Proposition 4.3(b). In the remaining
cases (i.e., ‖x+‖‖x−‖ = 0), we also have T (x) =

∑m
n=1 x(n)∆(pn). Since similar

conclusions hold for y, x+ y and αx with α ∈ R, we deduce that

T (x+ y) =
m∑

n=1

(
x(n) + y(n)

)
∆(pn) =

m∑
n=1

x(n)∆(pn) +
m∑

n=1

y(n)∆(pn)

= T (x) + T (y)

and

T (αx) =
m∑

n=1

(αx)(n)∆(pn) = α
m∑

n=1

x(n)∆(pn) = αT (x),

which shows that T is linear on the subalgebra generated by b.
Case (b): b has infinite spectrum. In this case, b =

∑∞
n=1 λnpn, where (λn)n is

a decreasing sequence in R\{0} converging to zero and {pn : n ∈ N} is a family
of mutually orthogonal minimal projections in K(H3). Elements x and y in the
subalgebra ofK(H3)sa generated by b can be written in the form x =

∑∞
n=1 x(n)pn

and y =
∑∞

n=1 y(n)pn, where (x(n)) and (y(n)) are null sequences in R. Keeping
in mind the notation employed in the previous paragraph, we deduce that if
x+, x− 6= 0, then we have

T (x) = ‖x+‖∆
( x+

‖x+‖

)
− ‖x−‖∆

( x−

‖x−‖

)
= ‖x+‖∆

( ∑
n∈Θ+

x

x(n)

‖x+‖
pn

)
− ‖x−‖∆

( ∑
n∈Θ−

x

−x(n)

‖x−‖
pn

)
= (by (4.2))

= ‖x+‖
∑
n∈Θ+

x

x(n)

‖x+‖
∆(pn)− ‖x−‖

∑
n∈Θ−

x

−x(n)

‖x−‖
∆(pn) =

∞∑
n=1

x(n)∆(pn).
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In the remaining cases, the identity

T (x) =
∞∑
n=1

x(n)∆(pn) (4.5)

also holds. It is therefore clear that T is linear on the subalgebra generated by b.
We have therefore proved that Tφ : K(H3)sa → R is a positive multiple of a

physical state for every φ ∈ B(K(H4)∗)+ . Applying [1, Corollary 2] to the complex
linear extension of Tφ from K(H3) to C, it follows that

φ
(
T (x+ y)

)
= Tφ(x+ y) = Tφ(x) + Tφ(y) = φ

(
T (x) + T (y)

)
and

φ
(
T (αx)

)
= Tφ(αx) = αTφ(x) = φ

(
αT (x)

)
,

for all x, y ∈ K(H3)sa, α ∈ R, and φ ∈ B(K(H4)∗)+ . Since functionals in B(K(H4)∗)+

separate the points in K(H4)sa, we deduce that T : K(H3)sa → K(H4)sa is real
linear. We denote by the same symbol T the complex linear extension of T from
K(H3) to K(H4). We have thus obtained a complex linear map T : K(H3) →
K(H4) satisfying T (a) = ∆(a) for all a ∈ S(K(H3)

+) (cf. (4.2) and (4.5)). Corol-
lary 4.4 assures that T : K(H3) → K(H4) is an isometric ∗-isomorphism or
∗-anti-isomorphism. �
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