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Abstract. We consider operator-valued Bochner–Riesz means with weight
function h2

κ under a finite reflection group for the Dunkl transform. We estab-
lish the maximal inequality of the weighted Hardy–Littlewood maximal func-
tion, and we apply it to the maximal inequality of operator-valued Bochner–

Riesz means Bδ
R(h

2
κ; f)(x) for δ > λκ := d−1

2 +
∑d

j=1 κj . Furthermore, we also
obtain the corresponding pointwise convergence theorem.

1. Introduction

Given κ = (κ1, . . . , κd) ∈ [0,∞)d ⊂ Rd, let

hκ(x) :=
d∏

j=1

|xj|κj , x = (x1, x2, . . . , xd) ∈ Rd. (1.1)

For Borel sets E ⊂ Rd, we write

measκ(E) :=

∫
E

h2
κ(x) dx.

For 1 ≤ p < ∞, the operator-valued Lp-space is defined with respect to the
measure h2

κ(x) dx on Rd, and ‖ · ‖κ,p denotes the norm of Lp(Rd;h2
κ;Lp(M)) (see
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[19]). Let ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and the Euclidean inner
product on Rd, respectively. Put

c−1
κ =

∫
Rd

h2
κ(y)e

− ‖y‖2
2 dy

and

Eκ(−ix, y) = Vκ[e
−i〈x,·〉](y),

where Vκ : C(Rd) → C(Rd) is the Dunkl intertwining operator associated with

h2
κ(x) and the reflection group Zd

2 . The Dunkl transform f̂ of f ∈ L1(Rd;h2
κ;

L1(M)) is defined by

f̂(x) = cκ

∫
Rd

f(y)Eκ(−ix, y)h2
κ(y) dy, x ∈ Rd. (1.2)

Note that V0 is the identity operator on Rd. In this case, f̂ is the classical Fourier
transform. The Dunkl transform enjoys many properties similar to those of the
classical Fourier transform (see [3], [23], [24]).

Let M be a von Neumann algebra equipped with a normal semifinite faithful
trace τ . For f ∈ L1(Rd;h2

κ;L1(M)), we define

fr,κ(x) =

∫
Rd f(y)τxχBr(y)h

2
κ(y) dy∫

Br(x)
h2
κ(y) dy

.

We say that fr,κ is weak type (1, 1) if there is a positive constant C1 such that for
any f ∈ L1(Rd;h2

κ;L1(M)) and any λ > 0, there is a projection e ∈ P (L∞(Rd) ⊗
M) satisfying

∀r > 0, ‖efr,κe‖∞ ≤ λ, and τ ⊗
∫

e⊥ ≤ C1‖f‖κ,1
λ

.

Here P (A) denotes the set of all projections in A, A = L∞(Rd) ⊗ M. Also, we
say that fr,κ is of type (p, p) (p may be equal to ∞) if there is a positive constant
C2 such that for any f ∈ Lp(Rd;h2

κ;Lp(M)),∥∥sup
r>0

+fr,κ
∥∥
κ,p

≤ C2‖f‖κ,p.

We first consider the weak (1, 1)-boundedness and (p, p)-boundedness of fr,κ.
In the scalar-valued case, that is, replacing M by complex numbers C, C1, and C2

reduced to be the weak (1, 1)-boundedness and (p, p)-boundedness of the weighted
Hardy–Littlewood maximal function

Mf(x) = sup
r>0

∫
Rd |f(y)|τxχBr(y)h

2
κ(y) dy∫

Br(x)
h2
κ(y) dy

, x ∈ Rd.

However, this maximal function seems to be unavailable for operator-valued func-
tions since we cannot compare any two matrices or operators, which is a source
of difficulty in noncommutative analysis. Junge [13], [14] successfully overcame
this obstacle by describing the interaction with operator space theory (see Sec-
tion 2 for the definition of maximal function in noncommutative analysis). In fact,
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Junge [13] formulated a noncommutative version of Doob’s maximal inequal-
ity using Pisier’s theory (see [18]) of vector-valued noncommutative Lp-space.
Later, Junge and Xu [14] developed a fairly complex noncommutative version
of Marcinkiewicz’s interpolation theorem. As a consequence, they obtained the
noncommutative Dunford–Schwartz maximal ergodic inequality and the non-
commutative Stein’s maximal ergodic inequality (see [14]). Based on the pre-
ceding statement, Mei [17] studied the operator-valued Hardy–Littlewood max-
imal inequality in Rd. He made use of the geometric property of Rd to reduce
the Hardy–Littlewood maximal inequality to several operator-valued martingale
inequalities, which can be viewed as Junge’s noncommutative version of Doob’s
maximal inequality, or Cuculescu’s weak type (1, 1) inequality for noncommu-
tative martingales. Chen, Xu, and Yin [2] exploited Mei’s inequality to prove
maximal inequalities associated with integrable rapidly decreasing functions. (We
refer the reader to [6]–[9], and [12] for more information on the development of
noncommutative harmonic analysis. We also refer to [1], [10], [11], [15], and [16],
which consider the boundedness of the associated operators.)

The operator-valued Bochner–Riesz means Bδ
R is defined by

Bδ
R(h

2
κ; f)(x) = cκ

∫
‖y‖≤R

(
1− ‖y‖2

R2

)δ

f̂(y)Eκ(ix, y)h
2
κ(y) dy, x ∈ Rd,

where R > 0, δ > −1, and f ∈ L1(Rd;h2
κ;L1(M)). The weak boundedness of

the operator-valued Bochner–Riesz means Bδ
R for the classical Fourier transform

was studied in [2]. In this article, we consider the weak boundedness of operator-
valued Bochner–Riesz means Bδ

R for the Dunkl transform, which has applications
in physics for the analysis of quantum many-body systems of Calogero–Moser–
Sutherland type. From the mathematical analysis point of view, its importance
lies in that it generalizes the classical Fourier transform, and plays a similar role
as the Fourier transform in classical Fourier analysis.

This paper is organized as follows. In Section 2, we collect some prelimi-
naries which are needed in this article. In Section 3, we obtain the weak type
(1, 1)-boundedness and type (p, p)-boundedness of operator-valued weighted
Hardy–Littlewood maximal functions. The result can be stated as follows.

Theorem 1.1.

(i) For any f ∈ L1(Rd;h2
κ;L1(M)), and λ > 0, there is a projection e ∈

P (L∞(Rd) ⊗ M) satisfying

‖efr,κe‖∞ ≤ λ for r > 0, and τ ⊗
∫

e⊥ ≤ C‖f‖κ,1
λ

.

(ii) We have that ‖ sup+
r>0 fr,κ‖k,p ≤ Cp‖f‖κ,p for any f ∈ Lp(Rd;h2

κ;Lp(M)),
where p > 1.

In Section 4, we show the weak type (1, 1)-boundedness and type (p, p)-
boundedness of operator-valued Bochner–Riesz means Bδ

R(h
2
κ; f)(x) for δ > λκ :=

d−1
2

+
∑d

j=1 κj, and we obtain the following result.
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Theorem 1.2.

(i) For δ > λκ, f ∈ L1(Rd;h2
κ;L1(M)), and λ > 0, there exists a projection

e ∈ P (L∞(Rd) ⊗ M) satisfying∥∥eBδ
R(h

2
κ; f)e

∥∥
∞ ≤ λ for R > 0, and τ ⊗

∫
e⊥ ≤ C‖f‖κ,1

λ
.

(ii) We have that ‖ sup+
R>0B

δ
R(h

2
κ; f)‖κ,p ≤ Cp‖f‖κ,p for any f ∈ Lp(Rd;h2

κ;
Lp(M)), where p > 1.

In Section 5, we show that Bδ
R(h

2
κ; f)

b.a.u.−−−→ f as R → ∞ for 1 ≤ p < ∞ and
f ∈ Lp(Rd;h2

κ;Lp(M)) for δ > λκ. The main result is the following.

Theorem 1.3. Let δ > λκ. For any f ∈ Lp(Rd;h2
κ;Lp(M)), the following state-

ments hold:

(i) for 1 ≤ p ≤ 2, Bδ
R(h

2
κ; f) → f (b.a.u.) as R → ∞;

(ii) for 2 ≤ p < ∞, Bδ
R(h

2
κ; f) → f (a.u.) as R → ∞.

Throughout the article we use the same letter C to denote various positive
constants which may change at each occurrence. Variables indicating the depen-
dency of constants C will often be specified in parentheses. We use the notation
X . Y or Y & X for nonnegative quantities X and Y to mean X ≤ CY for
some inessential constant C > 0. Similarly, we use the notation X ∼ Y if both
X . Y and Y . X hold.

2. Preliminaries

Let M be a von Neumann algebra equipped with a normal semifinite faithful
trace τ . Denote the set of all positive x in M by S+

M such that τ(supp(x)) < ∞,
where supp(x) denotes the support of x, that is, the least projection e ∈ M such
that ex = x (or xe = x). Let SM be the linear span of S+

M. We define

‖x‖p =
(
τ
(
|x|p

)) 1
p , ∀x ∈ SM,

where |x| = (x∗x)
1
2 . The completion of (SM, ‖ · ‖p) is denoted by Lp(M), which

is the usual noncommutative Lp-space associated with (M, τ). For convenience,
we usually set L∞(M) = M equipped with the operator norm ‖ · ‖M.

For 1 ≤ p ≤ ∞, we define Lp(M, `∞) to be the space of all sequences x =
(xn)n≥1 in Lp(M) which admit a factorization of the following form. There exist
a, b ∈ L2p(M) and a bounded sequence y = (yn) ⊂ L∞(M) such that

xn = aynb, n ≥ 1.

The norm of x in Lp(M, `∞) is given by

‖x‖Lp(M,`∞) = inf
{
‖a‖2p sup

n
‖yn‖∞‖b‖2p

}
,

where the infimum is taken over all factorizations of x as above.
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It is easy to see that Lp(M, `∞) is a Banach space with the norm ‖ · ‖Lp(M,`∞),
and a positive sequence x = (xn) belongs to Lp(M, `∞) if and only if there is
a ∈ L+

p (M) such that xn ≤ a for all n. Moreover, in this case,

‖x‖Lp(M,`∞) = inf
{
‖a‖p : a ∈ L+

p (M) such that xn ≤ a,∀n ≥ 1
}
.

The norm of x in Lp(M, `∞) is conventionally denoted by ‖ sup+
n≥1 xn‖p. Note

that ‖ sup+
n≥1 xn‖p is just a notation since supn≥1 xn does not make any sense in

the noncommutative setting. We use this notation only for convenience.
The definition of Lp(M, `∞) can be extended to an arbitrary index set I. Then

Lp(M, `∞(I)) can be defined similarly as before. More precisely, Lp(M, `∞(I))
consists of all families (xi)i∈I in Lp(M) which can be factorized as xi = ayib with
a, b ∈ L2p(M) and a bounded family (yi)i∈I ⊂ L∞(M). The norm of (xi)i∈I in
Lp(M, `∞(I)) is defined as

inf
{
‖a‖2p sup

i
‖yi‖∞‖b‖2p

}
,

with the infimum running over all factorizations as above. As before, this norm
is also denoted by ‖ sup+

i∈I xi‖p.
One can easily check that for any index set I and 1 ≤ p ≤ ∞, a family (xi)i∈I

in Lp(M) belongs to Lp(M, `∞(I)) if and only if

sup
J⊂I,J is a finite set

∥∥sup
i∈J

+xi

∥∥
p
< ∞.

If this is the case, then we have∥∥sup
i∈I

+xi

∥∥
p
= sup

J⊂I,J is a finite set

∥∥sup
i∈J

+xi

∥∥
p
.

We will present some necessary materials related to the Dunkl transform asso-
ciated with the reflection group Zd

2 and the weight h2
κ(x) given in (1.1). Our main

reference is [23], where materials on Dunkl analysis associated with general finite
reflection groups can also be found.

Recall that κ = (κ1, . . . , κd), κ1, . . . , κd ≥ 0 and the weight h2
κ(x) in (1.1).

For 1 ≤ j ≤ d, let σj denote the reflection with respect to the coordinate plane
xj = 0, that is,

xσj = (x1, . . . , xj−1,−xj, xj+1, . . . , xd), x ∈ Rd.

Let Zd
2 denote the reflection group generated by the reflections σ1, . . . , σd. Clearly,

Zd
2 is an Abelian group, and the weight hκ(x) is invariant under Z

d
2 .

Define a family of difference operators Ej by

Ejf(x) :=
f(x)− f(xσj)

xj

, x ∈ Rd, j = 1, . . . , d.

Let ∂j denote the partial derivative with respect to the jth coordinate xj. The
Dunkl operators Dk,j, j = 1, . . . , d, with respect to the weight h2

κ(x) and the
group Zd

2 are defined by

Dκ,j := ∂j + κjEj, j = 1, . . . , d.
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A remarkable property of these operators is that they mutually commute. We
denote by P d

n the space of homogeneous polynomials of degree n in d variables,
and we denote by Π := Π(Rd) the C-algebra of polynomial functions on Rd.
A fundamental result in Dunkl theory states that there exists a linear operator
Vk : Π

d → Πd determined uniquely by

VκP
d
n ⊂ P d

n , Vκ(1) = 1, and Dκ,iVκ = Vκ∂i, 1 ≤ i ≤ d.

Such an operator is called the Dunkl intertwining operator.
For the weight function h2

κ(x) and the reflection group Zd
2 , the following very

useful explicit formula for Vκ was obtained in [25, Theorem 4.3]:

Vκf(x) = cκ

∫
[−1,1]d

f(x1t1, . . . , xdtd)
d∏

j=1

(1 + tj)(1− t2j)
κj−1 dtj, (2.1)

where ck =
∏d

j=1

Γ(κj+
1
2
)√

πΓ(κj)
, and if any κj is equal to zero, then the formula holds

under the limits

lim
µ→0

cµ

∫ 1

−1

g(t)(1− t2)µ−1 dt =
g(1) + g(−1)

2
.

In particular, the formula (2.1) extends Vκ to a positive operator on the space of
continuous functions on Rd. It should be pointed out that such an explicit formula
for Vκ is available only in the case of Zd

2 . In the case of a general reflection group,
a very deep result on the operator Vκ is due to Rösler [20, Theorem 2.1], who,
among other things, proved that Vκ extends to a positive operator on C(Rd). In
fact, the Dunkl transform associated with Zd

2 and κ is defined by (1.2) with

Eκ(−ix, y) := Vκ[e
−i〈x,·〉](y), x, y ∈ Rd.

For necessity, we recall some definitions. Given y ∈ Rd, the generalized trans-
lation operator f → τyf is defined on L2(Rd;h2

κ;L2(M)) by

τ̂yf(ξ) = Eκ(−iy, ξ)f̂(ξ), ξ ∈ Rd.

For f ∈ L2(Rd;h2
κ;L2(M)) and g ∈ L2(Rd;h2

κ), the convolution is defined by

f ∗κ g(x) =
∫
Rd

f(y)τyg
∨(y)h2

κ(y) dy, x ∈ Rd,

where g∨(y) = g(−y). The following is cited from [21, Theorem 2.1].

Proposition 2.1. If f(x) = f0(‖x‖) is a continuous radial function in L2(Rd;h2
κ),

then for almost-everywhere y ∈ Rd and almost-everywhere x ∈ Rd,

τyf(x) = Vκ

[
f0
(√

‖x‖2 + ‖y‖2 − 2〈x, ·〉
)]
(y).

Let Aκ(Rd;L1(M)) = {f ∈ L1(Rd;h2
κ;L1(M)) : f̂ ∈ L1(Rd;h2

κ;L1(M))}.
We have the following properties whose proof is similar to the argument of [23,
Section 3].

Proposition 2.2. Assume that f ∈ Aκ(Rd;L1(M)) and that g ∈ L1(Rd;h2
κ) is

bounded. Then
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(i) the following inverse formula holds:

f(x) = cκ

∫
Rd

f̂(y)Eκ(ix, y)h
2
κ(y) dy;

(ii)
∫
Rd τyf(x)g(x)h

2
κ(x) dx =

∫
Rd f(x)τ−yg(x)h

2
κ(x) dx;

(iii) τyf(x) = τ−xf(−y).

Proposition 2.3.

(i) Let f ∈ L1(Rd;h2
κ) be radial and nonnegative. Then τyf ≥ 0, τyf ∈

L1(Rd;h2
κ) and∫

Rd

τyf(x)h
2
κ(x) dx =

∫
Rd

f(x)h2
κ(x) dx.

(ii) The generalized translation operator τy, initially defined on the intersec-
tion of L1 and L∞, can be extended to all radial functions in Lp(Rd;h2

κ),
1 ≤ p ≤ 2, and τy : Lp

rad(Rd;h2
κ) → Lp(Rd;h2

κ) is a bounded operator,
where Lp

rad(Rd;h2
κ) denotes the space of all radial functions in Lp(Rd;h2

κ).
(iii) For any f ∈ L1

rad(Rd;h2
κ;L1(M)),∫

Rd

τyf(x)h
2
κ(x) dx =

∫
Rd

f(x)h2
κ(x) dx.

We see from Proposition 2.3 that the operator τy can be extended to a bounded
operator on Lp

rad(Rd;h2
κ) (1 ≤ p ≤ ∞). Also, it follows that the definition of

f ∗κ g can be extended to all g ∈ Lp
rad(Rd;h2

κ) and f ∈ Lp′(Rd;h2
κ;Lp′(M)) with

1 ≤ p ≤ 2, and 1
p
+ 1

p′
= 1. The generalized convolution satisfies the following

basic property:

f̂ ∗κ g(ξ) = f̂(ξ)ĝ(ξ). (2.2)

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Before this, we recall Yeadon’s weak
type (1, 1) maximal ergodic inequality for semigroups, which is stated as follows.

Lemma 3.1. Let (Tt)t≥0 be a semigroup of linear maps on M. Each (Tt) for
t ≥ 0 satisfies the following properties:

(i) (Tt) is a contraction on M : ‖Tx‖∞ ≤ ‖x‖∞ for all x ∈ M;
(ii) (Tt) is positive: Tx ≥ 0 if x ≥ 0;
(iii) τ ◦ T ≤ τ : τ(T (x)) ≤ τ(x) for all x ∈ L1 ∩M+.

Let x ∈ L+
1 (M). Then for any λ > 0, there exists a projection e ∈ M such that

eMt(x)e ≤ λ, for all t > 0, and τ(e⊥) ≤ ‖x‖1
λ

,

where Mt is defined as

Mt =
1

t

∫ t

0

T s ds, ∀t ≥ 0.

Junge and Xu [14] proved the following quite complicated noncommutative
Marcinkiewicz’s theorem for Lp(M; `∞).
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Lemma 3.2. Let 1 ≤ p0 < p1 ≤ ∞, and let S = (Sn)n≥0 be a sequence of maps
from L+

p0
(M) + L+

p1
(M) into L+

0 (M). Assume that S is subadditive in the sense
that Sn(x + y) ≤ Sn(x) + Sn(y) for all n ∈ N. If S is of weak type (p0, p0) with
constant C0 and of weak type (p1, p1) with constant C1, then for any p0 < p < p1,
S is of type (p, p) with constant Cp satisfying

Cp ≤ CC1−θ
0 Cθ

1

( 1

p0
− 1

p

)−2

,

where θ is determined by 1
p
= 1−θ

p0
+ θ

p1
and C is a universal constant.

With this interpolation result, Junge and Xu proved that there exists a constant
Cp such that ∥∥sup

t>0

+Mt(x)
∥∥
p
≤ Cp‖x‖p, ∀x ∈ Lp(M). (3.1)

Moreover, if additionally each Tt satisfies:

(iv) Tt is symmetric relative to τ : τ(T (y)∗x) = τ(y∗Tx) for all x, y in the
intersection L2(M) ∩M, then∥∥sup

t>0

+Tt(x)
∥∥
p
≤ Cp‖x‖p, ∀x ∈ Lp(M),

with Cp a constant depending only on p.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (i) For any f ∈ L1(Rd;h2
κ;L1(M)). By decomposing f =

f1 − f2 + i(f3 − f4) with positive fj (j = 1, 2, 3, 4), we can assume that f is
positive. Then we can define

fr,κ(x) =

∫
Rd f(y)τxχBr(y)h

2
κ(y) dy∫

Br(x)
h2
κ(y) dy

,

where Br(x) := {y ∈ Rd : ‖x− y‖ ≤ r} denotes the ball centered at x ∈ Rd with
radius r > 0 and Vr(x) := measκ(Br(x)) =

∫
Br(x)

h2
κ(z) dz, r > 0, x ∈ Rd. Let

σ = d + 2|κ| + 1, and define for j ≥ 0, Br,j = {x : 2−j−1r ≤ ‖x‖ ≤ 2−jr}, where
|κ| =

∑d
j=1 κj, κ = (κ1, . . . , κd). First we recall the Poisson kernel

Pε(x) = cd,κ
ε

(ε2 + ‖x‖2)σ
2

,

where cd,κ = 2|κ|+
d
2
Γ(|κ|+ d+1

2
)√

π
. We claim that f ∗κ Pt is weak (1, 1). By using the

Dunkl transforms of the Poisson kernel and the heat kernel, we deduce that

f ∗κ Pt(x) =
t√
2π

∫ ∞

0

(f ∗κ qs)(x)e−
t2

2s s−
3
2 ds,

where qt(x) = (2t)−(|κ|+ d
2
)e−

‖x‖2
4t . Recall that the heat-diffusion semigroup on Rd

is given by T tg = g ∗κ qt, where g is a Schwartz function on Rd. If we consider
the heat-diffusion semigroup on L∞(Rd) ⊗ M given by St = T t ⊗ idM, then it
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is obvious that (St)t≥0 satisfies Lemma 3.1(i)–(iii). Hence, for any λ > 0, there
exists a projection e ∈ P (A) such that

eMt(f)e ≤ λ, ∀t > 0, and τ ⊗
∫

e⊥ ≤ ‖f‖κ,1
λ

,

where

Mt(f)(x) =
1

t

∫ t

0

Ss(f)(x) ds =
1

t

∫ t

0

(f ∗κ qs)(x) ds.

On the other hand, let

φ(s) =
1√
2π

e−
1
2s s−

3
2 .

Thus by integration by parts,

f ∗κ Pt(x) = t−2

∫ ∞

0

φ
( s

t2

)
Ss(f)(x) ds

= −t−2

∫ ∞

0

(∫ s

0

St(f)(x) dt
)
dφ

( s

t2

)
= −t−2

∫ ∞

0

(1
s

∫ s

0

St(f)(x) dt
)
s dφ

( s

t2

)
= −t−2

∫ ∞

0

Msf(x)sφ
′
( s

t2

)
t−2 ds

= −
∫ ∞

0

Mt2sf(x)sφ
′(s) ds.

A straightforward calculation shows that ‖sφ′(s)‖1 < ∞. Hence, by Lemma 3.1,
for any λ > 0 there exists a projection e ∈ L∞(Rd) ⊗ M such that

sup
t>0

‖ef ∗κ Pte‖∞ ≤
∥∥sφ′(s)

∥∥
1
sup
t>0

∥∥eMt2s(f)e
∥∥
∞ . λ

and

τ ⊗
∫

e⊥ .
‖f‖κ,1

λ
.

Now it suffices to prove that fr,κ can be controlled by the Poisson integral. Note
that

χBr,j
(y) = (2−jr)σ · (2−jr)−σχBr,j

(y)

≤ C(2−jr)σ−1 2−jr

((2−jr)2 + ‖y‖2)σ
2

χBr,j
(y)

≤ C(2−jr)σ−1P2−jr(y), (3.2)

where C is a constant independent of r and j. Since χBr and Pε are both bounded
integrable radial functions, due to (3.2), it follows from Proposition 2.3 that

τxχBr,j
(y) ≤ C(2−jr)σ−1τxP2−jr(y).
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This shows that for any positive integer m,∫
Rd

f(y)
m∑
j=0

τxχBr,j
(y)h2

κ(y) dy ≤ C
∞∑
j=0

(2−jr)σ−1

∫
Rd

f(y)τxP2−jr(y)h
2
κ(y) dy

= C

∞∑
j=0

(2−jr)σ−1f ∗κ P2−jr(x).

Note that
∑m

j=0 χBr,j
(y) converges to χBr(y) in L1(Rd;h2

κ). Then the bounded-

ness of τx on L1
rad(Rd;h2

κ) shows that
∑m

j=0 τxχBr,j
(y) converges to τxχBr(y) in

L1
rad(Rd;h2

κ). By passing to a subsequence, if necessary, we can assume that∑m
j=0 χBr,j

(y) converges to χBr(y) for almost every y. Thus all the functions

involved are uniformly bounded by τxχBr(y). This shows that
∑m

j=0 τxχBr,j
(y)

converges to τxχBr(y) in Lp′

rad(Rd;h2
κ). Consequently, we have

lim
m→∞

∫
Rd

f(y)
m∑
j=0

τxχBr,j
(y)h2

κ(y) dy =

∫
Rd

f(y)τxχBr(y)h
2
κ(y) dy.

Thus we obtain that

fr,κ ≤ C
∞∑
j=0

(2−j)σ−1f ∗κ P2−jr(x).

However, we have shown that for any λ > 0, there exists a projection

e ∈ L∞(Rd) ⊗ M

such that, for any r > 0,

‖ef ∗κ Pre‖∞ . λ and τ ⊗
∫

e⊥ .
‖f‖κ,1

λ
.

Therefore, we infer that

sup
r>0

‖efr,κe‖∞ ≤ C

∞∑
j=0

(2−j)σ−1 sup
r>0

‖ef ∗κ P2−jre‖∞ . λ

and

τ ⊗
∫

e⊥ .
‖f‖κ,1

λ
.

(ii) If instead of using Yeadon’s inequality we use Junge and Xu’s inequality
(3.1), then, in the same spirit, we can deduce that for 1 < p ≤ ∞, there exists an
absolute constant Cp > 0 such that∥∥sup

r>0

+fr,κ
∥∥
κ,p

≤ Cp‖f‖κ,p,

which finishes the proof of Theorem 1.1. �
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Remark 3.3. Indeed, Theorem 1.1 also holds for general reflection groups on Rd

in the noncommutative setting. But in this article, we only consider the operator-
valued Bochner–Riesz means under the group Zd

2 . Therefore, we do not include
the proof for the case of general reflection groups here.

The Hardy–Littlewood maximal function can be used to study the maximal
estimate of f ∗κ φε under certain conditions on φ, where

Aκ(Rd) =
{
φ̂ ∈ L1

(
Rd;h2

κ(x)
)
: φ ∈ L1

(
Rd;h2

k(x)
)}

.

Theorem 3.4. Let φ ∈ Aκ(Rd) be a real-valued radial function which satisfies∣∣φ(x)∣∣ ≤ c
(
1 + ‖x‖

)−2λκ−1
.

Let φε(s) =
1

εd+2|κ|φ(
s
ε
) for s ∈ Rd and ε > 0. Then we have the following.

(i) If f ∈ L1(Rd;h2
κ;L1(M)), then for any α > 0, there exists a projection

e ∈ P (A) such that

sup
ε>0

∥∥e(f ∗κ φε)e
∥∥
∞ ≤ α and τ ⊗

∫
e⊥ ≤ C

‖f‖κ,1
α

.

(ii) If 1 < p ≤ ∞, then∥∥sup
ε>0

+f ∗κ φε

∥∥
κ,p

≤ Cp‖f‖κ,p, f ∈ Lp

(
Rd, h2

κ;Lp(M)
)
,

where Aκ(Rd) = {φ̂ ∈ L1(Rd;h2
κ(x)) : φ ∈ L1(Rd;h2

κ(x))}.

Proof. First we prove part (i). Let f ∈ L1(Rd;h2
κ;L1(M)). We assume without

loss of generality that f is positive. On the other hand, it is easy to reduce the
problem to the case when φ is positive too. Indeed, by decomposing φ into its real
and imaginary parts, we need only consider each part separately. Since f ≥ 0, we
have

f ∗κ Re(φε) ≤ f ∗κ
∣∣Re(φε)

∣∣ ≤ f ∗κ |φε|.
This gives the announced reduction. Thus in the sequel, we assume that φ ≥ 0.
Given a function f ∈ L1(Rd;h2

κ;L1(M)) and a cube Q ∈ Rd centered at x and
with sides parallel to the axes, we put

fQ,κ(x) =
1

|Q|

∫
Q

f(y)h2
κ(y) dy.

Let I0 = [−1, 1]d, and let Ij = {t ∈ Rd : 2j−1 ≤ |t| ≤ 2j} for j = 1, 2, . . . . Also,

let Ĩj = [−2j, 2j] and

φ(y) =
∞∑
j=0

φ(y)χ2j−1≤‖y‖≤2j(y).

Then we obtain
m∑
j=0

τx
(
φ(y)τxχ2j−1≤‖y‖≤2j(y)

)
≤ c

m∑
j=0

(1 + 2j)−2λκ−1τxχ2j−1≤‖y‖≤2j(y),
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which implies that∫
Rd

f(εy)
m∑
j=0

τx
(
φ(y)χ2j−1≤‖y‖≤2j(y)

)
h2
κ(y) dy

≤ c
m∑
j=0

(1 + 2j)−2λκ−1

∫
Rd

f(εy)τx
(
χ2j−1≤‖y‖≤2j(y)

)
h2
κ(y) dy

≤ c

∞∑
j=0

(1 + 2j)−2λκ−1

∫
Rd

f(εy)τx
(
χ2j−1≤‖y‖≤2j(y)

)
h2
κ(y) dy

≤ c

∞∑
j=0

(1 + 2j)−2λκ−1(2j)2λk

∫
Rd f(εy)τxχĨj

(y)h2
κ(y) dy∫

Ĩj(x)
h2
κ(y) dy

≤ C
∞∑
j=0

(2−j)fεĨj ,κ(x).

Since φ(y) ≤ c(1 + ‖y‖)−2λk−1 ≤ cP1(y), we infer that τxφ(y) ≤ τxP1(y) is
bounded. Arguing as in Theorem 3.4, we can show that the left-hand side of
the above inequality converges to f ∗κ φε. Note that Theorem 1.1 remains true
with balls replaced by cubes. Thus we obtain that for any α > 0, there exists a
projection e ∈ P (A) such that

sup
ε>0

∥∥e(f ∗κ φε)e
∥∥
∞ ≤ C

∞∑
j=0

(2−j) sup
ε>0

‖efεĨj ,κe‖∞ . α

and

τ ⊗
∫

e⊥ ≤ C
‖f‖κ,1
α

.

Now we prove part (ii). It is clear that the map f → f ∗κ φε is of type (∞,∞)
with constant ‖φ‖k,1. On the other hand, since we have assumed that φ ≥ 0,
we obtain that f ∗κ φε ≥ 0, for f ≥ 0. Thus by the interpolation theorem
(see Lemma 3.2), we deduce the desired (p, p)-type maximal inequality, that is,
part (ii). �

4. Proof of Theorem 1.2

Recall that the Bochner–Riesz means of order δ of f ∈ L1(Rd;h2
κ;L1(M)) are

defined by

Bδ
R(h

2
κ; f)(x) = c

∫
Rd

f̂(ξ)Eκ(ix, ξ)Φ
δ(R−1ξ)h2

κ(ξ) dξ, R > 0,

where Φδ(x) := (1− ‖x‖2)δ+. It is known that Φ̂δ(x) = φδ(x), where

φδ(x) = 2λκ‖x‖−λκ−δ− 1
2Jλκ+δ+ 1

2

(
‖x‖

)
=: φδ,0

(
‖x‖

)
.

Here Jα denotes the Bessel function of the first kind. Since φδ(x) is radial, we

have φ̂δ(x) = Φδ(x).
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Lemma 4.1. Let φδ
R(x) := R2λk+1φδ(Rx) for R > 0. Then φ̂δ

R(ξ) = φ̂δ(R−1ξ) =

Φδ( ξ
R
).

Proof. By the definition of φδ
R(x), t = Ry, and the properties of Eκ(x, y), we have

φ̂δ
R(ξ) = cκ

∫
Rd

Eκ(−iξ, y)φδ
R(y)h

2
κ(y) dy

= cκ

∫
Rd

Eκ(−iξ, y)R2λκ+1φδ(Ry)h2
κ(y) dy

= cκ

∫
Rd

Eκ

(
−iξ,

t

R

)
φδ(t)h2

κ(t) dt

= cκ

∫
Rd

Eκ

(
−i

ξ

R
, t
)
φδ(t)h2

κ(t) dt

= Φδ
( ξ

R

)
. �

Remark 4.2. Using Lemma 4.1, the inverse formula, and (2.2), we obtain that

Bδ
R(h

2
κ; f)(x) = cκ

∫
Rd

f̂(ξ)Eκ(ix, ξ)Φ
δ(R−1ξ)h2

κ(ξ) dξ

= cκ

∫
Rd

f̂(ξ)Eκ(ix, ξ)φ̂δ
R(ξ)h

2
κ(ξ) dξ

= cκ

∫
Rd

̂(f ∗κ φδ
R)(ξ)Eκ(ix, ξ)h

2
κ(ξ) dξ

= f ∗κ φδ
R(x).

The following lemma is cited from [24, Lemma 4.3].

Lemma 4.3.

(i) For each α ∈ R, z−αJα(z) is an even entire function of z ∈ C and

d

dz

[
z−αJα(z)

]
= −z−αJα+1(z).

(ii) For each α ∈ R, ∣∣x−αJα(x)
∣∣ ≤ C

(
1 + |x|

)−α− 1
2 ,

where Jα denotes the Bessel function of the first kind.

If f ∈ S (Rd;L1(M)), then we can define the spherical mean operator on
S (Rd;L1(M)) by

Srf(x) =
1

ωd−1

∫
Sd−1

τryf(x)h
2
κ(y) dw(y),

where S denotes the Schwartz class, dω is the usual measure on Sd−1, and ωd−1

is its total mass.
The generalized convolution of f with a radial function can be expressed in

terms of the spherical means Srf . In fact, if f ∈ S (Rd;L1(M)) and g(x) =
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g0(‖x‖) is an integrable radial function, then, using the spherical-polar coordi-
nates and Proposition 2.2, we have

(f ∗κ g)(x) =
∫
Rd

f(y)τxg
∨(y)h2

κ(y) dy

=

∫
Rd

τyf(x)g(y)h
2
κ(y) dy

=

∫ ∞

0

r2λκg0(r)

∫
Sd−1

τry′f(x)h
2
κ(y

′) dy′ dr

= ωd−1

∫ ∞

0

Sr(f)g0(r)r
2λκ dr.

We also need the following lemma.

Lemma 4.4. Let G = Zd
2 , and let φ(x) = φ0(‖x‖) ∈ L1(Rd, h2

κ) be a radial func-
tion. Assume that φ0 is differentiable, limr→∞ φ0(r) = 0, f ∈ L1(Rd;h2

κ;L1(M)),
and

∫∞
0

r2λκ+1|φ′
0(r)| dr < ∞. Let φε(s) =

1
εd+2|κ|φ(

s
ε
) for s ∈ Rd and ε > 0. Then

we have the following.

(i) Let f ∈ L1(Rd;h2
κ;L1(M)). Then for any α > 0, there exists a projection

e ∈ P (A) such that

sup
ε>0

∥∥e(f ∗κ φε)e
∥∥
∞ ≤ α and τ ⊗

∫
e⊥ ≤ C

‖f‖κ,1
α

.

(ii) Let 1 < p ≤ ∞. Then∥∥sup
ε>0

+f ∗κ φε

∥∥
κ,p

≤ Cp‖f‖κ,p, f ∈ Lp

(
Rd;h2

κ;Lp(M)
)
.

Proof. (i) Let f ∈ S (Rd;L1(M)). By an argument similar to that in Theorem 3.4,
we can assume that f and φ are positive. By definition of the spherical means
Stf , we can write

fr,κ =

∫ r

0
t2λκStf(x) dt∫ r

0
t2λκ dt

.

The assumption on φ0 implies that

lim
r→∞

φ0(r)

∫ r

0

Stf(x)t
2λκ dt = lim

r→∞
φ0(r)

∫
Rd

τyf(x)h
2
κ(y) dy

= lim
r→∞

φ0(r)

∫
Rd

f(x)h2
κ(y) dy

= 0.

Therefore, using the spherical-polar coordinates and integrating by parts, we get

(f ∗κ φε)(x) =
1

εd+2|k|

∫
Rd

τyf(x)φ
(y
ε

)
h2
κ(y) dy

= ωd−1
1

εd+2|κ|

∫ ∞

0

Sr(f)(x)φ0

(r
ε

)
r2λκ dr
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= ωd−1
1

εd+2|κ|

∫ ∞

0

φ0

(r
ε

)
d

∫ r

0

t2λκSt(f)(x) dt

= −ωd−1
1

εd+2|κ|

∫ ∞

0

∫ r

0

t2λkSt(f)(x) dt
1

ε
φ′
0

(r
ε

)
dr

= − ωd−1

2λκ + 1

∫ ∞

0

fεR,κR
2λκ+1φ′

0(R) dR.

Hence, using Theorem 1.1, for any α > 0, there exists a projection e ∈ P (A) such
that

sup
ε>0

‖efε,κe‖∞ ≤ α and τ ⊗
∫

e⊥ ≤ C
‖f‖κ,1
α

,

which implies that

sup
ε>0

∥∥e(f ∗κ φε)e
∥∥
∞ ≤ sup

ε>0

∥∥e(fεR,κ)e
∥∥
∞

ωd−1

2λκ + 1

∫ ∞

0

R2λκ+1φ′
0(R) dR . α

and

τ ⊗
∫

e⊥ ≤ C
‖f‖κ,1
α

.

(ii) The proof of part (ii) is by the interpolation theorem (see Lemma 3.2),
where we deduce the desired (p, p)-type maximal inequality. We thus complete
the proof of the lemma. �

Proof of Theorem 1.2. Note that φ(x) satisfies the conditions of Lemma 4.4. Then
we obtain the weak type (1, 1) and (p, p) type of the Bochner–Riesz means. Indeed,
since

φδ(x) = 2λκ‖x‖−λκ−δ− 1
2Jλκ+δ+ 1

2

(
‖x‖

)
=: φδ,0

(
‖x‖

)
, for δ > λκ,

it is easy to see that φδ(x) is radial and limr→∞ φδ,0(r) = 0. Due to Lemma 4.3,
we infer that

φ(δ,0)′(r) = −2λκr−λκ−δ− 1
2Jλκ+δ+ 3

2
(r).

Note that Jα(r) = O(r−
1
2 ). Then we obtain that

r2
λκ+1

r−λκ−δ− 1
2Jλκ+δ+ 3

2
(r) ≤ C

1

rδ+1−λκ
.

Therefore, the proof of Theorem 1.2 is complete. �

5. Proof of Theorem 1.3

Recall the noncommutative version of the almost-everywhere convergence. Let
M be a von Neumann algebra equipped with a semifinite normal faithful trace τ .
Let xn, x ∈ L0(M). Then

(i) (xn) is said to converge bilaterally almost uniformly (b.a.u. for short) to
x if for every ε > 0, there is a projection e ∈ M such that

τ(e⊥) < ε and lim
n→∞

∥∥e(xn − x)e
∥∥
∞ = 0;
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(ii) (xn) is said to converge almost uniformly (a.u. for short) to x if for every
ε > 0, there is a projection e ∈ M such that

τ(e⊥) < ε and lim
n→∞

∥∥(xn − x)e
∥∥
∞ = 0.

Obviously, xn
a.u.−−→ x implies xn

b.a.u.−−−→ x. In the commutative case, both con-
vergences in the definition above are equivalent to the usual almost-everywhere
convergence by virtue of Egorov’s theorem. However they are different in the non-
commutative case. Similarly, we can introduce these notions of convergence for
functions with values in L0(M) and for nets in L0(M).

Recall that the map x → xp (1 ≤ p ≤ 2) is convex on the positive cone M+

of M. Thus, for f ∈ Lp(L∞(Rd ⊗M)) (1 ≤ p ≤ 2), we get∫
A

|f | dt ≤
(∫

A

|f |p dt
) 1

p
, ∀A ⊆ Rd, |A| = 1.

By iterating this inequality, we obtain the following lemma.

Lemma 5.1 ([17, Lemma 3.5]). If f ∈ Lp(L∞(Rd ⊗M)), 1 ≤ p < ∞,then∫
A

|f | dt ≤
(∫

A

|f |p dt
) 1

p
, ∀A ⊆ Rd, |A| = 1. (5.1)

Recall also that for any bounded linear operators a, b on a Hilbert space H,
where a is positive and ‖b‖ ≤ 1, if T is an operator monotone function defined

for positive operators (e.g., T (a) = a
1
p , p ≥ 1), then

b∗T (a)b ≤ T (b∗ab).

This is the so-called Hansen’s inequality (see [5, Theorem 2.1]). In particular, we
have

b∗ab ≤ (b∗apb)
1
p . (5.2)

We also need the following lemma whose proof can be done by imitating the
classical proof in [22].

Lemma 5.2 ([22, Theorem 1.2.19]). If f ∈ Lp(Rd;h2
κ;Lp(M)), 1 ≤ p < ∞,

moreover, for f ∈ C0(Rd) ⊗ M, p = ∞, and δ > λκ, then∥∥Bδ
R(h

2
κ; f)− f

∥∥
κ,p

→ 0, as R → ∞.

Proof of Theorem 1.3. (i) Without loss of generality, we can assume that f is
self-adjoint. For any given f ∈ Lp(Rd;h2

κ;Lp(M)) and ε > 0, we choose gn =∑n
k=1 ϕkxk, where xk ∈ S+

M and ϕk : Rd → C are continuous functions with
compact support, such that∥∥|f − gn|p

∥∥
κ,1

= ‖f − gn‖pκ,p <
( 1

2n

)p ε

2n
. (5.3)

Choose eε1,n ∈ P (L∞(Rd)⊗M) such that∥∥eε1,n|f − gn|peε1,n
∥∥
L∞(Rd)⊗M <

( 1

2n

)p

and τ ⊗
∫
(eε1,n)

⊥ <
ε

2n
.



1080 M. WANG, B. XU, and J. HU

Taking eε1 =
∧

n e
ε
1,n, we have

τ ⊗
∫

(eε1)
⊥ < ε.

And by using (5.2),∥∥eε1(gn − f)eε1
∥∥
L∞(Rd)⊗M ≤

∥∥eε1|gn − f |eε1
∥∥
L∞(Rd)⊗M

≤
∥∥eε1|gn − f |peε1

∥∥ 1
p

L∞(Rd)⊗M

<
1

2n
, ∀n ≥ 1.

On the other hand, using (5.3) and Theorem 1.2, we can find a sequence
(eε2,n)n ∈ P (L∞(Rd)⊗M) such that∥∥eε2,nBδ

R

(
h2
k; |gn − f |p

)
eε2,n

∥∥
L∞(Rd)⊗M <

( 1

2n

)p

. (5.4)

Let eε2 =
∧

n e
ε
2,n. Then we have

τ ⊗
∫

(eε2)
⊥ < ε.

By (5.1), (5.2), and (5.4), we obtain that∥∥eε2Bδ
R

(
h2
κ; (gn − f)

)
eε2
∥∥
L∞(Rd)⊗M

≤
∥∥eε2,nBδ

R

(
h2
κ; |gn − f |

)
eε2,n

∥∥
L∞(Rd)⊗M

≤
∥∥eε2,n(Bδ

R

(
h2
κ; |gn − f |p

) 1
p
)
eε2,n

∥∥
L∞(Rd)⊗M

≤
∥∥eε2,nBδ

R

(
h2
κ; |gn − f |p

)
eε2,n

∥∥ 1
p

L∞(Rd)⊗M

<
1

2n
, ∀n ≥ 0.

Using Lemma 5.2, we have

lim
R→∞

∥∥Bδ
R(h

2
κ; gn)− gn

∥∥
L∞(Rd)⊗M = 0, ∀n ≥ 1.

Set eε = eε1 ∧ eε2. Then we obtain that

τ ⊗
∫
(eε)⊥ < 2ε.

Hence, we deduce that∥∥eε(Bδ
R(h

2
κ; f)− f

)
eε
∥∥
L∞(Rd)⊗M

≤
∥∥eε(gn − f)eε

∥∥
L∞(Rd)⊗M +

∥∥eε(Bδ
R(h

2
κ; g − gn)

)
eε
∥∥
L∞(Rd)⊗M

+
∥∥eε(Bδ

R(h
2
κ; gn)−Bδ

R(h
2
κ; f)

)
eε
∥∥
L∞(Rd)⊗M

≤
∥∥eε1(gn − f)eε1

∥∥
L∞(Rd)⊗M +

∥∥Bδ
R(h

2
κ; gn)− gn

∥∥
L∞(Rd)⊗M
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+
∥∥eε2(Bδ

R(h
2
κ; gn)−Bδ

R(h
2
κ; f)

)
eε2
∥∥
L∞(Rd)⊗M

≤ 3

2n
.

Thus we have

lim
R→∞

∥∥eε(Bδ
R(h

2
κ; f)− f

)
eε
∥∥
L∞(Rd)⊗M = 0.

This completes the proof of (i).
(ii) The proof of (i) works well for part (ii) of the theorem with some minor

changes. Let gn and eε1, e
ε
2, e

ε be as above. Since p > 2, by (5.1) and (5.2), we
obtain that ∥∥eε1(gn − f)

∥∥
L∞(Rd)⊗M =

∥∥eε1|gn − f |2eε1
∥∥ 1

2

L∞(Rd)⊗M

≤
∥∥eε1|gn − f |peε1

∥∥ 1
p

L∞(Rd)⊗M

<
1

2n
, ∀n ≥ 1,

and also ∥∥eε2(Bδ
R(h

2
κ, gn)−Bδ

R(h
2
κ, f)

)∥∥
L∞(Rd)⊗M

=
∥∥eε2∣∣Bδ

R(h
2
κ, gn)−Bδ

R(h
2
κ, f)

∣∣2eε2∥∥ 1
2

L∞(Rd)⊗M

≤
(∥∥eε2Bδ

R

(
h2
κ, |gn − f |2

)
eε2
∥∥
L∞(Rd)⊗M

) 1
2

≤
(∥∥eε2Bδ

R

(
h2
κ, |gn − f |p

)
eε2
∥∥
L∞(Rd)⊗M

) 1
p

<
1

2n
, ∀n ≥ 1.

Hence, as in the proof of (i), we can complete the proof. �
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