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INTERPOLATING INEQUALITIES FOR FUNCTIONS OF
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Abstract. Let A, B be positive semidefinite n×nmatrices, and let α ∈ (0, 1).
We show that if f is an increasing submultiplicative function on [0,∞) with
f(0) = 0 such that f(t) and f2(t1/2) are convex, then∣∣∣∣∣∣f(|AB|

)∣∣∣∣∣∣2 ≤ f4
( 1

(4α(1− α))1/4

)(∣∣∣∣∣∣(αf(A) + (1− α)f(B)
)2∣∣∣∣∣∣

×
∣∣∣∣∣∣((1− α)f(A) + αf(B)

)2∣∣∣∣∣∣)
for every unitarily invariant norm. Moreover, if α ∈ [0, 1] and X is an n × n
matrix with X 6= 0, then∣∣∣∣∣∣f(|AXB|

)∣∣∣∣∣∣2
≤ f(‖X‖)

‖X‖
∣∣∣∣∣∣αf2(A)X + (1− α)Xf2(B)

∣∣∣∣∣∣∣∣∣∣∣∣(1− α)f2(A)X + αXf2(B)
∣∣∣∣∣∣

for every unitarily invariant norm. These inequalities present generalizations
of recent results of Zou and Jiang and of Audenaert.

1. Introduction

Let Mn(C) be the algebra of all n × n complex matrices. For A ∈ Mn(C), let
λ1(A), . . . , λn(A) be the eigenvalues of A repeated according to multiplicity. The
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singular values of A, denoted by s1(A), . . . , sn(A) are the eigenvalues of |A| =
(A∗A)1/2 arranged in decreasing order and repeated according to multiplicity.

A matrix norm ||| · ||| on Mn(C) is said to be unitarily invariant if |||UAV ||| =
|||A||| for every A ∈ Mn(C) and all unitary matrices U, V ∈ Mn(C). A unitarily
invariant norm is a symmetric gauge function of the singular values of the matrix;
that is, |||A||| = Φ(s(A)), where Φ is a symmetric gauge function defined on Rn.

A useful property of unitarily invariant norms says that |||ABC||| ≤‖A‖|||B||| ×
‖C‖ for all matrices A,B,C ∈ Mn(C). Here, ‖ · ‖ denotes the spectral (or the
usual operator) norm. (For basic properties of unitarily invariant norms, we refer
to [6], [12], or [15].)

Let x = (x1, . . . , xn) ∈ Rn, and arrange the components of x in decreasing

order such that x↓ = (x↓
1, . . . , x

↓
n), where x↓

1 ≥ · · · ≥ x↓
n. For x = (x1, . . . , xn) and

y = (y1, . . . , yn) ∈ Rn, we say that x is weakly majorized by y, written as x ≺w y,

if
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i , k = 1, . . . , n.

It was shown in [10] that if A,B ∈ Mn(C) are positive semidefinite, then

|||AB||| ≤ 1

4

∣∣∣∣∣∣(A+B)2
∣∣∣∣∣∣ (1.1)

for every unitarily invariant norm. Recently, Zou and Jiang [20] obtained a natural
generalization of the inequality (1.1). They showed that if A,B ∈ Mn(C) are
positive semidefinite and α ∈ (0, 1), then

|||AB|||2 ≤ 1

4α(1− α)

∣∣∣∣∣∣(αA+ (1− α)B
)2∣∣∣∣∣∣∣∣∣∣∣∣((1− α)A+ αB

)2∣∣∣∣∣∣ (1.2)

for every unitarily invariant norm.
The arithmetic-geometric mean inequality for unitarily invariant norms (see

[9]) asserts that if A,B ∈ Mn(C) are positive semidefinite, then

|||AB||| ≤ 1

2
|||A2 +B2||| (1.3)

for every unitarily invariant norm. A generalization of (1.3) (see, e.g., [2], [7], [18])
asserts that if A,B,X ∈ Mn(C) such that A and B are positive semidefinite, then

|||AXB||| ≤ 1

2
|||A2X +XB2||| (1.4)

for every unitarily invariant norm.
The Cauchy–Schwarz inequality for unitarily invariant norms (see [16]) asserts

that if A,B ∈ Mn(C) are positive semidefinite, then

|||AB|||2 ≤ |||A2||||||B2||| (1.5)

for every unitarily invariant norm. A generalization of (1.5) (see, e.g., [8]) asserts
that if A,B,X ∈ Mn(C) such that A and B are positive semidefinite, then

|||AXB|||2 ≤ |||A2X||||||XB2||| (1.6)

for every unitarily invariant norm. (For more details about the Cauchy–Schwarz
inequality, we refer to [14] and [17].)
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Recently, Audenaert [4] showed that if A,B ∈ Mn(C) are positive semidefinite
and α ∈ [0, 1], then

|||AB|||2 ≤
∣∣∣∣∣∣αA2 + (1− α)B2

∣∣∣∣∣∣∣∣∣∣∣∣(1− α)A2 + αB2
∣∣∣∣∣∣ (1.7)

for every unitarily invariant norm. The inequality (1.7) interpolates between the
inequalities (1.3) and (1.5). In fact, letting α = 1/2, we obtain (1.3), but letting
α = 0 or α = 1, we obtain (1.5).

A generalization of (1.7) was recently obtained in [20]. The authors showed
that if A,B,X ∈ Mn(C) such that A, B are positive semidefinite and α ∈ [0, 1],
then

|||AXB|||2 ≤
∣∣∣∣∣∣αA2X + (1− α)XB2

∣∣∣∣∣∣∣∣∣∣∣∣(1− α)A2X + αXB2
∣∣∣∣∣∣ (1.8)

for every unitarily invariant norm, which interpolates between the inequalities
(1.4) and (1.6). A refinement of (1.8) for the Hilbert–Schmidt norm was recently
given in [3]. (For related interpolating inequalities, the reader is referred to [1],
[5], [13], and [19].)

In this article, we give interpolating norm inequalities for functions of matrices.
In Sections 2 and 3, we generalize (1.2), (1.7), and (1.8) for certain functions of
matrices. Henceforth, we assume that every function is continuous.

2. A generalization of the inequality (1.2)

In this section, we generalize (1.2) for submultiplicative convex functions of
matrices. In order to do that, we need the following lemmas. The first lemma is
given in [4, p. 6]. The second lemma is a well-known fact about singular values
and increasing functions, while for the third lemma we refer our readers to [6,
p. 42]. First, for two positive semidefinite matrices A,B ∈ Mn(C), let CA,B(t) =
tA2 + (1− t)B2, t ∈ [0, 1].

Lemma 2.1. Let A,B ∈ Mn(C) be positive semidefinite, and let α ∈ [0, 1], r > 0.
Then (

sj
(
|AB|2r

))
≺w

(
srj
(
CA,B(α)

)
srj
(
CA,B(1− α)

))
.

Lemma 2.2. Let A ∈ Mn(C), and let f be a nonnegative increasing function on
[0,∞). Then f(sj(A)) = sj(f(|A|)) for j = 1, . . . , n.

Lemma 2.3. Let a1, b1, . . . , an, bn ∈ R such that (a1, . . . , an) ≺w (b1, . . . , bn), and
let f be an increasing convex function on R. Then(

f(a1), . . . , f(an)
)
≺w

(
f(b1), . . . , f(bn)

)
.

Lemma 2.4. Let A,B,X ∈ Mn(C) be positive semidefinite, and let p, q, r, α ∈ R
such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and α ∈ [0, 1]. If f is an increasing

submultiplicative convex function on [0,∞) with f(0) = 0, then∣∣∣∣∣∣f(|AXB|2r
)∣∣∣∣∣∣

≤
∣∣∣∣∣∣fp

((
X1/2CA,B(α)X

1/2
)r)∣∣∣∣∣∣1/p∣∣∣∣∣∣f q

((
X1/2CA,B(1− α)X1/2

)r)∣∣∣∣∣∣1/q
for every unitarily invariant norm.
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Proof. For j = 1, . . . , n, we have(
sj
(
|AXB|2r

))
=

(
sj
(∣∣(AX1/2)(BX1/2)∗

∣∣2r))
≺w

(
srj
(
X1/2CA,B(α)X

1/2
)
srj
(
X1/2CA,B(1− α)X1/2

))
(by Lemma 2.1). (2.1)

The monotonicity and convexity of f implies that(
sj
(
f
(
|AXB|2r

)))
=

(
f
(
sj
(
|AXB|2r

)))
(by Lemma 2.2)

≺w

(
f
(
srj
(
X1/2CA,B(α)X

1/2
)
srj
(
X1/2CA,B(1− α)X1/2

)))
(by (2.1) and Lemma 2.3). (2.2)

Since f is submultiplicative, we have

f
(
srj
(
X1/2CA,B(α)X

1/2
)
srj
(
X1/2CA,B(1− α)X1/2

))
≤ f

(
srj
(
X1/2CA,B(α)X

1/2
))
f
(
srj
(
X1/2CA,B(1− α)X1/2

))
= sj

(
f
((
X1/2CA,B(α)X

1/2
)r))

sj
(
f
((
X1/2CA,B(1− α)X1/2

)r))
. (2.3)

The inequalities (2.2) and (2.3) imply that(
sj
(
f
(
|AXB|2r

)))
≺w

(
sj
(
f
((
X1/2CA,B(α)X

1/2
)r))

sj
(
f
((
X1/2CA,B(1− α)X1/2

)r)))
. (2.4)

In (2.4), applying Hölder’s inequality for the symmetric gauge function Φ associ-
ated with ||| · ||| (see, e.g., [6, p. 88]), we have

Φ
(
sj
(
f
(
|AXB|2r

)))
≤ Φ

(
sj
(
f
((
X1/2CA,B(α)X

1/2
)r))

sj
(
f
((
X1/2CA,B(1− α)X1/2

)r)))
≤

(
Φ1/p

(
spj
(
f
((
X1/2CA,B(α)X

1/2
)r)))

× Φ1/q
(
sqj
(
f
((
X1/2CA,B(1− α)X1/2

)r))))
.

This implies that∣∣∣∣∣∣f(|AXB|2r
)∣∣∣∣∣∣

≤
∣∣∣∣∣∣fp

((
X1/2CA,B(α)X

1/2
)r)∣∣∣∣∣∣1/p∣∣∣∣∣∣f q

((
X1/2CA,B(1− α)X1/2

)r)∣∣∣∣∣∣1/q,
as required. �

We also need the following two lemmas. The first lemma is the inequality (2.3)
in [20], while the second lemma follows by using the polar decomposition and
some basic properties of unitarily invariant norms.

Lemma 2.5. Let A,B,X ∈ Mn(C) be positive semidefinite. Then∣∣∣∣∣∣X1/2CA,B(α)X
1/2

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣αA2X + (1− α)XB2
∣∣∣∣∣∣

for every unitarily invariant norm.
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Lemma 2.6. Let A,B,X ∈ Mn(C), and let r > 0. If f is a nonnegative increas-
ing function on [0,∞), then∣∣∣∣∣∣f(|AXB∗|2r

)∣∣∣∣∣∣ = ∣∣∣∣∣∣f(∣∣|A|X|B|
∣∣2r)∣∣∣∣∣∣

for every unitarily invariant norm.

Now, we state our first main result.

Theorem 2.7. Let A,B,X ∈ Mn(C) such that A, B are positive semidefinite,
and let p, q, r, α ∈ R such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and α ∈ [0, 1]. If f

is an increasing submultiplicative function on [0,∞) with f(0) = 0 such that f(t)
and fmin(p,q)(tr) are convex, then∣∣∣∣∣∣f(|AXB|2r

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣fp
(∣∣αA2X + (1− α)XB2

∣∣r)∣∣∣∣∣∣1/p∣∣∣∣∣∣f q
(∣∣(1− α)A2X + αXB2

∣∣r)∣∣∣∣∣∣1/q
for every unitarily invariant norm.

Proof. Let X = UDV ∗ be a singular value decomposition of X. In Lemma 2.4,
replacing A, B, X by the matrices AU , BV , and D, respectively, we have∣∣∣∣∣∣f(|AXB|2r

)∣∣∣∣∣∣ = ∣∣∣∣∣∣f(∣∣(AU)D(BV )∗
∣∣2r)∣∣∣∣∣∣

=
∣∣∣∣∣∣f(∣∣|AU |D|BV |

∣∣2r)∣∣∣∣∣∣ (by Lemma 2.6)

≤
(∣∣∣∣∣∣fp

((
D1/2C|AU |,|BV |(α)D

1/2
)r)∣∣∣∣∣∣1/p

×
∣∣∣∣∣∣f q

((
D1/2C|AU |,|BV |(1− α)D1/2

)r)∣∣∣∣∣∣1/q). (2.5)

Since fp(tr) is convex, we have∣∣∣∣∣∣fp
((
D1/2C|AU |,|BV |(α)D

1/2
)r)∣∣∣∣∣∣

≤
∣∣∣∣∣∣fp

((∣∣α|AU |2D + (1− α)D|BV |2
∣∣r))∣∣∣∣∣∣ (by Lemmas 2.3 and 2.5)

=
∣∣∣∣∣∣fp

(∣∣αU∗A2UD + (1− α)DV ∗B2V
∣∣r)∣∣∣∣∣∣

=
∣∣∣∣∣∣fp

(∣∣U∗(αA2UDV ∗ + (1− α)UDV ∗B2
)
V
∣∣r)∣∣∣∣∣∣

=
∣∣∣∣∣∣fp

(∣∣U∗(αA2X + (1− α)XB2
)
V
∣∣r)∣∣∣∣∣∣

=
∣∣∣∣∣∣fp

((
V ∗∣∣αA2X + (1− α)XB2

∣∣V )r)∣∣∣∣∣∣
=

∣∣∣∣∣∣V ∗fp
(∣∣αA2X + (1− α)XB2

∣∣r)V ∣∣∣∣∣∣
=

∣∣∣∣∣∣fp
(∣∣αA2X + (1− α)XB2

∣∣r)∣∣∣∣∣∣. (2.6)

Similarly, we have∣∣∣∣∣∣f q
((
D1/2C|AU |,|BV |(1− α)D1/2

)r)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣f q
(∣∣(1− α)A2X + αXB2

∣∣r)∣∣∣∣∣∣. (2.7)

Now, the result follows from (2.5), (2.6), and (2.7). �

An application of Theorem 2.7 can be seen in the following corollary.
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Corollary 2.8. Let A,B,X ∈ Mn(C) such that A, B are positive semidefinite,
and let p, q, r, α ∈ R such that p, q > 1 with 1

p
+ 1

q
= 1, r ≥ 1, and α ∈ [0, 1]. If f

is an increasing submultiplicative convex function on [0,∞) with f(0) = 0, then∣∣∣∣∣∣f(|AXB|2r
)∣∣∣∣∣∣

≤
∣∣∣∣∣∣fp

(∣∣αA2X + (1− α)XB2
∣∣r)∣∣∣∣∣∣1/p∣∣∣∣∣∣f q

(∣∣(1− α)A2X + αXB2
∣∣r)∣∣∣∣∣∣1/q

for every unitarily invariant norm. In particular, letting p = q = 2 and r = 1, we
have∣∣∣∣∣∣f(|AXB|2

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣f 2
(∣∣αA2X + (1− α)XB2

∣∣)∣∣∣∣∣∣1/2∣∣∣∣∣∣f 2
(∣∣(1− α)A2X + αXB2

∣∣)∣∣∣∣∣∣1/2.
Proof. The convexity of f(t) implies that fmin(p,q)(tr) is also convex, and so the
result follows directly from Theorem 2.7. �

We also need the following lemma concerning singular values (see [11]).

Lemma 2.9. Let A,B ∈ Mn(C) be positive semidefinite, and let r ≥ 0. Then

2sj
(
A1/2(A+B)rB1/2

)
≤ sj

(
(A+B)r+1

)
for j = 1, . . . , n.

Remark 2.10. Let A,B ∈ Mn(C) be positive semidefinite, and let α ∈ (0, 1),
r > 0. In Lemma 2.9, replacing A and B by αA and (1 − α)B, respectively, we
have

sj
(
A1/2Cr

A1/2,B1/2(α)B
1/2

)
≤ 1

2
√
α(1− α)

sj
(
Cr+1

A1/2,B1/2(α)
)

for j = 1, . . . , n, and so∣∣∣∣∣∣A1/2Cr
A1/2,B1/2(α)B

1/2
∣∣∣∣∣∣ ≤ 1

2
√
α(1− α)

∣∣∣∣∣∣Cr+1
A1/2,B1/2(α)

∣∣∣∣∣∣
for every unitarily invariant norm. In particular, letting r = 1, we have∣∣∣∣∣∣A1/2CA1/2,B1/2(α)B1/2

∣∣∣∣∣∣ ≤ 1

2
√
α(1− α)

∣∣∣∣∣∣C2
A1/2,B1/2(α)

∣∣∣∣∣∣ (2.8)

for every unitarily invariant norm.

Our second main result in this section can be stated as follows. For a function
f : R → R, let K(f ; r, α) = f 2( 1

(4α(1−α))r/2
) for r > 0 and α ∈ (0, 1).

Theorem 2.11. Let A,B ∈ Mn(C) be positive semidefinite, and let p, q, r, α ∈ R
such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and α ∈ (0, 1). If f(t) is an increasing

submultiplicative function on [0,∞) with f(0) = 0 such that f(t) and fmin(p,q)(tr)
are convex, then∣∣∣∣∣∣f(|AB|2r

)∣∣∣∣∣∣
≤ K(f ; r, α)

∣∣∣∣∣∣fp
(
C2r

A1/2,B1/2(α)
)∣∣∣∣∣∣1/p∣∣∣∣∣∣f q

(
C2r

A1/2,B1/2(1− α)
)∣∣∣∣∣∣1/q

for every unitarily invariant norm.
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Proof. In Theorem 2.7, letting X = A1/2B1/2, we have∣∣∣∣∣∣f(|AB|2r
)∣∣∣∣∣∣ = ∣∣∣∣∣∣f(∣∣A1/2(A1/2B1/2)B1/2

∣∣2r)∣∣∣∣∣∣
≤

(∣∣∣∣∣∣fp
(∣∣αA3/2B1/2 + (1− α)A1/2B3/2

∣∣r)∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣f q
(∣∣(1− α)A3/2B1/2 + αA1/2B3/2

∣∣r)∣∣∣∣∣∣1/q)
(by Theorem 2.7)

=
(∣∣∣∣∣∣fp

(∣∣A1/2CA1/2,B1/2(α)B1/2
∣∣r)∣∣∣∣∣∣1/p

×
∣∣∣∣∣∣f q

(∣∣A1/2CA1/2,B1/2(1− α)B1/2
∣∣r)∣∣∣∣∣∣1/q). (2.9)

On the other hand,∣∣∣∣∣∣fp
(∣∣A1/2CA1/2,B1/2(α)B1/2

∣∣r)∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣fp
((CA1/2,B1/2(α)

4
√

4α(1− α)

)2r)∣∣∣∣∣∣∣∣∣ (by (2.8) and Lemma 2.3)

≤ fp
( 1

(4α(1− α))r/2

)∣∣∣∣∣∣fp
(
C2r

A1/2,B1/2(α)
)∣∣∣∣∣∣

(since f is submultiplicative)

= Kp/2(f ; r, α)
∣∣∣∣∣∣fp

(
C2r

A1/2,B1/2(α)
)∣∣∣∣∣∣. (2.10)

Similarly, we have ∣∣∣∣∣∣f q
(∣∣A1/2CA1/2,B1/2(1− α)B1/2

∣∣)∣∣∣∣∣∣
≤ Kq/2(f ; r, α)

∣∣∣∣∣∣f q
(
C2r

A1/2,B1/2(1− α)
)∣∣∣∣∣∣. (2.11)

Now, the result follows from (2.9), (2.10), and (2.11). �

We need the following lemma, which is a Jensen-type inequality. A more general
form of this lemma is given in Lemma 3.1.

Lemma 2.12. Let A,B ∈ Mn(C) be positive semidefinite, and let α ∈ [0, 1]. If
f : R → R is an increasing convex function with f(0) = 0, then∣∣∣∣∣∣f(CA1/2,B1/2(α)

)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Cf1/2(A),f1/2(B)(α)
∣∣∣∣∣∣

for every unitarily invariant norm.

Using Lemma 2.12, an application of Theorem 2.11 can be seen in the following
corollary.

Corollary 2.13. Let A,B ∈ Mn(C) be positive semidefinite matrices, and let
p, q, r, α ∈ R such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and α ∈ (0, 1). If f is an

increasing submultiplicative function on [0,∞) with f(0) = 0 such that f(t) and
fmin(p,q)(tr) are convex, then∣∣∣∣∣∣f(|AB|2r

)∣∣∣∣∣∣
≤ K(f ; r, α)

∣∣∣∣∣∣Cfp/2(A2r),fp/2(B2r)(α)
∣∣∣∣∣∣1/p∣∣∣∣∣∣Cfq/2(A2r),fq/2(B2r)(1− α)

∣∣∣∣∣∣1/q
for every unitarily invariant norm.
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Proof. The convexity of the function fmin(p,q)(tr) implies that fp(t2r) and f q(t2r)
are convex, and so Lemma 2.12 implies that∣∣∣∣∣∣fp

(
C2r

A1/2,B1/2(α)
)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Cfp/2(A2r),fp/2(B2r)(α)

∣∣∣∣∣∣ (2.12)

and that ∣∣∣∣∣∣f q
(
C2r

A1/2,B1/2(1− α)
)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Cfq/2(A2r),fq/2(B2r)(1− α)

∣∣∣∣∣∣. (2.13)

Now, the result follows from Theorem 2.11, (2.12), and (2.13). �

The following result is a considerable generalization of the Zou–Jiang inequality
(1.2) for functions of matrices. In fact, (1.2) can be retained by taking f(t) = t.

Corollary 2.14. Let A,B ∈ Mn(C) be positive semidefinite, and let α ∈ (0, 1).
If f is an increasing submultiplicative function on [0,∞) with f(0) = 0 such that
f(t) and f 2(t1/2) are convex, then∣∣∣∣∣∣f(|AB|

)∣∣∣∣∣∣2 ≤ K2
(
f ;

1

2
, α

)∣∣∣∣∣∣C2
f1/2(A),f1/2(B)(α)

∣∣∣∣∣∣∣∣∣∣∣∣C2
f1/2(A),f1/2(B)(1− α)

∣∣∣∣∣∣
for every unitarily invariant norm.

Proof. The result follows from Theorem 2.11 by taking p = q = 2 and r = 1
2
. �

Corollary 2.15. Let A,B ∈ Mn(C) be positive semidefinite, and let p, q, α ∈
R such that p, q > 1 with 1

p
+ 1

q
= 1, and α ∈ (0, 1). If f is an increasing

submultiplicative convex function on [0,∞) with f(0) = 0, then∣∣∣∣∣∣f(|AB|2
)∣∣∣∣∣∣

≤ K(f ; 1, α)
∣∣∣∣∣∣Cp

f1/2(A2),f1/2(B2)
(α)

∣∣∣∣∣∣1/p∣∣∣∣∣∣Cq

f1/2(A2),f1/2(B2)
(1− α)

∣∣∣∣∣∣1/q
for every unitarily invariant norm.

Proof. The convexity of the function f(t) implies that fmin(p,q)(t) is convex. So,
the result follows from Theorem 2.11 by taking r = 1 and applying Lemmas 2.3,
2.12. �

Specializing Theorem 2.11 to some particular functions, we have the following
result.

Corollary 2.16. Let A,B ∈ Mn(C) be positive semidefinite, and let c, p, q, r, α ∈
R such that c ≥ 1, p, q > 1 with 1

p
+ 1

q
= 1, r ≥ 1, and α ∈ (0, 1). Then∣∣∣∣∣∣(|AB|2r + cI

)m − cmI
∣∣∣∣∣∣

≤ K(r, α)
(∣∣∣∣∣∣((CA1/2,B1/2(α) + cI

)mr − cmI
)p∣∣∣∣∣∣1/p

×
∣∣∣∣∣∣((CA1/2,B1/2(1− α) + cI

)mr − cmI
)q∣∣∣∣∣∣1/q)

for every unitarily invariant norm and for m = 2, 3, . . . , where K(r, α) =
(( 1

(4α(1−α))r/2
+ c)m − cm)2 and I is the identity matrix in Mn(C).

Proof. Let f(t) = (t + c)m − cm. Then the functions f(t) and fmin(p,q)(tr) are
increasing submultiplicative convex functions on [0,∞) with f(0) = 0. So, the
result follows by applying Theorem 2.11 to the function f(t). �
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3. Generalizations of the inequalities (1.7) and (1.8)

In this section, our goal is to generalize (1.7) and (1.8) for submultiplicative
convex functions. First, we start with generalizing (1.7). In order to do that, we
need the following lemma (see, e.g., [6, p. 119]). This lemma is a general form of
Lemma 2.12.

Lemma 3.1. Let A,B,X, Y ∈ Mn(C) such that A, B are positive semidefinite
and |X|2 + |Y |2 ≤ I, and let f be an increasing convex function on [0,∞) with
f(0) = 0. Then∣∣∣∣∣∣f(X∗AX + Y ∗BY )

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣X∗f(A)X + Y ∗f(B)Y
∣∣∣∣∣∣

for every unitarily invariant norm.

The following result presents a generalization of (1.7).

Theorem 3.2. Let A,B,X ∈ Mn(C) be positive semidefinite, let X be a contrac-
tion, and let p, q, r, α ∈ R such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and α ∈ [0, 1].

If f is an increasing submultiplicative function on [0,∞) with f(0) = 0 such that
f(t) and fmin(p,q)(tr) are convex, then∣∣∣∣∣∣f(|AXB|2r

)∣∣∣∣∣∣ ≤ (∣∣∣∣∣∣X1/2Cfp/2(A2r),fp/2(B2r)(α)X
1/2

∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣X1/2Cfq/2(A2r),fq/2(B2r)(1− α)X1/2
∣∣∣∣∣∣1/q)

for every unitarily invariant norm.

Proof. The convexity of the function fmin(p,q)(tr) implies that fp(tr) is convex on
[0,∞). Since X1/2 is a contraction, Lemma 3.1 implies that∣∣∣∣∣∣fp

((
X1/2CA,B(α)X

1/2
)r)∣∣∣∣∣∣

=
∣∣∣∣∣∣fp

((
αX1/2A2X1/2 + (1− α)X1/2B2X1/2

)r)∣∣∣∣∣∣
≤

∣∣∣∣∣∣X1/2
(
αf p(A2r) + (1− α)fp(B2r)

)
X1/2

∣∣∣∣∣∣
=

∣∣∣∣∣∣X1/2
(
Cfp/2(A2r),fp/2(B2r)(α)

)
X1/2

∣∣∣∣∣∣. (3.1)

Similarly, we have ∣∣∣∣∣∣f q
((
X1/2CA,B(1− α)X1/2

)r)∣∣∣∣∣∣
≤

∣∣∣∣∣∣X1/2
(
Cfq/2(A2r),fq/2(B2r)(1− α)

)
X1/2

∣∣∣∣∣∣. (3.2)

Now, the result follows from Lemma 2.4, (3.1), and (3.2). �

The following application of Theorem 3.2 is a considerable generalization of the
Audenaert inequality (1.7) for functions of matrices. In fact, (1.7) can be retained
by taking f(t) = t.

Corollary 3.3. Let A,B ∈ Mn(C) be positive semidefinite, and let α ∈ [0, 1]. If
f is an increasing submultiplicative function on [0,∞) with f(0) = 0 such that
f(t) and f 2(t1/2) are convex, then∣∣∣∣∣∣f(|AB|

)∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣Cf(A),f(B)(α)
∣∣∣∣∣∣∣∣∣∣∣∣Cf(A),f(B)(1− α)

∣∣∣∣∣∣
for every unitarily invariant norm.
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Proof. The result follows from Theorem 3.2 by taking X = I, p = q = 2, and
r = 1

2
. �

Specializing Corollary 3.3 to some particular functions, we have the following
result.

Corollary 3.4. Let A,B ∈ Mn(C) be positive semidefinite, and let c, α ∈ R with
c ≥ 1 and α ∈ [0, 1]. Then∣∣∣∣∣∣(|AB|+ cI

)m − cmI
∣∣∣∣∣∣2

≤
(∣∣∣∣∣∣α(((A+ cI)m − cmI

))2
+ (1− α)

((
(B + cI)m − cmI

))2∣∣∣∣∣∣
×
∣∣∣∣∣∣(1− α)

((
(A+ cI)m − cmI

))2
+ α

((
(B + cI)m − cmI

))2∣∣∣∣∣∣)
for every unitarily invariant norm and for m = 2, 3, . . ..

Proof. The result follows by applying Corollary 3.3 to the function f(t) = (t +
c)m − cm. �

In the rest of this section, we generalize (1.8). Our first generalization can be
stated as follows.

Theorem 3.5. Let A,B,X ∈ Mn(C) such that A, B are positive semidefinite
and X 6= 0, and let p, q, r, α ∈ R such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and

α ∈ [0, 1]. If f is an increasing submultiplicative function on [0,∞) with f(0) = 0
such that f and fmin(p,q)(tr) are convex, then∣∣∣∣∣∣∣∣∣f( |AXB|2r

‖X‖2r
)∣∣∣∣∣∣∣∣∣ ≤ 1

‖X‖
(∣∣∣∣∣∣αf p(A2r)X + (1− α)Xf p(B2r)

∣∣∣∣∣∣1/p
×
∣∣∣∣∣∣(1− α)f q(A2r)X + αXf q(B2r)

∣∣∣∣∣∣1/q)
for every unitarily invariant norm.

Proof. Let Y = UDV ∗ be a singular value decomposition of Y = X
‖X‖ . Then U, V

are unitary matrices and D is a positive semidefinite contraction. Consequently,∣∣∣∣∣∣∣∣∣f( |AXB|
‖X‖

)2r∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣f(|AY B|2r
)∣∣∣∣∣∣

=
∣∣∣∣∣∣f(∣∣(AU)D(BV )∗

∣∣2r)∣∣∣∣∣∣
=

∣∣∣∣∣∣f(∣∣|AU |D|BV |
∣∣2r)∣∣∣∣∣∣ (by Lemma 2.6)

≤
(∣∣∣∣∣∣D1/2

(
Cfp/2(|AU |2r),fp/2(|BV |2r)(α)

)
D1/2

∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣D1/2
(
Cfq/2(|AU |2r),fq/2(|BV |2r)(1− α)

)
D1/2

∣∣∣∣∣∣1/q)
(by Theorem 3.2). (3.3)
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Now, ∣∣∣∣∣∣D1/2Cfp/2(|AU |2r),fp/2(|BV |2r)(α)D
1/2

∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣DC(U∗fp(A2r)U)1/2,(V ∗fp(B2r)V )1/2(α)

+ C(U∗fp(A2r)U)1/2,(V ∗fp(B2r)V )1/2(α)D
∣∣∣∣∣∣

(by (1.4))

=
∣∣∣∣∣∣Re(αU∗fp(A2r)UD + (1− α)DV ∗fp(B2r)V

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣αU∗fp(A2r)UD + (1− α)DV ∗fp(B2r)V
∣∣∣∣∣∣

=

∣∣∣∣∣∣αf p(A2r)X + (1− α)Xf p(B2r)
∣∣∣∣∣∣

‖X‖
. (3.4)

Similarly, we have ∣∣∣∣∣∣D1/2Cfq/2(A2r),fq/2(B2r)(1− α)D1/2
∣∣∣∣∣∣

≤ |||(1− α)f q(A2r)X + αXf q(B2r)|||
‖X‖

. (3.5)

Now, the result follows from (3.3), (3.4), and (3.5). �

An application of Theorem 3.5 can be seen in the following corollary.

Corollary 3.6. Let A,B,X ∈ Mn(C) such that A, B are positive semidefinite
and X 6= 0, and let p, q, r, α ∈ R such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and

α ∈ [0, 1]. If f is an increasing submultiplicative function on [0,∞) with f(0) = 0
such that f(t) and fmin(p,q)(tr) are convex functions, then∣∣∣∣∣∣f(|AXB|2r

)∣∣∣∣∣∣
≤ f(‖X‖2r)

‖X‖
(∣∣∣∣∣∣αf p(A2r)X + (1− α)Xf p(B2r)

∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣(1− α)f q(A2r)X + αXf q(B2r)
∣∣∣∣∣∣1/q)

for every unitarily invariant norm.

Proof. Let Y = X
‖X‖ and a = ‖X‖. Then Y is a contraction with ‖Y ‖ = 1, and

so ∣∣∣∣∣∣f(|AXB|2r
)∣∣∣∣∣∣

=
∣∣∣∣∣∣f(a2r|AY B|2r

)∣∣∣∣∣∣
≤ f(a2r)

∣∣∣∣∣∣f(|AY B|2r
)∣∣∣∣∣∣ (since f is submultiplicative)

≤ f(a2r)

‖Y ‖
(∣∣∣∣∣∣αf p(A2r)Y + (1− α)Y f p(B2r)

∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣(1− α)f q(A2r)Y + αY f q(B2r)
∣∣∣∣∣∣1/q)

(by Theorem 3.5)
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=
f(‖X‖2r)

‖X‖
(∣∣∣∣∣∣αf p(A2r)X + (1− α)Xf p(B2r)

∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣(1− α)f q(A2r)X + αXf q(B2r)
∣∣∣∣∣∣1/q),

as required. �

The following application of Corollary 3.6 is a considerable generalization of
the Zou–Jiang inequality (1.8) for functions of matrices. In fact, (1.8) can be
retained by taking f(t) = t.

Corollary 3.7. Let A,B,X ∈ Mn(C) such that A, B are positive semidefinite
and X 6= 0, and let α ∈ [0, 1]. If f is an increasing submultiplicative function on
[0,∞) such that f(t) and f 2(t1/2) are convex with f(0) = 0, then∣∣∣∣∣∣f(|AXB|

)∣∣∣∣∣∣2 ≤ f(‖X‖)
‖X‖

(∣∣∣∣∣∣αf 2(A)X + (1− α)Xf 2(B)
∣∣∣∣∣∣

×
∣∣∣∣∣∣(1− α)f 2(A)X + αXf 2(B)

∣∣∣∣∣∣)
for every unitarily invariant norm.

Proof. The result follows from Corollary 3.6 by taking r = 1
2
and p = q = 2. �

To give another application of Theorem 3.5, we need the following lemma.

Lemma 3.8. Let Y ∈ Mn(C) be a Hermitian matrix, and let f : R → R be a
convex function with f(0) ≤ 0. Then

(a) f(αY ) ≤ αf(Y ) for 0 ≤ α ≤ 1,
(b) f(αY ) ≥ αf(Y ) for 1 ≤ α < ∞.

Proof. Let Y = UDU∗ be a spectral decomposition of Y with D = diag(λ1, . . . ,
λn), and let 0 ≤ α ≤ 1. Then

f(αY ) = Uf(αD)U∗

= U diag
(
f(αλ1), . . . , f(αλn)

)
U∗. (3.6)

Also, we have

f(αλj) = f
(
αλj + (1− α)0

)
≤ αf(λj) + (1− α)f(0) (since f is convex)

≤ αf(λj) (since f(0) ≤ 0) (3.7)

for j = 1, . . . , n. The relation (3.6) and the inequality (3.7) imply that

f(αY ) ≤ U diag
(
αf(λ1), . . . , αf(λn)

)
U∗

= αUf(D)U∗

= αf(Y ).

This proves part (a). The proof of part (b) follows from part (a) by replacing Y
and α by αY and 1

α
, respectively. �

An application of Theorem 3.5 can be seen in the following corollary.
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Corollary 3.9. Let A,B,X ∈ Mn(C) such that A, B are positive semidefinite
and X is a contraction with X 6= 0, and let p, q, r, α ∈ R such that p, q > 1 with
1
p
+ 1

q
= 1, r > 0, and α ∈ [0, 1]. If f is an increasing submultiplicative function

on [0,∞) with f(0) = 0 such that f(t) and fmin(p,q)(tr) are convex, then∣∣∣∣∣∣f(|AXB|2r
)∣∣∣∣∣∣ ≤ (

‖X‖2r−1
∣∣∣∣∣∣αf p(A2r)X + (1− α)Xf p(B2r)

∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣(1− α)f q(A2r)X + αXf q(B2r)
∣∣∣∣∣∣1/q)

for every unitarily invariant norm.

Proof. Since X is a contraction, we have ‖X‖ ≤ 1 and so 1
‖X‖2r ≥ 1. In Lemma

3.8(b), letting Y = A and α = 1
‖X‖2r , we have

f
( |AXB|2r

‖X‖2r
)
≥ f(|AXB|2r)

‖X‖2r
,

and so ∣∣∣∣∣∣∣∣∣f( |AXB|2r

‖X‖2r
)∣∣∣∣∣∣∣∣∣ ≥ |||f(|AXB|2r)|||

‖X‖2r
. (3.8)

Now, the result follows from Theorem 3.5 and (3.8). �

We conclude this article with the following remark.

Remark 3.10. Inequalities for arbitrary matrices A,B ∈ Mn(C), which are equiva-
lent to the inequalities given in Sections 2 and 3 for positive semidefinite matrices
can be obtained by replacing the matrices A and B by |A| and |B|, respectively,
and then using Lemma 2.6. Indeed, results equivalent to Theorem 2.7 and Corol-
lary 3.6 can be stated as follows. Let A,B,X ∈ Mn(C) with X 6= 0, and let
p, q, r, α ∈ R such that p, q > 1 with 1

p
+ 1

q
= 1, r > 0, and α ∈ [0, 1]. If f is an

increasing submultiplicative function on [0,∞) with f(0) = 0 such that f(t) and
fmin(p,q)(tr) are convex, then

(1) ∣∣∣∣∣∣f(|AXB∗|2r
)∣∣∣∣∣∣ ≤ (∣∣∣∣∣∣fp

(∣∣α|A|2X + (1− α)X|B|2
∣∣r)∣∣∣∣∣∣1/p

×
∣∣∣∣∣∣f q

(∣∣(1− α)|A|2X + αX|B|2
∣∣r)∣∣∣∣∣∣1/q)

for every unitarily invariant norm,
(2) ∣∣∣∣∣∣f(|AXB∗|2r

)∣∣∣∣∣∣
≤ f(‖X‖2r)

‖X‖
(∣∣∣∣∣∣αf p

(
|A|2r

)
X + (1− α)Xf p

(
|B|2r

)∣∣∣∣∣∣1/p
×

∣∣∣∣∣∣(1− α)f q
(
|A|2r

)
X + αXf q

(
|B|2r

)∣∣∣∣∣∣1/q)
for every unitarily invariant norm.
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