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Abstract. In the setting of the Heisenberg group, we define weighted Hardy
spaces by means of their atomic characterization, and we establish the (sharp)
boundedness of Hausdorff operators on power-weighted Hardy spaces. More-
over, we obtain sufficient and necessary conditions for the boundedness of Haus-
dorff operators on local Hardy spaces in the Heisenberg group.

1. Introduction

The appearance of Hausdorff operators can be traced back to the solution of
certain classical problems in analysis. Extensive modern-day research of general
Hausdorff operators was started by Galanopoulos and Siskakis [10] in the complex
analysis setting, and Liflyand and Móricz [24] in the Fourier transform setting.
We refer the reader to a survey paper by Liflyand [22] for more information about
the background and development of Hausdorff operators.

Let Φ be an integrable function on R+. The 1-dimensional Hausdorff operator
is defined by

hΦ(f)(x) =

∫ ∞

0

Φ(t)

t
f
(x
t

)
dt, x ∈ R.
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It is well known that many classical operators in harmonic analysis are special
cases of Hausdorff operators if one chooses a suitable Φ. Along with Hardy opera-
tors, Hilbert operators, and Hardy–Littlewood–Pólya operators (see [1], [8], [33],
[34]), Riemann–Liouville and Weyl fractional integrals can also be derived from
1-dimensional Hausdorff operators (see [36]). In particular, if we consider x ∈ Rn

in hΦ directly, it is easy to check that we can derive from hΦ the weighted Hardy
operator and its adjoint operator by choosing appropriate functions Φ, which
have been widely studied in recent years (see [9], [35], and the references therein).

A natural n-dimensional version of a Hausdorff operator hΦ on Rn is defined
by

HΦ(f)(x) =

∫
Rn

Φ(y)

|y|n
f
( x

|y|

)
dy.

More generally, Lerner and Liflyand [20] studied the operator HΦ,A for the “good”
n× n matrix functions A(·):

HΦ,A(f)(x) =

∫
Rn

Φ(y)

|y|n
f
(
A(y)x

)
dy.

It is easy to verify that if

A(y) = diag
[ 1

|y|
, . . . ,

1

|y|
,
1

|y|

]
,

then

HΦ,Af(x) = HΦf(x).

(For the boundedness of Hausdorff operators, we refer the reader to [1], [17], [20],
[21], and [23], and the references therein.) Very recently, Ruan and Fan [29] solved
an open problem posed by Liflyand in [22]. They established the sharp bound-
edness of Hausdorff operators on power-weighted Hardy spaces and local Hardy
spaces with their atomic decomposition. We will give a nontrivial extension of
[29] in the setting of the Heisenberg group since it is a noncommutative nilpotent
Lie group, in which the geometric motions are quite different from the Euclidean
space due to the loss of interchangeability, and we will modify a typo on the
power index in Theorem 1.3(i) in [29].

The theory of Hardy spaces has been a central part of modern harmonic analy-
sis. Here we only focus on such spaces in the setting of the Heisenberg group. It is
known that the Heisenberg group plays an important role in several branches of
mathematics, such as representation theory, harmonic analysis, several complex
variables, partial differential equations, quantum mechanics, and signal theory
(see [31] for more details). Coifman and Weiss [3] introduced Hardy spaces Hp

for the general class of spaces of homogeneous type using as a definition atomic
decompositions. Latter and Uchiyama [19] extended the atomic decomposition to
two examples of Hardy spaces including Hardy spaces on the Heisenberg group.
Folland and Stein [6] offered a lucid, systematic treatment of the real-variable
theory of Hardy spaces in the setting of homogeneous groups, which includes
the Heisenberg group. Geller [12] studied the characterization of Hardy operators
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through Riesz transforms on the Heisenberg group. Christ and Geller [2] later dis-
cussed the singular integral characterizations of Hardy spaces on homogeneous
groups. In [32], the first-named author and Fan established the boundedness for
two kinds of special Hausdorff operators, the Hausdorff–Poisson operator and the
Hausdorff–Gauss operator, on Hardy spaces Hp with 0 < p < 1. This article
continues a series of papers about Hausdorff operators on Hardy spaces in the
setting of the Heisenberg group.

Now we give a simple introduction to the Heisenberg group (for more details,
we refer to [31]). The elements in the Heisenberg group Hn meet the group law

x · y =
(
x1 + y1, x2 + y2, . . . , x2n + y2n, x2n+1 + y2n+1 + 2

n∑
j=1

(yjxn+j − xjyn+j)
)
,

where x = (x1, x2, . . . , x2n+1), y = (y1, y2, . . . , y2n+1). By definition, we can see
that the identity element on Hn is 0 ∈ R2n+1, while the element inverse to x
is −x, that is, x−1 = −x. The corresponding Lie algebra is generated by the
left-invariant vector fields

Xj =
∂

∂xj

+ 2xn+j
∂

∂x2n+1

, j = 1, . . . , n,

Xn+j =
∂

∂xn+j

− 2xj
∂

∂x2n+1

, j = 1, . . . , n,

X2n+1 =
∂

∂x2n+1

.

The only nontrivial commutator relations are

[Xj, Xn+j] = −4X2n+1, j = 1, . . . , n.

The Heisenberg group Hn is a homogeneous group with dilations

δr(x1, x2, . . . , x2n, x2n+1) = (rx1, rx2, . . . , rx2n, r
2x2n+1), r > 0.

The Haar measure on Hn coincides with the usual Lebesgue measure on R2n×R.
We denote by |E| the measure of any measurable set E ⊂ Hn. Then∣∣δr(E)

∣∣ = rQ|E|, d(δrx) = rQ dx,

where Q = 2n+ 2 is called the homogeneous dimension of Hn.
The Heisenberg distance derived from the norm

|x|h =
[( 2n∑

i=1

x2
i

)2

+ x2
2n+1

] 1
4
,

where x = (x1, x2, . . . , x2n, x2n+1), is given by

d(p, q) = d(q−1p, 0) = |q−1p|h.
This distance d is left-invariant in the sense that d(p, q) remains unchanged when
p and q are both left-translated by some fixed vector on Hn. Furthermore, d
satisfies the triangular inequality (see p. 320 in [18])

d(p, q) ≤ d(p, x) + d(x, q), p, x, q ∈ Hn.
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For r > 0 and x ∈ Hn, the ball and sphere with center x and radius r on Hn

are given by

B(x, r) =
{
y ∈ Hn : d(x, y) < r

}
and

S(x, r) =
{
y ∈ Hn : d(x, y) = r

}
,

respectively. We have ∣∣B(x, r)
∣∣ = ∣∣B(0, r)

∣∣ = ΩQr
Q,

where

ΩQ =
2πn+ 1

2Γ(n
2
)

(n+ 1)Γ(n)Γ(n+1
2
)
, (1.1)

is the volume of the unit ball B(0, 1) on Hn. And according to Lemma 4 in [4],

ωQ =

∫
S(0,1)

dx = QΩQ.

Now we will provide the definition of Hausdorff operators on the Heisenberg
group (see [15], [30]). We denote by M2n+1 the space of (2n + 1) × (2n + 1)
matrices over R. We identify linear transforms of R2n+1 with their matrices with
respect to the canonical basis, and hence think of elements of M2n+1 as either
matrices or linear maps, according to context.

Definition 1.1. Let Φ be a locally integrable function on Hn. The Hausdorff oper-
ators on Hn are defined by

TΦf(x) =

∫
Hn

Φ(y)

|y|Qh
f(δ|y|−1

h
x) dy,

TΦ,Af(x) =

∫
Hn

Φ(y)

|y|Qh
f
(
A(y)x

)
dy,

where A(y) ∈ M2n+1 for all y ∈ Hn, and we assume that detA(y) 6= 0 almost
everywhere in the support of Φ.

Remark 1.2. It is clear that if A(y) = diag[1/|y|h, . . . , 1/|y|h, 1/|y|2h], then
TΦ,Af(x) = TΦf(x).

We should mention two points here. On the one hand, unlike in Euclidean
spaces, for any matrix F ∈ M2n+1 and x, y ∈ Hn, (Fy)−1Fx may not be equal
to F (y−1x) in general due to the noncommutative property. But if F ∈ Aut(Hn),
then F and F−1 can commute with scalar multiplication; here Aut(Hn) denotes
the automorphism groups of Hn (see Proposition 1.21 and Theorem 1.22 in
[5]). On the other hand, unlike [29], for F = (aij) ∈ M2n+1, we cannot use

(
∑2n+1

i,j=1 |aij|2)1/2 as its norm since it does not satisfy |Fx|h ≤ ‖F‖|x|h on the
Heisenberg group.

In this article, we establish the sharp boundedness of Hausdorff operators on
power-weighted Hardy spaces as well as Hardy spaces.
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Theorem 1.3. Let Φ be a nonnegative function. Suppose that A(y) ∈ Aut(Hn)
almost everywhere and that there exists a constant M independent of y such that
‖A−1(y)‖ ≤ M‖A(y)‖−1.

(i) Let −Q < α < Q and α 6= 0. If all entries of the same row of A(y)
are nonnegative uniformly or nonpositive uniformly on y ∈ supp(Φ), then
TΦ,A is bounded on H1

|·|αh
(Hn) if and only if∫

Hn

Φ(y)

|y|Qh

∥∥A−1(y)
∥∥α∣∣detA−1(y)

∣∣ dy < ∞.

(ii) If there exists at least one row of A(y) such that all entries of such row
are nonnegative uniformly or nonpositive uniformly on y ∈ supp(Φ), then
TΦ,A is bounded on H1(Hn) if and only if∫

Hn

|Φ(y)|
|y|Qh

∣∣detA−1(y)
∣∣ dy < ∞.

Remark 1.4. The corresponding results in Rn have been obtained in [29, Theo-
rem 1.3]. However, Theorem 1.3(i) in [29] has a typo on the upper bound for α.
In fact, the function a(x1, x2) constructed in the proof of Theorem 1.3(i) may not
satisfy the cancellation condition when s = [α] ≥ n.

Corollary 1.5. Let Φ be a nonnegative-valued function. Then TΦ is bounded on
H1(Hn) if and only if Φ ∈ L1(Hn).

We also obtain sufficient and necessary conditions for the boundedness of Haus-
dorff operators on local Hardy spaces.

Theorem 1.6. Let Φ be a nonnegative function. Suppose that A(y) ∈ Aut(Hn)
almost everywhere. If there exists a constant M independent of y such that
‖A−1(y)‖ ≤ M‖A(y)‖−1, then TΦ,A is bounded on h1(Hn) if and only if∫

‖A−1(y)‖<1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣max

{
1, ln

(∥∥A−1(y)
∥∥−1)}

dy

+

∫
‖A−1(y)‖≥1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ dy < ∞.

Corollary 1.7. Let Φ be a nonnegative-valued function. Then TΦ is bounded on
h1(Hn) if and only if∫

|y|h≥1

Φ(y) dy +

∫
|y|h<1

Φ(y)max
{
1, ln

(
|y|−1

h

)}
dy < ∞.

In Section 2, we will introduce the weighted Hardy spaces by means of their
atomic characterization and investigate the boundedness of Hausdorff operators
on power-weighted Hardy spaces. In Section 3, we will consider the estimates for
Hausdorff operators on local Hardy spaces. Further comments will be given in
Section 4.

We should mention that, unlike in weighted Hardy spaces, we will use the
equivalent characterizations of local Hardy spaces by both atoms and maximal
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functions for the study of the boundedness of Hausdorff operators. However, on
the Heisenberg group, we have not found such equivalence results for weighted
local Hardy spaces. That is why we only consider local Hardy spaces with no
weights.

Here and throughout this article, we use the notation A � B to denote that
there exists a constant C > 0 independent of all essential values (especially atoms)
and variables such that A ≤ CB. And we use the notation A ' B to denote
that there exist positive constants C1 and C2 independent of all essential values
and variables such that C1B ≤ A ≤ C2B. Also, we use N to denote the set of
nonnegative integers.

2. Hausdorff operators on power-weighted Hardy spaces H1
|x|αh

(Hn)

Recall that if f and g are measurable functions on Hn, their convolution f ∗ g
is defined by

f ∗ g =

∫
f(y)g(y−1x) dy =

∫
f(xy−1)g(y) dy,

provided that the integrals converge. The Schwartz class S(Hn) is the set of all φ ∈
C∞(Hn) that satisfies P (XI)φ and that is bounded on Hn for every polynomial P
and every multi-index I = (x1, . . . , x2n+1), where XI = X i1

1 · · ·X2n+1
2n+1 . The dual

space S ′(Hn) of S(Hn) is the space of tempered distributions on Hn.
For f ∈ S ′(Hn) and Ψ ∈ S(Hn), the nontangential maximal function MΨf of

f with respect to Ψ is defined by

MΨf(x) = sup
|x−1y|h<r<∞

∣∣f ∗Ψr(y)
∣∣, (2.1)

where Ψr(y) = r−QΨ(δr−1y). The nontangential grand maximal function M(N)f
is defined by

M(N)f(x) = sup
Ψ∈S,‖Ψ‖N≤1

MΨf(x). (2.2)

Folland and Stein [6] introduced Hardy spaces and atomic Hardy spaces on
homogeneous groups which include the Heisenberg group.

Definition 2.1. For 0 < p ≤ 1, let Np = [Q(1/p−1)]+1. The Hardy space Hp(Hn)
is defined by

Hp(Hn) =
{
f ∈ S ′(Hn) : M(Np)f ∈ Lp(Hn)

}
with

‖f‖Hp(Hn) = ‖M(Np)f‖Lp(Hn).

As is known in [6], the ordered triplet (p, q, α) is called admissible if 0 < p ≤
1 ≤ q ≤ ∞, p 6= q, α ∈ N, and α ≥ [Q(1

p
− 1)], where [·] is the integer function.

Every polynomial on Hn can be written uniquely as

P =
∑
I

aIx
I (xI = xi1

1 · · · xi2n+1

2n+1),
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where I = (i1, . . . , i2n+1) and all but finitely many of coefficients aI vanish.
Clearly, xI is homogeneous of degree d(I) :=

∑2n
k=1 ik + 2i2n+1. The homoge-

neous degree of P is defined to be max{d(I) : aI 6= 0}. We denote the space of
polynomials of homogeneous degree less than or equal to α by Pα.

Definition 2.2. Let (p, q, α) be an admissible triplet.

(1) A function a ∈ Lq(Hn) is called a (p, q, α)-atom centered at x0 if it satisfies
the following conditions:
(i) there exists a ball B(x0, r) such that supp(f) ⊂ B(x0, r);

(ii) ‖f‖Lq(Hn) ≤ |B|
1
q
− 1

p ;
(iii)

∫
Hn f(x)P (x) dx = 0, for P ∈ Pα.

(2) A function a ∈ Lq(Hn) is called a big (p, q)-atom centered at x0 if there
exists a ball B(x0, r) with r ≥ 1

2
such that it satisfies (i) and (ii).

Definition 2.3. If (p, q, α) is an admissible triplet, the atomic Hardy space
Hp

q,α(Hn) is defined by the set of all tempered distributions of the form
∑

j λjfj
(the sum converging in the topology of S ′), where each fj is a (p, q, α)-atom and∑

j |λj|p < ∞.

If f ∈ Hp
q,α(Hn), the quasinorm ‖f‖Hp

q,α(Hn) (it is a norm when p = 1) is defined
by

‖f‖Hp
q,α(Hn) = inf

(∑
j

|λj|p
) 1

p
,

where the infimum is taken over all (p, q, α)-atom decompositions of f .
The following equivalent relation is due to Theorem 3.30 in [6].

Lemma 2.4. Suppose that 0 < p ≤ 1. If (p, q, α) is admissible, then

Hp(Hn) = Hp
q,α(Hn)

and

‖f‖Hp(Hn) ' ‖f‖Hp
q,α(Hn).

In this section, we will also consider weighted Hardy spaces on the Heisenberg
group.

Definition 2.5 ([14, p. 369]). A locally integrable function w : Hn → R+ is said to
satisfy Muckenhaupt’s condition Ap = Ap(Hn), 1 < p < ∞, if there is a constant
C = C(w, p) such that for any ball B ⊂ Hn,

sup
B

( 1

|B|

∫
B

w(x) dx
)( 1

|B|

∫
B

w(x)1−p′ dx
)p−1

≤ C,
1

p
+

1

p′
= 1.

A locally integrable function w is said to belong to A1(Hn) if there is a constant
C = C(w, p) such that

|B|−1

∫
B

w(x) dx ≤ C ess inf
x∈B

w(x)



916 Q. WU and Z. FU

and

A∞(Hn) :=
⋃

1≤p<∞

Ap.

By the standard proofs of Propositions 1.4.1 and 1.4.2 in [27] together with
the reverse Hölder inequality on the Heisenberg group in [28], we can get the
following results.

Proposition 2.6.

(i) We have Ap(Hn) ( Aq(Hn), for 1 ≤ p < q < ∞.
(ii) If w ∈ Ap(Hn), 1 < p < ∞, then there is an ε > 0 such that p − ε > 1

and w ∈ Ap−ε(Hn).

An important example of an Ap weight is the power function |x|αh . By the
similar proofs of Propositions 1.4.3 and 1.4.4 in [27], we can get the following
properties of power weights.

Proposition 2.7. Let x ∈ Hn. Then

(i) |x|αh ∈ A1 if and only if −Q < α ≤ 0;
(ii) |x|αh ∈ Ap, 1 < p < ∞, if and only if −Q < α < Q(p− 1).

Denote by qw the critical index for w, that is, the infimum of all q’s such that
w satisfies the condition Aq. From Proposition 2.6, we can see that unless qw = 1,
w is never an Aqw weight. Also, by Propositions 2.6 and 2.7, we can obtain that
if 0 < α < ∞, then

|x|αh ∈
⋂

Q+α
Q

<p<∞

Ap, (2.3)

where (Q+ α)/Q is the critical index of |x|αh .
We will define the weighted Hardy spaces Hp

w(Hn), 0 < p ≤ 1, by means of
their atomic characterization as follows.

Definition 2.8. Given a weight w ∈ A∞ and an admissible triplet (p, q, [Q(qw/p−
1)], a w-(p, q, [Q(qw/p−1)]-atom centered at x0 with respect to w will be a function
a satisfying the following three conditions.

(i) There exists a ball B(x0, r) such that supp(a) ⊂ B(x0, r).

(ii) We have ‖a‖Lq
w(Hn) ≤ w(B(x0, r))

1
q
− 1

p , if q < ∞ or ‖a‖L∞(Hn) ≤
w(B(x0, r))

− 1
p , if q = ∞.

(iii) We have
∫
Hn a(x)x

I dx = 0 for all multi-indices I = (i1, i2, . . . , i2n+1) ∈
N2n+1 with |I| =

∑2n
k=1 ik + 2i2n+1 ≤ [Q(qw/p− 1)].

Definition 2.9. Let w ∈ A∞ be a weight, and let 0 < p ≤ 1 < q ≤ ∞. A tempered
distribution f ∈ S ′ belongs to Hp

w(Hn) if and only if f can be written as a series

f =
∑
j

λjaj (2.4)

(the sum converging in S ′), where each aj is a w-(p, q, [Q(qw/p− 1)])-atom and∑
j

|λj|p < ∞. (2.5)
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Moreover, by setting ‖f‖p
Hp

w(Hn)
to be the infimum of the sums (2.5) over all

decompositions (2.4), one obtains the norm for such a space.

We obtain the boundedness of Hausdorff operators on power-weighted Hardy
spaces.

Proposition 2.10. Suppose that A(y) ∈ Aut(Hn) almost everywhere.

(i) Let 0 < α < ∞. Then for any Q+α
Q

< q < ∞,∥∥TΦ,A(f)
∥∥
H1

|·|α
h
(Hn)

� K1‖f‖H1
|·|α

h
(Hn),

where

K1 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥A−1(y)
∥∥α∣∣detA−1(y)

∣∣( ‖A−1(y)‖Q

| detA−1(y)|

)q−1

dy

and ∥∥A−1(y)
∥∥ = sup

x 6=0

|A−1(y)x|h
|x|h

.

(ii) Let −Q < α ≤ 0. Then for any 1 < s ≤ ∞,∥∥TΦ,A(f)
∥∥
H1

|·|α
h
(Hn)

� K2‖f‖H1
|·|α

h
(Hn),

where

K2 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥A(y)∥∥−α∣∣detA−1(y)
∣∣( ‖A−1(y)‖Q

| detA−1(y)|

)1− 1
s
dy.

In particular, if α = 0, we get the boundedness of TΦ,A on the Hardy space
H1(Hn).

Corollary 2.11. Suppose that A(y) ∈ Aut(Hn) almost everywhere. Then for any
1 < q ≤ ∞, ∥∥TΦ,A(f)

∥∥
H1(Hn)

� K3‖f‖H1(Hn),

where

K3 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥A−1(y)
∥∥Q(1− 1

q
)∣∣detA−1(y)

∣∣ 1q dy.
Before proving Proposition 2.10, we need the following results for matrix and

Ap weights.

Lemma 2.12. Suppose that the (2n+1)× (2n+1) matrix A is invertible. Then

‖A‖−Q ≤ | detA−1| ≤ ‖A−1‖Q, (2.6)

where

‖A‖ = sup
x∈Hn,x 6=0

|Ax|h
|x|h

.
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Proof. It is clear that |Ax|h ≤ ‖A‖|x|h for any x ∈ Hn. Then using A−1x instead
of x, we can get

‖A‖−1|x|h ≤ |A−1x|h ≤ ‖A−1‖|x|h.
Therefore, ∣∣{x ∈ Hn : ‖A‖−1|x|h ≤ 1

}∣∣ ≥ ∣∣{x ∈ Hn : |A−1x|h ≤ 1
}∣∣

≥
∣∣{x ∈ Hn : ‖A−1‖|x|h ≤ 1

}∣∣,
which implies that

ΩQ‖A‖Q ≥ ΩQ| detA| ≥ ΩQ‖A−1‖−Q.

Consequently, (2.6) holds. �

By the definition of Ap weight and the Hölder inequality, we can easily get the
following result.

Lemma 2.13. If w ∈ Ap(Hn), 1 ≤ p < ∞, then for any f ∈ L1
loc(Hn) and any

ball B ⊂ Hn,

1

|B|

∫
B

∣∣f(x)∣∣ dx �
( 1

w(B)

∫
B

∣∣f(x)∣∣pw(x) dx) 1
p
.

By taking f(x) = χE(x) in Lemma 2.13, we can deduce the following lemma.

Lemma 2.14. Let w ∈ Ap(Hn), p ≥ 1. Then for any ball B and its measurable
subset E ⊂ B, ( |E|

|B|

)p

� w(E)

w(B)
,

where w(B) =
∫
B
w(x) dx. Particularly, for any λ > 1,

w
(
B(x0, λr)

)
� λQpw

(
B(x0, r)

)
.

Proof of Proposition 2.10. Here and in the remainder of the article, for the sake
of convenience, sometimes we use w(x) instead of |x|αh .

(i) Since 0 < α < ∞, by Proposition 2.7, |x|αh ∈ Aq for all Q+α
Q

< q < ∞.

Suppose that f ∈ H1
|·|αh

(Hn). It suffices to show that∥∥TΦ,A(f)
∥∥
H1

|·|α
h
(Hn)

� K1

∑
j

|λj|

uniformly for any atomic decomposition of f :

f =
∑
j

λjaj,

where each aj is a | · |αh-(1, q, [α])-atom and
∑

j |λj| < ∞.
By the Minkowski inequality,∥∥TΦ,A(f)

∥∥
H1

|·|α
h
(Hn)

�
∑
j

|λj|
∥∥TΦ,A(aj)

∥∥
H1

|·|α
h
(Hn)

.
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Thus it suffices to show that∥∥TΦ,A(a)
∥∥
H1

|·|α
h
(Hn)

� K1

uniformly for all | · |αh-(1, q, [α])-atoms a. Using the Minkowski inequality again,
we obtain ∥∥TΦ,A(a)

∥∥
H1

|·|α
h
(Hn)

≤
∫
Hn

|Φ(y)|
|y|Qh

∥∥a(A(y)·)∥∥
H1

|·|α
h
(Hn)

dy.

Therefore, it remains to verify that∥∥a(A(y)·)∥∥
H1

|·|α
h
(Hn)

�
∥∥A−1(y)

∥∥α∣∣detA−1(y)
∣∣( ‖A−1(y)‖Q

| detA−1(y)|

)q−1

uniformly for a. For this we only need to show that

ay(x) :=
∥∥A−1(y)

∥∥−α∣∣detA(y)∣∣( ‖A−1(y)‖Q

| detA−1(y)|

)1−q

a
(
A(y)x

)
is a | · |αh-(1, q, [α])-atom up to a constant factor which is independent of a.

Suppose that the smallest ball that satisfies Definition 2.8 for a is B(x0, r).
Since A(y) ∈ Aut(Hn) almost everywhere, we have

diam
(
A−1(y)B(x0, r)

)
= sup

x,z∈B(x0,r)

∣∣(A−1(y)z
)−1(

A−1(y)x
)∣∣

h

≤ 2
∥∥A−1(y)

∥∥r. (2.7)

Therefore,

supp ay(x) = supp a
(
A(y)x

)
⊂ B

(
x̃0,

∥∥A−1(y)
∥∥r)

for some x̃0 ∈ Hn.
By a change of variables, we have

‖ay‖Lq
|·|α

h
(Hn)

=
∥∥A−1(y)

∥∥−α∣∣detA(y)∣∣( ‖A−1(y)‖Q

| detA−1(y)|

)1−q(∫
Hn

∣∣a(A(y)x)∣∣q|x|αh dx) 1
q

�
∥∥A−1(y)

∥∥α( 1
q
−1)∣∣detA(y)∣∣1− 1

q

( ‖A−1(y)‖Q

| detA−1(y)|

)1−q(∫
Hn

∣∣a(z)∣∣q|z|αh dz) 1
q

�
∥∥A−1(y)

∥∥α( 1
q
−1)∣∣detA(y)∣∣1− 1

q

( ‖A−1(y)‖Q

| detA−1(y)|

)1−q(∫
B(x0,r)

|z|αh dz
) 1

q
−1

. (2.8)

Since w(x) = |x|αh ∈ Aq and A−1(y)B(x0, r) ⊂ B(x̃0, ‖A−1(y)‖r), by Lemma
2.14, we have ( |A−1(y)B(x0, r)|

|B(x̃0, ‖A−1(y)‖r)|

)q

� w(A−1(y)B(x0, r))

w(B(x̃0, ‖A−1(y)‖r))
.
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Thus,

w
(
B
(
x̃0,

∥∥A−1(y)
∥∥r))

�
( |B(x̃0, ‖A−1(y)‖r)|

|A−1(y)B(x0, r)|

)q

w
(
A−1(y)B(x0, r)

)
=

( ‖A−1(y)‖Q

| detA−1(y)|

)q
∫
A−1(y)B(x0,r)

|x|αh dx

≤
( ‖A−1(y)‖Q

| detA−1(y)|

)q∥∥A−1(y)
∥∥α∣∣detA−1(y)

∣∣ ∫
B(x0,r)

|z|αh dz. (2.9)

Therefore,∫
B(x0,r)

|z|αh dz �
( ‖A−1(y)‖Q

| detA−1(y)|

)−q∥∥A−1(y)
∥∥−α∣∣detA(y)∣∣w(B(

x̃0,
∥∥A−1(y)

∥∥r)).
Substituting it into (2.8), we obtain

‖ay‖Lq
|·|α

h
(Hn) � w

(
B
(
x̃0,

∥∥A−1(y)
∥∥r)) 1

q
−1
.

Since A(y) ∈ Aut(Hn), for any homogeneous polynomial P in P[α], P ◦A−1(y)
is also a homogeneous polynomial in P[α], which ensures that ay still satisfies
the cancellation condition. Therefore, ay is indeed a | · |αh-(1, q, [α])-atom up to a
constant factor which is independent of a. Proposition 2.10(i) is proved.

(ii) Since −Q < α ≤ 0, we have |x|αh ∈ A1(Hn). Replacing the | · |αh-(1, q, [α])-
atom a and ay in the proof of (1) by the | · |αh-(1, s, 0)-atom b, 1 < s ≤ ∞, and

by(x) :=
∥∥A(y)∥∥α∣∣detA(y)∣∣( ‖A−1(y)‖Q

| detA−1(y)|

) 1
s
−1

b
(
A(y)x

)
,

respectively, we just need to show that

‖by‖Ls
|·|α

h
(Hn) � w

(
B
(
x̃0,

∥∥A−1(y)
∥∥r)) 1

s
−1
.

In fact, as in (2.8), we have

‖by‖Ls
|·|α

h
(Hn) �

∥∥A(y)∥∥α(1− 1
s
)∣∣detA(y)∣∣1− 1

s

( ‖A−1(y)‖Q

| detA−1(y)|

) 1
s
−1(∫

B(x0,r)

|z|αh dz
) 1

s
−1

.

By the similar estimate to (2.9) with q = 1, we obtain∫
B(x0,r)

|z|αh dz �
( ‖A−1(y)‖Q

| detA−1(y)|

)−1∥∥A(y)∥∥α∣∣detA(y)∣∣w(B(
x̃0,

∥∥A−1(y)
∥∥r)).

Therefore,

‖by‖Ls
|·|α

h
(Hn) � w

(
B
(
x̃0,

∥∥A−1(y)
∥∥r)) 1

s
−1
.

The proof is complete. �
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Proof of Theorem 1.3. (i) Since ‖A−1(y)‖ ≤ M‖A(y)‖−1, by Lemma 2.12, we
have ∥∥A(y)∥∥−Q '

∣∣detA−1(y)
∣∣ ' ∥∥A−1(y)

∥∥Q
.

Then the sufficient part follows immediately from Proposition 2.10.
Next, we will show the necessary part. For simplicity, we will only consider the

case n = 1. The proof of the case n > 1 is only a notational difference and we
leave it to the reader.

Set A(y) = (aij)3×3. By hypothesis, without loss of generality, we may assume
that a1j ≥ 0, a2j ≤ 0, a3j ≥ 0, j = 1, 2, 3. Set

D =
{
x = (x1, x2, x3) ∈ H1

∣∣ xj > 0, j = 1, 2, 3
}
.

Then for all x ∈ D, we have

A(y)x ∈
{
z = (z1, z2, z3) ∈ H1

∣∣ z1 > 0, z2 < 0, z3 > 0
}
,

and |A(y)D| 6= 0, which is due to the invertible property of A(y).
We now construct an atom a(x) onH1 such that it has the cancellation property

for all polynomials of homogeneous degree less than Q. Let

ã(x) =
α +Q

wQ

χD∩B(0,1)(x).

Then extend it to a function a(x) on H1 such that a(x) is odd in each variable
(for odd atoms on R, we refer to [7]). It is clear that a(x) satisfies the support
and size conditions. Also, we have∫

H1

a(x1, x2, x3)x
i1
1 x

i2
2 x

i3
3 dx1 dx2 dx3 = 0

for (i1, i2, i3) ∈ N3 with i1 + i2 + 2i3 ≤ [α] < 4. In fact, if [α] ≥ 4, the function
a(x1, x2, x3)x

i1
1 x

i2
2 x

i3
3 may not be odd in any variable and then the integral cannot

be zero. Therefore, a(x) is a | · |αh-(1,∞, β)-atom, where β = 0 or β = [α], and
‖a‖H1

|·|α
h
(H1) < ∞.

Suppose that TΦ,A is bounded on H1
|·|αh

(H1). We have

‖a‖H1
|·|α

h
(H1) �

∥∥TΦ,A(a)
∥∥
H1

|·|α
h
(H1)

�
∥∥TΦ,A(a)

∥∥
L1
|·|α

h
(H1)

≥
∫
D

∣∣∣∫
H1

Φ(y)

|y|Qh
a
(
A(y)x

)
dy

∣∣∣|x|αh dx
=

∫
H1

Φ(y)

|y|Qh

∥∥A(y)∥∥−α∣∣detA−1(y)
∣∣ ∫

A(y)D

∣∣a(z)∣∣|z|αh dz dy
�

∫
H1

Φ(y)

|y|Qh

∥∥A−1(y)
∥∥α∣∣detA−1(y)

∣∣ dy,
which leads to Theorem 1.3(i).

(ii) Similar to (i), the sufficient part follows immediately from Proposition 2.10.
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On the other hand, without loss of generality, we may assume that all entries
of the first row of A(y) are nonnegative. Set

D =
{
x = (x1, x2, . . . , x2n+1) ∈ Hn

∣∣ xj > 0, j = 1, 2, . . . , 2n+ 1
}
.

Then for any x ∈ D, we have

A(y)x ∈
{
z = (z1, z2, . . . , z2n+1) ∈ Hn

∣∣ z1 > 0
}
,

and |A(y)D| 6= 0.
Let f0 be a function with support on B(0, 1) satisfying

f0(x) =


1

ΩQ
, x ∈ B(0, 1) ∩ {x = (x1, x2, . . . , x2n+1) | x1 > 0},

0, x ∈ B(0, 1) ∩ {x = (x1, x2, . . . , x2n+1) | x1 = 0},
− 1

ΩQ
, x ∈ B(0, 1) ∩ {x = (x1, x2, . . . , x2n+1) | x1 < 0}.

It is clear that f0 is a (1,∞, 0)-atom and ‖f0‖H1(Hn) < ∞. Suppose that TΦ,A is
bounded on H1(Hn). Then

‖f0‖H1(Hn) �
∥∥TΦ,A(f0)

∥∥
H1(Hn)

�
∥∥TΦ,A(f0)

∥∥
L1(Hn)

≥
∫
D

∣∣∣∫
Hn

Φ(y)

|y|Qh
f0
(
A(y)x

)
dy

∣∣∣ dx
=

∫
Hn

|Φ(y)|
|y|Qh

∣∣detA−1(y)
∣∣ ∫

A(y)D

∣∣f0(z)∣∣ dz dy
�

∫
Hn

|Φ(y)|
|y|Qh

∣∣detA−1(y)
∣∣ dy.

Therefore, ∫
Hn

|Φ(y)|
|y|Qh

∣∣detA−1(y)
∣∣ dy < ∞.

The proof of Theorem 1.3 is finished. �

3. Boundedness of Hausdorff operators on local Hardy spaces h1(Hn)

The theory of local Hardy spaces on Rn was introduced by Goldberg [13]. The
corresponding local Hardy spaces on the Heisenberg group and on the stratified
Lie group have been introduced in [25] and [26], respectively. Now let us recall
the definition of local Hardy space and some basic properties. The local maximal
functions are defined by taking the supremum over 0 < r ≤ 1 instead of 0 < r <
∞ in (2.1) and (2.2):

M̃Ψf(x) = sup
|x−1y|h<r≤1

∣∣f ∗Ψr(y)
∣∣,

M̃(N)f(x) = sup
Ψ∈S,‖Ψ‖N≤1

M̃Ψf(x).
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Definition 3.1. Let 0 < p ≤ 1. The local Hardy space hp(Hn) is defined by

hp(Hn) =
{
f ∈ S ′(Hn) : M̃(Np)f ∈ Lp(Hn)

}
with

‖f‖hp(Hn) = ‖M̃(Np)f‖Lp(Hn).

According to [25], the local Hardy space also has atomic characterization.

Lemma 3.2. Let 0 < p ≤ 1 < q ≤ ∞. A distribution f ∈ hp(Hn) if and only if
f can be written as

f =
∑
k

λkak +
∑
k

µkbk

(the sum converging in the sense of distributions and in hp(Hn)-norm), where∑
k |λk|p + |µk|p < ∞, and where each ak is a (p, q, α)-atom and each bk is a big

(p, q)-atom. Moreover,

‖f‖hp(Hn) ' inf
(∑

k

|λk|p + |µk|p
) 1

p
,

where the infimum is taken over all decompositions of f as above.

Let M̃+
Ψ f and M̃+

(N)f be the local radial maximal function and local radial grand

maximal function of f , respectively, which are defined by

M̃+
Ψ f(x) = sup

0<r≤1

∣∣f ∗Ψr(y)
∣∣,

M̃+
(N)f(x) = sup

Ψ∈S,‖Ψ‖N≤1

M̃+
Ψ f(x).

A function Ψ is called a commutative approximate identity if Ψ ∈ S(Hn) and
satisfies the following properties:∫

Hn

Ψ(x) dx = 1, Ψt ∗Ψs = Ψs ∗Ψt.

Similar to Hardy spaces, by the same argument as in [6], the local Hardy spaces
also have the equivalent definitions (see also [25]).

Lemma 3.3. Suppose that f ∈ S ′(Hn) and 0 < p ≤ 1. Let Ψ be a commutative
approximate identity, and let N ≥ Np be fixed. Then

‖M̃(N)f‖Lp(Hn) ' ‖M̃+
(N)f‖Lp(Hn) ' ‖M̃Ψf‖Lp(Hn) ' ‖M̃+

Ψ f‖Lp(Hn).

We can construct a commutative approximate identity from the heat kernel
on the Heisenberg group. Let us denote by h(x, t), x ∈ Hn, t ∈ (0,∞), the heat
kernel for Hn, which is the fundamental solution of the heat operator

∂t −
1

2
∆H ,

where

∆H =
2n∑
j=1

X2
j .
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We know from [11] and [16] that h(x, t) is given explicitly (for t > 0) by

h(x, t) =
1

(2πt)
Q
2

∫ +∞

−∞
exp

(
i
uz

2t
−

∑2n
j=1 x

2
j

2t
z coth z

)( z

sinh z

)n

dz,

where x = (x1, x2, . . . , x2n+1). Let

Ψ(x) = h(x, 1). (3.1)

According to p. 128 in [6], Ψ ∈ S(Hn),
∫
Hn Ψ(x) dx = 1, and Ψt(x) = h(x, t2),

and hence

Ψt ∗Ψs = h(x, t2 + s2) = Ψs ∗Ψt.

Thus, Ψ is a commutative approximate identity.
The following result is from Proposition 8.11 in [6]. For multiple index I =

(i1, i2, . . . , i2n+1) ∈ N2n+1, we denote XI = X i1
1 X i2

2 · · ·X i2n+1

2n+1 .

Lemma 3.4. If Φ ∈ S(Hn), then

(i) |XI∂j
tΦt(x)| ≤ CIj(t + |x|h)−(Q+|I|+j), where CIj = supt+|x|h=1 |XI ×

∂j
tΦ(x, t)|;

(ii) XIΦ(x) ≤ CI(1 + |x|)−(Q+|I|+1), where CI = sup|x|h=1,0≤t≤1 |XIΦ(x, t)|/t.

With the above equivalence of the maximal definition and the atomic decompo-
sition of functions in local Hardy spaces, we obtain the boundedness of Hausdorff
operators on such spaces.

Proposition 3.5. Suppose that A(y) ∈ Aut(Hn) almost everywhere. Then for
any 1 < q ≤ ∞, ∥∥TΦ,A(f)

∥∥
h1(Hn)

� K4‖f‖h1(Hn),

where

K4 =

∫
‖A−1(y)‖≥1

|Φ(y)|
|y|Qh

∥∥A−1(y)
∥∥Q(1− 1

q
)∣∣detA−1(y)

∣∣ 1q dy
+

∫
‖A−1(y)‖<1

|Φ(y)|
|y|Qh

∣∣detA−1(y)
∣∣

×max
{( ‖A−1(y)‖Q

| detA−1(y)|

)1− 1
q
, ln

(∥∥A−1(y)
∥∥−1)}

dy.

Proof. Like in Proposition 2.10, by Lemma 3.2, it suffices to show that the result
holds for any atomic decomposition of f ∈ h1(Hn):

f =
∑
k

λkak +
∑
k

µkbk,

where each ak is a (1, q, 0)-atom, each bk is a big (1, q)-atom, and
∑

k |λk|+ |µk| <
∞.

By the Minkowski inequality,∥∥TΦ,A(f)
∥∥
h1(Hn)

≤
∑
k

|λk|
∥∥TΦ,A(ak)

∥∥
h1(Hn)

+
∑
k

|µk|
∥∥TΦ,A(bk)

∥∥
h1(Hn)

.
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Therefore, it suffices to show that

∥∥TΦ,A(a)
∥∥
h1(Hn)

� K4,
∥∥TΦ,A(b)

∥∥
h1(Hn)

� K4

uniformly for all (1, q, 0)-atoms a and all big (1, q)-atoms b, respectively.
By the same discussion as that in the proof of Proposition 2.10 (with α = 0),

we can obtain that ∥∥TΦ,A(a)
∥∥
h1(Hn)

� K2 ≤ K4.

Thus, it remains to estimate ‖TΦ,A(b)‖.
By the Minkowski inequality again,

∥∥TΦ,A(b)
∥∥
h1(Hn)

≤
∫
Hn

|Φ(y)|
|y|Qh

∥∥b(A(y)·)∥∥
h1(Hn)

dy.

Suppose that the smallest ball that satisfies Definition 2.2 for b is B(x0, r) with
r ≥ 1

2
. By the same discussion as in (2.7), we have

supp b
(
A(y)x

)
⊂ A−1(y)B(x0, r) ⊂ B

(
x̃0,

∥∥A−1(y)
∥∥r), (3.2)

for some x̃0 ∈ Hn. We also have

∥∥b(A(y)·)∥∥
Lq(Hn)

=
(∫

A−1(y)B(x0,r)

∣∣b(A(y)x)∣∣q dx) 1
q

=
∣∣detA−1(y)

∣∣ 1q(∫
B(x0,r)

∣∣b(z)∣∣q dz) 1
q

≤
∣∣detA−1(y)

∣∣ 1q ∣∣B(x0, r)
∣∣ 1q−1

=
∥∥A−1(y)

∥∥Q(1− 1
q
)∣∣detA−1(y)

∣∣ 1q ∣∣B(
x̃0,

∥∥A−1(y)
∥∥r)∣∣ 1q−1

. (3.3)

Therefore, when ‖A−1(y)‖ ≥ 1, then ‖A−1(y)‖Q( 1
q
−1)| detA(y)|

1
q b(A(y)x) is still a

big (1, q)-atom. Thus

∫
‖A−1(y)‖≥1

|Φ(y)|
|y|Qh

∥∥b(A(y)·)∥∥
h1(Hn)

dy

�
∫
‖A−1(y)‖≥1

|Φ(y)|
|y|Qh

∥∥A−1(y)
∥∥Q(1− 1

q
)∣∣detA−1(y)

∣∣ 1q dy.
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When ‖A−1(y)‖ ≤ 1, take Ψ as in (3.1); then Ψ is a commutative approximate
identity. Denote r̃ = ‖A−1(y)‖r. By Lemma 3.3, we have∥∥b(A(y)·)∥∥

h1(Hn)

'
∥∥ sup
0<s≤1

∣∣b(A(y)·) ∗Ψs

∣∣∥∥
L1(Hn)

=

∫
|x−1x̃0|h<2r̃

sup
0<s≤1

∣∣∣∫
Hn

b
(
A(y)z

)
Ψs(z

−1x) dz
∣∣∣ dx

+

∫
2r̃≤|x−1x̃0|h<2r

sup
0<s≤1

∣∣∣∫
A−1(y)B(x0,r)

b
(
A(y)z

)
Ψs(z

−1x) dz
∣∣∣ dx

+

∫
|x−1x̃0|h≥2r

sup
0<s≤1

∣∣∣∫
A−1(y)B(x0,r)

b
(
A(y)z

)
Ψs(z

−1x) dz
∣∣∣ dx

= I1 + I2 + I3.

Using the Hölder inequality, we have

I1 ≤
∣∣B(x̃0, 2r̃)

∣∣1− 1
q

(∫
|x−1x̃0|h<2r̃

sup
0<s≤1

∣∣∣∫
Hn

b
(
A(y)z

)
Ψs(z

−1x) dz
∣∣∣q dx) 1

q

≤
∣∣B(x̃0, 2r̃)

∣∣1− 1
q
∥∥M(

b
(
A(y)·

))∥∥
Lq(Hn)

,

where M(b(A(y)·)) is the Hardy–Littlewood maximal function of b(A(y)·), which
is defined by

M(f)(x) = sup
B3x

1

|B|

∣∣∣∫
B

f(y) dy
∣∣∣.

Therefore, by (3.3),

I1 ≤
∣∣B(x̃0, 2r̃)

∣∣1− 1
q
∥∥b(A(y)·)∥∥

Lq(Hn)
�

∥∥A−1(y)
∥∥Q(1− 1

q
)∣∣detA−1(y)

∣∣ 1q . (3.4)

In I2, for any x that satisfies 2r̃ ≤ |x−1x̃0|h < 2r and z ∈ A−1(y)B(x0, r) ⊂
B(x̃0, r̃), we have

|z−1x|h ≥ d(x, x̃0)− d(z, x̃0) ≥
1

2
|x−1x̃0|h.

Using Lemma 3.4, we obtain∣∣Ψs(z
−1x)

∣∣ � (
s+ |z−1x|h

)−Q � |x−1x̃0|−Q
h .

Therefore, by Hölder’s inequality and the penultimate line of (3.3),

I2 ≤
(∫

2r̃≤|x−1x̃0|h<2r

|x−1x̃0|−Q
h dx

)(∫
A−1(y)B(x0,r)

∣∣b(A(y)z)∣∣q dz) 1
q

×
∣∣A−1(y)B(x0, r)

∣∣1− 1
q

= ωQ ln
(∥∥A−1(y)

∥∥−1)∣∣detA−1(y)
∣∣. (3.5)
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In I3, for any x that satisfies |x−1x̃0|h ≥ 2r and z ∈ A−1(y)B(x0, r) ⊂ B(x̃0, r̃),
we also have

|z−1x|h ≥ 1

2
|x−1x̃0|h.

Since Ψ ∈ S(Hn) and 0 < s ≤ 1, using Lemma 3.4 again, we have∣∣Ψs(z
−1x)

∣∣ = 1

sQ
∣∣Ψ(

δs−1(z−1x)
)∣∣ � 1

sQ

(
1 +

|z−1x|h
s

)−(Q+1)

� |x−1x̃0|−(Q+1)
h .

Thus, as in (3.5),

I3 �
(∫

|x−1x̃0|h≥2r

|x−1x̃0|−Q−1
h dx

)(∫
A−1(y)B(x0,r)

∣∣b(A(y)z)∣∣ dz)
� r−1

∣∣detA−1(y)
∣∣ � ∣∣detA−1(y)

∣∣, (3.6)

where the last inequality is due to the fact that r ≥ 1
2
.

Consequently, by (2.6) and (3.4)–(3.6), we have∫
‖A−1(y)‖<1

|Φ(y)|
|y|Qh

∥∥b(A(y)·)∥∥
h1(Hn)

dy

�
∫
‖A−1(y)‖<1

|Φ(y)|
|y|Qh

∣∣detA−1(y)
∣∣

×max
{( ‖A−1(y)‖Q

| detA−1(y)|

)1− 1
q
, ln

(∥∥A−1(y)
∥∥−1)}

dy.

The proposition is proved. �

Proof of Theorem 1.6. Since ‖A−1(y)‖ ≤ M‖A(y)‖−1, by Lemma 2.12, we have∥∥A(y)∥∥−Q '
∣∣detA−1(y)

∣∣ ' ∥∥A−1(y)
∥∥Q

. (3.7)

Then the sufficient part follows immediately from Proposition 3.5.
On the other hand, suppose that TΦ,A is bounded on h1(Hn). Set f0(x) =

χB(0,1)(x). By an easy computation, we can obtain that

‖f0‖h1(Hn) � 1 < ∞.

By Fubini’s theorem,

‖f0‖h1(Hn) �
∥∥TΦ,A(f0)

∥∥
h1(Hn)

≥
∥∥TΦ,A(f0)

∥∥
L1(Hn)

=

∫
Hn

∣∣∣∫
Hn

Φ(y)

|y|Qh
f0
(
A(y)x

)
dy

∣∣∣ dx
=

(∫
Hn

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ dy)(∫

B(0,1)

f0(z) dz
)

= ΩQ

∫
Hn

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ dy.
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Therefore, ∫
Hn

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ dy < ∞. (3.8)

Next, take Ψ(x) = 2

ωQΓ(Q
2
)
e−|x|2h . Then Ψ ∈ S(Hn) and

∫
Hn Ψ = 1. Obviously, Ψ

is a radial function. By Proposition 4.28 in [6], Ψ is a commutative approximate
identity. Therefore,

∥∥TΦ,A(f0)
∥∥
h1(Hn)

'
∫
Hn

sup
0<s≤1

∣∣TΦ,A(f0) ∗Ψs(x)
∣∣ dx

�
∫
B(0,1)

∣∣TΦ,A(f0) ∗Ψ|x|h(x)
∣∣ dx.

By Fubini’s theorem and a change of variables, we have

∣∣TΦ,A(f0) ∗Ψ|x|h(x)
∣∣ = ∫

Hn

Φ(y)

|y|Qh

∫
Hn

f0
(
A(y)z

)
Ψ|x|h(z

−1x) dz dy

=

∫
Hn

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ ∫

Hn

f0(u)Ψ|x|h
((
A−1(y)u

)−1
x
)
du dy

=

∫
Hn

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ ∫

|u|h<1

Ψ|x|h
((
A−1(y)u

)−1
x
)
du dy.

Therefore,∥∥TΦ,A(f0)
∥∥
h1(Hn)

�
∫
B(0,1)

∫
Hn

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ ∫

|u|h<1

Ψ|x|h
((
A−1(y)u

)−1
x
)
du dy dx

�
∫
‖A−1(y)‖<1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣

×
∫
|u|h<1

∫
|x|h<1

1

|x|Qh
Ψ
(
δ|x|−1

h

((
A−1(y)u

)−1
x
))

dx du dy

�
∫
‖A−1(y)‖<1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣

×
∫
|u|h<1

∫
|u|h<|z|h≤ 1

‖A−1(y)‖

1

|z|Qh
×Ψ

(
δ|A−1(y)z|−1

h

((
A−1(y)u

)−1(
A−1(y)z

)))
dz du dy,

where the last inequality is deduced by (3.7).
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For any |u|h < 1 and |u|h < |z|h ≤ 1
‖A−1(y)‖ , since A(y) ∈ Aut(Hn), we have∣∣δ|A−1(y)z|−1

h

((
A−1(y)u

)−1(
A−1(y)z

))∣∣
h

=
|A−1(y)(u−1z)|h

|A−1(y)z|h
� ‖A−1(y)‖|u−1z|h

‖A(y)‖−1|z|h

� M
|z|h + |u|h

|z|h
� 2M.

This implies that

‖f0‖h1(Hn) �
∥∥TΦ,A(f0)

∥∥
h1(Hn)

�
∫
‖A−1(y)‖<1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ ∫

|u|h<1

∫
1<|z|h≤ 1

‖A−1(y)‖

1

|z|Qh
dz du dy

= ωQΩQ

∫
‖A−1(y)‖<1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ ln∥∥A−1(y)

∥∥−1
dy.

Thus,

0 <

∫
‖A−1(y)‖<1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣ ln∥∥A−1(y)

∥∥−1
dy < ∞. (3.9)

The necessary part of this theorem can be deduced immediately by (3.8) and
(3.9). �

4. Adjoint Hausdorff operators and further comments

In this section, we focus on the corresponding results for the adjoint operators
of Hausdorff operators.

We can easily find the adjoint operator T ∗ as the one satisfying, for appropriate
functions f and g, ∫

Rn

(Tf)(x)g(x) dx =

∫
Rn

(T ∗g)(x)f(x) dx.

It can be checked that the adjoint operator T ∗
Φ,A is defined as

T ∗
Φ,A =

∫
Hn

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣f(A−1(y)x

)
dy, x ∈ Hn.

In particular,

T ∗
Φ =

∫
Hn

Φ(y)f(δ|y|hx) dy, x ∈ Hn.

Obviously, T ∗
Φ,A is also a Hausdorff operator, and it can be written as TΦ̃,Ã,

where Φ̃(y) = Φ(y)| detA−1(y)| and Ã(y) = A−1(y). When A(y) = diag[1/|y|h,
. . . , 1/|y|h, 1/|y|2h], TΦ̃,Ã = T ∗

Φ. Therefore, T
∗
Φ,A and T ∗

Φ also have the corresponding

results as in the above sections. We will list them (without proof) in the following.

Theorem 4.1. Suppose that A(y) ∈ Aut(Hn) almost everywhere.
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(i) Let 0 < α < ∞. Then for any Q+α
Q

< q < ∞,∥∥T ∗
Φ,A(f)

∥∥
H1

|·|α
h
(Hn)

� K̃1‖f‖H1
|·|α

h
(Hn),

where

K̃1 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥A(y)∥∥α
( ‖A(y)‖Q

| detA(y)|

)q−1

dy

and ∥∥A(y)∥∥ = sup
x 6=0

|A(y)x|h
|x|h

.

(ii) Let −Q < α ≤ 0. Then for any 1 < s ≤ ∞,∥∥T ∗
Φ,A(f)

∥∥
H1

|·|α
h
(Hn)

� K̃2‖f‖H1
|·|α

h
(Hn),

where

K̃2 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥A−1(y)
∥∥−α

( ‖A(y)‖Q

| detA(y)|

)1− 1
s
dy.

Since the dual space of H1(Hn) is BMO(Hn), together with Corollary 2.11, we
can get the following result.

Corollary 4.2. Suppose that A(y) ∈ Aut(Hn) almost everywhere. Then for any
1 < q ≤ ∞, ∥∥T ∗

Φ,A(f)
∥∥
H1(Hn)

� K̃3‖f‖H1(Hn),∥∥T ∗
Φ,A(f)

∥∥
BMO(Hn)

� K3‖f‖BMO(Hn),∥∥TΦ,A(f)
∥∥
BMO(Hn)

� K̃3‖f‖BMO(Hn),

where

K̃3 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥A(y)∥∥Q(1− 1
q
)∣∣detA(y)∣∣ 1q−1

dy,

and K3 is defined as in Corollary 2.11.

Theorem 4.3. Let Φ be a nonnegative function. Suppose that A(y) ∈ Aut(Hn)
almost everywhere and that there exists a constant M independent of y such that
‖A(y)‖ ≤ M‖A−1(y)‖−1.

(i) Let −Q < α < Q and α 6= 0. If all entries of the same row of A−1(y)
are nonnegative uniformly or nonpositive uniformly on y ∈ supp(Φ), then
T ∗
Φ,A is bounded on H1

|·|αh
(Hn) if and only if∫

Hn

|Φ(y)|
|y|Qh

∥∥A(y)∥∥α
dy < ∞.
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(ii) If there exists at least one row of A−1(y) such that all entries of such row
are nonnegative uniformly or nonpositive uniformly on y ∈ supp(Φ), then
T ∗
Φ,A is bounded on H1(Hn) if and only if∫

Hn

|Φ(y)|
|y|Qh

dy < ∞.

From Theorem 4.3 and Corollary 1.5, we have the following characterization
for boundedness of Hausdorff operators.

Corollary 4.4. Let Φ be a nonnegative-valued function. Then

(i) T ∗
Φ is bounded on H1(Hn) if and only if

∫
Hn Φ(y)|y|−Q

h dy < ∞;
(ii) T ∗

Φ is bounded on BMO(Hn) if and only if
∫
Hn Φ(y) dy < ∞;

(iii) TΦ is bounded on BMO(Hn) if and only if
∫
Hn Φ(y)|y|−Q

h dy < ∞.

Theorem 4.5. Suppose that A(y) ∈ Aut(Hn) almost everywhere. Then for any
1 < q ≤ ∞, ∥∥TΦ,A(f)

∥∥
h1(Hn)

� K̃4‖f‖h1(Hn),

where

K̃4 =

∫
‖A(y)‖≥1

|Φ(y)|
|y|Qh

∥∥A(y)∥∥Q(1− 1
q
)∣∣detA(y)∣∣ 1q−1

dy

+

∫
‖A(y)‖<1

|Φ(y)|
|y|Qh

max
{( ‖A(y)‖Q

| detA(y)|

)1− 1
q
, ln

(∥∥A(y)∥∥−1)}
dy.

Theorem 4.6. Let Φ be a nonnegative function. Suppose that A(y) ∈ Aut(Hn)
almost everywhere. If there exists a constant M independent of y such that
‖A(y)‖ ≤ M‖A−1(y)‖−1, then T ∗

Φ,A is bounded on h1(Hn) if and only if∫
‖A(y)‖≥1

Φ(y)

|y|Qh
dy +

∫
‖A(y)‖<1

Φ(y)

|y|Qh
max

{
1, ln

(∥∥A(y)∥∥−1)}
dy < ∞.

Corollary 4.7. Let Φ be a nonnegative-valued function. Then T ∗
Φ is bounded on

h1(Hn) if and only if∫
|y|h≤1

Φ(y)

|y|Qh
dy +

∫
|y|h>1

Φ(y)

|y|Qh
max

{
1, ln |y|h

}
dy < ∞.

Finally, we offer some closing comments on weighted local Hardy spaces on the
Heisenberg group. In the proof of boundedness of Hausdorff operators on local
Hardy spaces, we used the equivalence of their two kinds of definitions, that is,
Lemma 3.2. However, on the Heisenberg group, we have not found such results
for weighted local Hardy spaces; thus we have not been able to obtain the sharp
boundedness for Hausdorff operators on these spaces. Therefore, to establish the
sharpness of the conditions on Φ and A to ensure the boundedness for Hausdorff
operators TΦ,A on weighted local Hardy spaces on the Heisenberg group would be
an interesting question.
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