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Abstract. Extending the corresponding notion for matrices or bounded lin-
ear operators on a Hilbert space, we define a generalized Schur complement
for a nonnegative linear operator mapping a linear space into its dual, and we
derive some of its properties.

1. Introduction

In the present article we construct a Schur complement of a nonnegative linear
operator mapping the direct sum of two linear spaces over C into the direct
sum of their dual spaces. We show that this object has features that extend
the corresponding properties of the generalized Schur complement of 2× 2 block
matrices with matrix entries. In contrast to most other studies, we mainly discuss
nonnegative operators on spaces without topology so that topological restrictions,
and particularly continuity questions, play a secondary role.

The Schur complement and its generalizations occur in various mathematical
fields. For a comprehensive exposition of its history, theory, and diverse appli-
cations, we refer to [24]. Moreover, the generalized Schur complement is closely
related to the so-called shorted operator, which was first introduced by Krĕın
in [11] and has found interesting applications in electrical network theory (see
[2]). Shmulyan [17] investigated nonnegative bounded linear operators acting in
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the orthogonal sum of two Hilbert spaces, and in [6] some results were given
concerning the case of Banach spaces.

To define our notion of a generalized Schur complement, we need a suitable
definition of a square root of a nonnegative operator. Section 3 deals with this
important and useful concept, which was studied by several authors. Section 4
contains definitions and basic properties of the Schur complement and the shorted
operator in a slightly wider context than nonnegative operators. In Section 5
further results on generalized Schur complements are derived. Among other things
we extend the Crabtree–Haynsworth quotient formula from [4]. One of the most
useful results concerning 2× 2 block matrices is Albert’s nonnegativity criterion
(see [1]). A generalization to nonnegative operators on linear spaces and some of
its consequences are given in Section 6. The special class of extremal operators,
which was also introduced by Krĕın [11], is the subject of Section 7.

As mentioned above, many results concerning the generalized Schur comple-
ment were for bounded linear operators on Hilbert spaces obtained by Shmulyan.
Many of them were proved independently or rediscovered later by other mathe-
maticians. The present paper is strongly influenced by Shmulyan’s work and was
written to illustrate his contribution to the theory of generalized Schur comple-
ments. Thus most of our assertions of Sections 4–6 are generalizations of results
in [17] about nonnegative operators on linear spaces.

2. Basic definitions and notation

In the present paper, all linear spaces are spaces over C, the field of complex
numbers, and the zero element is denoted by 0. For a linear space X, let X ′

denote its dual space of all antilinear functionals on X, and let 〈x′, x〉X := 〈x′, x〉
denote the value of x′ ∈ X ′ at x ∈ X. If X∼ is a subspace of X ′, then an arbitrary
x ∈ X defines an element jx of (X∼)′ according to

〈jx, x∼〉X′ := 〈x∼, x〉X , x∼ ∈ X∼,

where ᾱ stands for the complex conjugate of α ∈ C.
Convention (CN). If for all x ∈ X \ {0} there exists x∼ ∈ X∼ such that

〈x∼, x〉 6= 0, then we identify X with its isomorphic image under the map j, and
we write

〈jx, x∼〉X′ =: 〈x, x∼〉X′ , x ∈ X, x∼ ∈ X∼.

The linear space of all linear operators from X into a linear space Y is denoted
by L (X,Y ), and I is the identity operator in case X = Y . If A ∈ L (X,Y ) and
X1 is a subspace of X, then the symbols kerA, ranA, and A�X1 stand for the null
space, range, and restriction of A to X1, respectively. Set AX1 := ranA�X1 . The
dual operator A′ ∈ L (Y ′, X ′) is defined by the relation 〈y′, Ax〉Y = 〈A′y′, x〉X ,
x ∈ X, y′ ∈ Y ′.

Examples.

1. If Z is a linear space and A ∈ L (X,Y ), B ∈ L (Y, Z), then (BA)′ = A′B′.
2. If A ∈ L (X,Y ), then A′′ ∈ L (X ′′, Y ′′) and A = A′′�X according to (CN).
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3. If A ∈ L (X,X ′), then A′ ∈ L (X ′′, X ′). Taking into account (CN), we

get 〈x2, Ax1〉X′ = 〈Ax1, x2〉X and 〈x2, Ax1〉X′ = 〈A′x2, x1〉X , and hence,

〈Ax1, x2〉X = 〈A′x2, x1〉X , x1, x2 ∈ X. (2.1)

An operator A ∈ L (X,X ′) is called Hermitian if 〈Ax1, x2〉 = 〈Ax2, x1〉 and
nonnegative if 〈Ax1, x1〉 ≥ 0, x1, x2 ∈ X. The sets of all Hermitian and all
nonnegative operators are denoted by L h(X,X ′) and L ≥(X,X ′), respectively.
The polarization identity implies that A is Hermitian if and only if 〈Ax, x〉 is
real for all x ∈ X. Thus L ≥(X,X ′) ⊆ L h(X,X ′) and the space L h(X,X ′) can
be provided with Loewner’s semiordering (i.e., for A,D ∈ L h(X,X ′) we write
A ≤ D if and only if 〈Ax, x〉 ≤ 〈Dx, x〉, x ∈ X). Recall the Cauchy inequality∣∣〈Ax1, x2〉

∣∣2 ≤ 〈Ax1, x1〉〈Ax2, x2〉, x1, x2 ∈ X, (2.2)

if A ∈ L ≥(X,X ′).

3. Square roots

Let H be a complex Hilbert space with norm ‖ · ‖ := ‖ · ‖H and inner product
(· | ·) := (· | ·)H , which is assumed to be antilinear with respect to the second com-
ponent. Let R ∈ L (X,H). Identifying H with the space of continuous antilinear
functionals on H in the usual way, we have H ⊆ H ′ and

(h |Rx) = 〈R′h, x〉, x ∈ X, h ∈ H. (3.1)

Set R∗ := R′�H . From (3.1) it follows that kerR∗ is equal to the orthogonal com-
plement of (ranR)c, where M c denotes the closure of a subset M of a topological
space. It follows that R∗ is one-to-one if and only if ranR is dense in H and that

ranR∗ = R∗(ranR)c. (3.2)

Therefore, we can define a generalized inverse R∗[−1] of R∗ by

R∗[−1]x′ := (R∗�(ran R)c)
−1x′, x′ ∈ ranR∗.

Lemma 3.1. Let R ∈ L (X,H). An element x′ ∈ X ′ belongs to ranR∗ if and
only if the following conditions are satisfied:

(i) if x ∈ kerR, then 〈x′, x〉 = 0;

(ii) supx∈X
|〈x′,x〉|2
‖Rx‖2H

< ∞ (with convention 0
0
:= 0 in the left-hand side).

Proof. If x′ ∈ R∗h for some h ∈ H, then∣∣〈x′, x〉
∣∣ = ∣∣〈R∗h, x〉

∣∣ = ∣∣(h |Rx)
∣∣ ≤ ‖h‖‖Rx‖,

which yields (i) and (ii). Conversely, assume that (i) and (ii) are satisfied for some
x′ ∈ X ′. Set ϕ(Rx) := 〈x′, x〉, x ∈ X. Because of (i) ϕ is well defined, and (ii)
implies that ϕ is continuous, so that ϕ is a continuous antilinear functional on
ranR. Thus, there exists h ∈ H such that 〈x′, x〉 = (h |Rx) = 〈R∗h, x〉 for all
x ∈ X, which yields x′ = R∗h ∈ ranR∗. �
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Definition 3.2. Let A ∈ L (X,X ′). A pair (R,H) of a Hilbert space H and an
operator R ∈ L (X,H) is called a square root of A if A = R∗R, and a minimal
square root if, addionally, ranR is dense in H.

Note that there exists a square root of A if and only if there exists a minimal
one. The following result is basic to our considerations and generalizes the fact
concerning the existence of a square root of a nonnegative selfadjoint operator in
a Hilbert space. Its well-known short proof is recapitulated for convenience of the
reader.

Theorem 3.3. An operator A ∈ L (X,X ′) possesses a square root if and only if
it is nonnegative.

Proof. Let A ∈ L ≥(X,X ′). The Cauchy inequality (2.2) implies that

N :=
{
x ∈ X : 〈Ax, x〉 = 0

}
is a subspace of X. Define an inner product on the quotient space X/N by

(x1 +N |x2 +N) := 〈Ax1, x2〉, x1, x2 ∈ X,

and denote by H the completion of the corresponding inner product space. Set
Rx := x+N , x ∈ X. It follows that R ∈ L (X,H), (ranR)c = H, and that

〈Ax1, x2〉 = (Rx1 |Rx2) = 〈R∗Rx1, x2〉, x1, x2 ∈ X.

Therefore, (R,H) is a minimal square root of A. The “only if” part of the assertion
is obvious. �

The notion of a square root of a nonnegative operator acting between spaces
more general than Hilbert spaces has been discussed and applied by many authors.
Most of them deal with a topological space X, and in that case continuity prob-
lems also arise. Some properties of square roots for operators of special type were
obtained by Văınberg and Engel’son [21]. For a Banach space X, the construction
of the proof of Theorem 3.3 was published as an appendix to [22] and attributed
to Chobanyan (see also [15] and [23]). Another but related construction was pro-
posed by Sebestyén [16] (see also [19]). Górniak [7] and Górniak and Weron [9]
dealt with the existence of a continuous square root when X is a topological linear
space. Górniak, Makagon, and Weron [8] investigated square roots of nonnegative
operator-valued measures. Pusz and Woronowicz [14] extended the construction
of the proof of Theorem 3.3 to pairs of nonnegative sequilinear forms (see [20] for
further generalizations).

Lemma 3.4. If A ∈ L (X,X ′) and (R,H) is a square root of A, then

kerR = kerA =
{
x ∈ X : 〈Ax, x〉 = 0

}
.

Proof. The result follows from a chain of conclusions:

〈Ax, x〉 = 0 ⇒ 〈R∗Rx, x〉 = 0 ⇒ (Rx |Rx) = 0 ⇒ Rx = 0,

and conversely

Rx = 0 ⇒ R∗Rx = 0 ⇒ Ax = 0 ⇒ 〈Ax, x〉 = 0. �
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The preceding results can be used to derive a version of a part of Douglas’s
theorem in [5] (see also [18]).

Proposition 3.5. Let A,D ∈ L ≥(X,X ′), and let (RA, HA) and (RD, HD) be
square roots of A and D, respectively. The following assertions are equivalent:

(i) A ≤ α2D for some α ∈ [0,∞),
(ii) there exists a bounded operator W ∈ L (HA, HD) with operator norm

‖W‖ ≤ α and such that R∗
A = R∗

DW .

If (i) or (ii) are satisfied, then there exists a unique W so that W ⊆ (ranRD)
c.

Moreover, kerW = kerR∗
A for this operator W .

Proof. Since R∗
A = R∗

DW yields RA = R∗
A
′�X= W ′R∗

D
′�X= W ∗RD by (CN), from

(ii) it follows that

〈Ax, x〉 = ‖RAx‖2 = ‖W ∗RDx‖2 ≤ α2‖RDx‖2 = α2〈Dx, x〉, x ∈ X,

and hence, (i). Let Wj ∈ L (HA, HD) be such that R∗
A = R∗

DWj and ranWj ⊆
(ranRD)

c, j = 1, 2. Then ran(W1−W2) ⊆ kerR∗
D and ran(W1−W2) ⊆ (ranRD)

c,
which shows that W1 = W2. Now assume that (i) is true. One has kerRD ⊆
kerRA by Lemma 3.4, and hence, ranR∗

A ⊆ ranR∗
D by Lemma 3.1. The oper-

ator W := R
∗[−1]
D R∗

A ∈ L (HA, HD) satisfies R∗
DW = R∗

A, kerW = kerR∗
A and

ranW ⊆ (ranRD)
c. The inclusion ranR

∗[−1]
D ⊆ (ranRD)

c implies that W ∗h =

R∗′
A(R

∗[−1]
D )∗h = 0 if h is orthogonal to ranRD. Therefore, from

‖W ∗RDx‖2 = ‖RAx‖2 = 〈Ax, x〉 ≤ α2〈Dx, x〉 = α2‖RDx‖2, x ∈ X,

one can conclude that ‖W‖ = ‖W ∗‖ ≤ α. �

As a by-product of Proposition 3.5, we obtain the following corollary.

Corollary 3.6. Let A, D, (RA, HA), and (RD, HD) be as in Proposition 3.5.

(i) If A ≤ α2D for some α ∈ [0,∞), then ranR∗
A ⊆ ranR∗

D.
(ii) If β2D ≤ A ≤ α2D for some α, β ∈ (0,∞), then ranR∗

A = ranR∗
D.

(iii) If (SA, GA) is a square root of A, then ranR∗
A = ranS∗

A.

Corollary 3.7. Let Hj be Hilbert spaces and let Rj ∈ L (X,Hj), j = 1, 2. If
(R,H) is a square root of the nonnegative operator A := R∗

1R1 + R∗
2R2, then

ranR∗ = ranR∗
1 + ranR∗

2.

Proof. Let G be the orthogonal sum ofH1 andH2 and let S ∈ L (X,G) be defined
by S =

(
R1
R2

)
. Since S∗ = (R∗

1, R
∗
2) and S∗S = A, we get that ranS∗ = ranR∗

1 +
ranR∗

2 and that (S,G) is a square root of A. Now apply Corollary 3.6(iii). �

Lemma 3.8. Let (R,H) be a square root and let (S,G) be a minimal square root
of A ∈ L ≥(X,X ′). There exists an isometry U ∈ L (G,H) such that US = R.

Proof. By Lemma 3.4 there exists an operator Ũ satisfying ŨSx = Rx, x ∈ X.
From ‖ŨSx‖2 = ‖Rx‖2 = 〈Ax, x〉 = ‖Sx‖2 it follows that Ũ is isometric and can
be extended to an isometry U ∈ L (G,H). �
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4. Generalized Schur complements and shorted operators of
operators of positive type

Let X and Y be linear spaces.

Definition 4.1. A pair (A,B) of an operator A ∈ L ≥(X,X ′) and B ∈ L (Y,X ′)
is called a positive pair if ranB ⊆ ranR∗ for some square root (and, hence, for
all square roots) (R,H) of A.

The following criterion is an immediate consequence of Lemma 3.1.

Lemma 4.2. Let A ∈ L ≥(X,X ′) and B ∈ L (Y,X ′). The pair (A,B) is a
positive pair if and only if for all y ∈ Y the following conditions are satisfied:

(i) if x ∈ kerA, then 〈By, x〉 = 0;

(ii) supx∈X
|〈By,x〉|2
〈Ax,x〉 < ∞ (with convention 0

0
:= 0).

According to (CN), the space X can be considered as a subspace of the domain
of B′. To abbreviate the notation, we set

B∼ := B′�X .

Note that 〈By, x〉 = 〈B∼x, y〉, x ∈ X, y ∈ Y . Thus condition (i) of Lemma 4.2 is
equivalent to the inclusion kerA ⊆ kerB∼.

If (A,B) is a positive pair and (R,H) is a square root of A, then the operators

T := R∗[−1]B (4.1)

and

ω(A,B) := T ∗T = (R∗[−1])B)∗R∗[−1]B (4.2)

can be defined. Note that B = R∗T . The following lemma is obvious.

Lemma 4.3. If (A,B) is a positive pair and (R,H) is a square root of A, then
for all y ∈ Y

inf
{
‖Ty −Rx‖ : x ∈ X

}
= 0.

Equivalently, ranT ⊆ (ranR)c.

Recall that the dual space of X × Y can be written as a direct product

(X × Y )′ = X ′ × Y ′,

where 〈·, ·〉X×Y = 〈·, ·〉X+〈·, ·〉Y . Also, it should not cause confusion if we identify
the subspace X × {0} of X × Y with X. An operator A of L (X × Y, (X × Y )′)
can be represented as a 2× 2 matrix

A =

(
A B
C D

)
,

where A ∈ L (X,X ′), B,C ∈ L (Y,X ′), D ∈ L (Y, Y ′). It is not hard to see that
A is Hermitian if and only if A and D are Hermitian and C = B∼. To abbreviate
the notation, we set L h(X×Y, (X×Y )′) =: L h and L ≥(X×Y, (X×Y )′) =: L ≥.
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Definition 4.4. An operator
(

A B
B∼ D

)
∈ L h is called an operator of positive type

if (A,B) is a positive pair. The set of operators of positive type is denoted by
L +(X × Y, (X × Y )′) =: L +.

Definition 4.5. Let A =
(

A B
B∼ D

)
∈ L +. The operator σ(A) := D − ω(A,B) is

called a generalized Schur complement of A and the operator

S (A) :=

(
0 0
0 σ(A)

)
is called a shorted operator.

The following result is a generalization of [2, Corollary 1 to Theorem 3].

Proposition 4.6. If A =
(

A B
B∼ D

)
∈ L +, then ranA ∩ Y ′ ⊆ ranS (A).

Proof. Let y′ ∈ Y ′ be such that A
(
x
y

)
=

(
0
y′
)
for some

(
x
y

)
∈ X × Y . Let (R,H)

be a minimal square root of A. Since

A =

(
R∗R R∗T
T ∗R T ∗T

)
+ S (A),

one has that R∗Rx+R∗Ty = 0, and hence, that Rx+Ty = 0 and T ∗Rx+T ∗Ty =
0, which yields (

0
y′

)
= S (A)

(
x
y

)
∈ ranS (A). �

The next result is a simple but useful consequence of Lemma 4.3.

Proposition 4.7. Let A =
(

A B
B∼ D

)
∈ L +. For

(
x
y

)
∈ X × Y ,〈

S (A)

(
x
y

)
,

(
x
y

)〉
= inf

z∈X

〈
A

(
x− z
y

)(
x− z
y

)〉
. (4.3)

In particular σ(A) and S (A) do not depend on the choice of the square root
of A.

Proof. Since (4.3) is independent of x ∈ X, it is enough to prove it for x = 0.
From Lemma 4.3 it follows that

inf
z∈X

〈
A

(
−z
y

)
,

(
−z
y

)〉
= inf

z∈X

〈(
R∗R R∗T
T ∗R T ∗T

)(
−z
y

)
,

(
−z
y

)〉
+

〈
S (A)

(
0
y

)
,

(
0
y

)〉
= inf

z∈X
‖Ty −Rz‖2 +

〈
S (A)

(
0
y

)
,

(
0
y

)〉
=

〈
S (A)

(
0
y

)
,

(
0
y

)〉
. �

Corollary 4.8.

(i) If A ∈ L +, then S (A) ≤ A and kerA ⊆ kerS (A).
(ii) If A,A1 ∈ L + and A ≤ A1, then S (A) ≤ S (A1).
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Proof. The first assertion of (i) as well as (ii) are immediately clear from Propo-
sition 4.7. To prove the second assertion of (i), let

(
x
y

)
∈ kerA. If z ∈ X, then

we have 〈
A

(
x− z
y

)
,

(
x− z
y

)〉
= 〈Az, z〉 ≥ 0,

which implies that the infimum at the right-hand side of (4.3) is equal to 0. Since
S (A) ≤ A and 〈(

A− S (A)
)(x

y

)
,

(
x
y

)〉
= 0,

it follows that
(
x
y

)
∈ ker(A−S (A)) by Lemma 3.4, and hence,

(
x
y

)
∈ kerS (A).

�

Corollary 4.9. If A ∈ L ≥, then S (A) ∈ L ≥.

5. Further applications of square roots

First we express the generalized Schur complement of an operator of L ≥ with
the aid of its square root, and we derive a range description (see [2, Corollary 4
to Theorem 1]). Let A ∈ L ≥ and (R,H) be a square root of A. Let L be
the orthogonal complement of (RX)c, and let P be the orthoprojection onto L.
Note that L can be characterized by L = {h ∈ H : R∗h ∈ Y ′}, which yields
R∗L = ranR∗ ∩ Y ′.

Proposition 5.1. If A ∈ L ≥, then S (A) = R∗PR.

Proof. Let
(
x
y

)
∈ X × Y . An application of (4.3) gives〈

S (A)

(
x
y

)
,

(
x
y

)〉
= inf

z∈X

∥∥∥∥R(
x
y

)
−R

(
z
0

)∥∥∥∥2

,

which shows that
〈
S (A)

(
x
y

)
,
(
x
y

)〉
is the squared distance ofR

(
x
y

)
toRX. There-

fore, 〈
S (A)

(
x
y

)
,

(
x
y

)〉
=

∥∥∥∥PR

(
x
y

)∥∥∥∥2

=

〈
R∗PR

(
x
y

)
,

(
x
y

)〉
and the assertion follows from the polarization identity. �

Proposition 5.2. If A ∈ L ≥ and (R,H) and (S,G) are square roots of A and
S (A), respectively, then ranS∗ = ranR∗ ∩ Y ′.

Proof. Setting RX := R�X and RY := R�Y , we get

A =

(
R∗

X

R∗
Y

)
(RX RY ) =

(
R∗

XRX R∗
XRY

R∗
YRX R∗

YRY

)
,

and hence,

σ(A) = R∗
YRY − (R

∗[−1]
X R∗

XRY )
∗R

∗[−1]
X R∗

XRY = R∗
Y PRY

since R
∗[−1]
X R∗

X = I − P . Thus S (A) = R∗PR and (PR,H) is a square root of
S (A). If

(
0
y′
)
∈ X ′×Y ′ is such that R∗h =

(
0
y′
)
for some h ∈ H, then R∗

Xh = 0,

and hence, Ph = h and (PR)∗h = R∗h =
(

0
y′
)
, which implies that ranR∗ ∩
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Y ′ ⊆ ran(PR)∗ = ranS∗ by Corollary 3.6(iii). Since, obviously, ranS∗ ⊆ Y ′ and
ranS∗ ⊆ ranR∗ by Corollaries 4.8(i) and 3.6(i), the assertion is proved. �

Our next result is a generalization of the Crabtree–Haynsworth quotient for-
mula [4, pp. 365–366]. To give it a nice form, let us denote σ(A) =: A/A.

Proposition 5.3. Let X, Y , and Z be linear spaces, with

D :=

 A B BX

B∼ D BY

B∼
X B∼

Y D1

 ∈ L ≥(X × Y × Z,X ′ × Y ′ × Z ′),

and A :=
(

A B
B∼ D

)
. The operator A/A is the left upper corner of D/A and

D/A
/
A/A = D/A.

Proof. Let (R,H) be a minimal square root of A, RX := R�X , RY := R�Y ,

E := (R∗)−1

(
BX

BY

)
,

and hence, R∗
XE = BX , R

∗
YE = BY . From R

∗[−1]
X R∗

X = I − P we obtain

D/A =

(
R∗

YRY R∗
YE

E∗RY D1

)
−

(
R

∗[−1]
X (R∗

XRY , R
∗
XE)

)∗
R

∗[−1]
X (R∗

XRY , R
∗
XE)

=

(
R∗

Y PRY R∗
Y PE

E∗PRY D1 − E∗(I − P )E

)
and

A/A = R∗
YRY − (R

∗[−1]
X R∗

XRY )
∗R

∗[−1]
X R∗

XRY = R∗
Y PRY ,

which shows thatA/A is the left upper corner ofD/A. Since (PRY , H) is a square
root of A/A, we can compute

D/A
/
A/A = D1 − E∗(I − P )E −

(
(PRY )

∗[−1]R∗
Y PE

)∗
(PRY )

∗[−1]R∗
Y PE

= D1 − E∗(I − P )E − E∗QE,

where Q denotes the orthoprojection onto (ranPRY )
c. Comparing this with

D/A = D1 −
(
(R∗)−1R∗E

)∗
(R∗)−1R∗E = D1 − E∗E,

we can conclude that the assertion will be proved if we can show that the restric-
tion of I − P +Q to ranR is the identity. If h ∈ ranR, then

h = RXx+RY y = RXx+ (I − P )RY y + PRY y

for some
(
x
y

)
∈ X × Y . Since RXx + (I − P )RY y ∈ (ranRX)

c, there exists a
sequence {xn}n∈N of elements of X such that limn→∞ RXxn = RXx+(I−P )RY y.
For hn := RXxn + PRY y, we have

(I − P +Q)hn = (I − P +Q)(RXxn + PRY y) = RXxn + PRY y = hn
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and therefore

(I − P +Q)h = lim
n→∞

(I − P +Q)hn

= lim
n→∞

(RXxn + PRY y) = RXx+RY y = h. �

We conclude this section with a criterion for nonnegativity of operators of L h.

Proposition 5.4. Let A =
(

A B
B∼ D

)
∈ L h. The operator A is nonnegative if and

only if the following two conditions are satisfied:

(i) the operators A and D are nonnegative;
(ii) for any square roots (RA, HA) and (RD, HD) of A and D, respectively,

there exists a contraction K ∈ L (HD, HA) such that B = R∗
AKR and

ranK ⊆ (ranRA)
c.

Proof. If A is nonnegative, assertion (i) is trivial. To prove (ii), let (R,H) be a
square root of A and RX := R�X , RY = R�Y , and hence,

A =

(
R∗

XRX R∗
XRY

R∗
YRX R∗

YRY

)
.

Let (SA, GA) and (SD, GD) be minimal square roots of A and D, respectively.
According to Lemma 3.8 there exist isometries UA ∈ L (GA, HA), VA ∈ L (GA,
H), UD ∈ L (GD, HD), and VD ∈ L (GD, H) satisfying UASA = RA, VASA = RX ,
UDSD = RD, VDSD = RY . It follows that

B = R∗
XRY = R∗

AUAV
∗
AVDU

∗
DRD = R∗

AKRD,

where K := UAV
∗
AVDU

∗
D ∈ L (HD, HA) is a contraction with ranK ⊆ (ranRA)

c.
Conversely, if (i) and (ii) are satisfied, then

A =

(
R∗

ARA R∗
AKRD

(R∗
AKRD)

∼ R∗
DRD

)
.

Since

(R∗
AKRD)

∼ = (R′
AKRD)

′�X= R′
DK

′R′′
A�X= R∗

DK
∗RA,

one obtains

A =

(
R∗

A 0
0 R∗

D

)(
I K
K∗ I

)(
RA 0
0 RD

)
,

which implies that A is nonnegative. �

6. Albert’s theorem

An application of Proposition 5.4 leads to a generalization of an important
criterion for nonnegativity (see [1]), which is often called Albert’s theorem in
matrix theory. It should be mentioned that Shmulyan [17, Theorem 1.7] proved
a similar assertion even for bounded operators in Hilbert spaces ten years earlier
(see also [3] and [10]).

Theorem 6.1. An operator A =
(

A B
B∼ D

)
∈ L h is nonnegative if and only if it

is of positive type and σ(A) is nonnegative.
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Proof. If A ∈ L ≥, then Proposition 5.4 implies that A is of positive type and

R
∗[−1]
A B = KRD for some contraction K ∈ L (HD, HA). It follows that

σ(A) = R∗
DRD − (KRD)

∗KRD = R∗
D(I −K∗K)RD ≥ 0.

Conversely, let A ∈ L + and σ(A) ∈ L ≥(Y, Y ′). If (RA, HA) and (RD, HD) are
square roots of A and D, respectively, one has

‖R∗[−1]
A By‖2 =

〈
ω(A,B)y, y

〉
≤ 〈Dy, y〉 = ‖RDy‖2, y ∈ Y,

which yields KRD = R∗[−1]B, and hence, R∗
AKRD = B for some contraction

K ∈ L (HD, HA). An application of Proposition 5.4 completes the proof. �

Theorem 6.1 can be used to study the set L ≥ as well as the set L +, and
to establish interrelations between these two sets. A first result is the inclusion
L ≥ ⊆ L +. For a positive pair (A,B), set

Aex :=

(
A B
B∼ ω(A,B)

)
∈ L +.

Corollary 6.2. Two operators A ∈ L (X,X ′) and B ∈ L (Y,X ′) form a positive
pair if and only if the set

A :=

{
A ∈ L ≥ : A =

(
A B
B∼ D

)
for some D ∈ L ≥(Y, Y ′)

}
is nonempty. If (A,B) is a positive pair, then the operator Aex is the minimal
element of A.

Corollary 6.3. If A ∈ L ≥, then the set

A1 := {A1 ∈ L ≥ : A1 ≤ A and X ⊆ kerA1}

is nonempty and S (A) is its maximal element.

Proof. Corollaries 4.8(i) and 4.9 imply that S (A) ∈ A1. If A =
(

A B
B∼ D

)
and

A1 ∈ A1, then A1 has representation A1 =
(
0 0
0 D1

)
and D − ω(A,B) −D1 ≥ 0,

and hence, A1 ≤ S (A) by Theorem 6.1. �

Corollary 6.4. Let A =
(

A B
B∼ D

)
∈ L h. The operator A belongs to L + if and

only if there exists an operator A1 ∈ L h satisfying X ⊆ kerA1 and A1 ≤ A.

Proof. If A ∈ L +, then the operator A1 := S (A) has all the properties claimed.
Conversely, if there exists an operator A1 satisfying all conditions, then it has
the form A1 =

(
0 0
0 D1

)
, where D1 ∈ L (Y, Y ′) and A−A1 =

(
A B
B∼ D−D1

)
∈ L ≥. It

follows from Theorem 6.1 that (A,B) is a positive pair, and hence, A ∈ L +. �

Another application of Theorem 6.1 gives an expression of the supremum occur-
ing in Lemma 4.2.

Corollary 6.5. If (A,B) is a positive pair, then

sup
x∈X

|〈By, x〉|2

〈Ax, x〉
=

〈
ω(A,B)y, y

〉
, y ∈ Y. (6.1)
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Proof. Let y ∈ Y . Since Aex ∈ L ≥ by Corollary 6.2, we have∣∣〈By, x〉
∣∣2 ≤ 〈Ax, x〉

〈
ω(A,B)y, y

〉
,

which yields

|〈By, x〉|2

〈Ax, x〉
≤

〈
ω(A,B)y, y

〉
, x ∈ X,

if we take into account the convention 0
0
:= 0. Thus, (6.1) has been proved if

Ty = R∗[−1]By = 0, where (R,H) is a minimal square root of A. Now assume
that Ty 6= 0. There exists a sequence {xn}n∈N of elements ofX such that Rxn 6= 0,
n ∈ N, and limn→∞Rxn = Ty. It follows that

lim
n→∞

|〈By, xn〉|2

〈Axn, xn〉
= lim

n→∞

|〈R∗Ty, xn〉|2

〈R∗Rxn, xn〉

= lim
n→∞

|(Ty |Rxn)|2

‖Rxn‖2

= ‖Ty‖2

=
〈
ω(A,B)y, y

〉
. �

Corollary 6.6. Let (Aj, Bj) with Aj ∈ (X,X ′), Bj ∈ (Y,X ′), j = 1, 2, be positive
pairs. Then (A1 + A2, B1 +B2) is a positive pair and

ω(A1 + A2, B1 +B2) ≤ ω(A1, B1) + ω(A2, B2). (6.2)

Proof. Since the operators (Aj)ex, j = 1, 2 are nonnegative, it follows that(
A1 + A2 B1 +B2

B∼
1 +B∼

2 ω(A1, B1) + ω(A2, B2)

)
∈ L ≥,

and hence, (6.2) by Corollary 6.2. �

Corollary 6.7. If Aj ∈ L +, j = 1, 2, then A1 +A2 ∈ L + and

S (A1) + S (A2) ≤ S (A1 +A2).

A subset A of L h is said to be bounded below if there exists A1 ∈ L h such
that A1 ≤ A for all A ∈ A . An operator A0 ∈ L h is called an infimum of A if
the following conditions are satisfied:

(a) A0 ≤ A for all A ∈ A ,
(b) A1 ≤ A0 for all A1 ∈ L h such that A1 ≤ A, A ∈ A .

If an infimum of A exists, it is unique. Recall that any set A which is bounded
from below and directed downwards (i.e., for all A1,A2 ∈ A there exists A ∈ A
such thatA ≤ A1 andA ≤ A2) possesses an infimum. In particular, if {An}n∈N is
a decreasing sequence of operators of L h which is bounded from below, then there
exists an infimum A0 and 〈A0z1, z2〉 = limn→∞〈Anz1, z2〉 for all z1, z2 ∈ X × Y .

Corollary 6.8. Let A be a subset of L h, which has an infimum A0. The operator
A0 belongs to L + if and only if the set S(A ) := {S (A) : A ∈ A } is bounded
from below. In this case ,S (A0) is the infimum of S(A ).
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Proof. If A0 ∈ L +, then the set S(A ) is bounded from below since S (A0) ≤
S (A), A ∈ A , by Corollary 4.8(ii). Conversely, assume that there exists A1 ∈
L h such that A1 ≤ S (A) for all A ∈ A . It follows that −A1 ≥ −S (A), which
yields −A1 ∈ L + by Corollary 6.4 and S (−A1) ≥ S (−S (A)) = −S (A),
and hence, −S (−A1) ≤ S (A) ≤ A, A ∈ A , by Corollary 4.8. We obtain
−S (−A1) ≤ A0 and therefore A0 ∈ L + by Corollary 6.4. Moreover, S (A0) ≤
S (A), A ∈ A , and

A1 = −(−A1) ≤ −S (−A1) = S
(
−S (−A1)

)
≤ S (A0)

by Corollary 4.8, which implies that S (A0) is the infimum of S(A ). �

7. Extremal operators

An operator A ∈ L + was called an extremal operator by Krĕın [11] if S (A) =
0. Since A = S (A) +Aex, an operator is extremal if and only if it has the form

A = Aex =

(
A B
B∼ ω(A,B)

)
for some positive pair (A,B). In particular, any extremal operator is nonnega-
tive. Applying Proposition 4.7, we can give several criteria for an operator to be
extremal.

Lemma 7.1. Let A ∈ L ≥. The following assertions are equivalent:

(i) the operator is extremal,
(ii) for all

(
x
y

)
∈ X × Y and arbitrary ε > 0 there exists z ∈ X such that〈

A

(
x− z
y

)
,

(
x− z
y

)〉
< ε,

(iii) for any square root (R,H) of A the spaces (RX)c and (ranR)c coincide,
(iv) for any square root (R,H) of A we have ranR∗ ∩ Y ′ = {0}.

Proof. The equivalence of (i) and (ii) is an immediate consequence of (4.3). To
prove (i) ⇔ (iii), choose a minimal square root (R,H) of A and let L and P be
defined as in Proposition 5.1. Then S (A) = R∗PR = 0 if and only if P = 0
or, equivalently, L = {0}, which in turn is equivalent to (RX)c = (ranR)c. The
equivalence of (iii) and (iv) follows from the equality R∗L = ranR∗ ∩ Y ′. �

Let (A,B) be a positive pair and let (R,H) be a square root of A. Recall the
notation (4.1) of the operator T := R∗[−1]B. Moreover, let PB be the orthopro-
jection onto (ranT )c. Since the operator Aex is nonnegative, from Theorem 6.1
one can conclude that (ω(A,B), B∼) is a positive pair as well changing the roles
of X and Y . Thus, the operators T ∗[−1]B∼ and

ω
(
ω(A,B), B∼) = [T ∗[−1]B∼]∗T ∗[−1]B∼

can be defined.

Lemma 7.2. The equalities T ∗[−1]B∼ = PBR and ω(ω(A,B), B∼) = R∗PBR hold
true.
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Proof. The second equality is an immediate consequence of the first one. To prove
the first equality, we will show that

(T ∗[−1]B∼x |h) = (PBRx |h) for all x ∈ X and h ∈ H. (7.1)

Since ranT ∗[−1]B∼ ⊆ (ranT )c, it is enough to prove (7.1) for x ∈ X and h ∈ ranT .
If h = Ty for some y ∈ Y , then we get

(T ∗[−1]B∼x |h) = (T ∗[−1]B∼x |Ty)
= 〈T ∗T ∗[−1]B∼x, y〉 = 〈B∼x, y〉

and

(PBRx |h) = (PBRx |Ty)
= (Rx |Ty)

= 〈R∗Ty, x〉

= 〈By, x〉
= 〈B∼x, y〉,

and hence, (7.1). �

From Corollary 6.2 it follows that ω(ω(A,B), B∼) is a minimal element of the
set {

A1 ∈ L (X,X ′) :

(
A1 B
B∼ ω(A,B)

)
∈ L ≥

}
.

Note also that

ω
(
ω
(
ω(A,B), B∼), B)

= ω(A,B)

(see [12, Proposition 1.4(A)]). We call an extremal operator Aex =
(

A B
B∼ ω(A,B)

)
doubly extremal if ω(ω(A,B), B∼) = A.

In the case of bounded operators on Hilbert spaces, the remaining results of
the present section were proved by Pekarev and Shmulyan [13, pp. 369–371] and
partly rediscovered by Niemiec [12, Proposition 1.4]. We mention that Niemiec’s
proofs are based on Douglas’s theorem and do not make explicit use of 2×2 block
operators.

Proposition 7.3. An operator Aex is doubly extremal if and only if

kerT ∗ = kerR∗ (7.2)

for any square root (R,H) of A.

Proof. According to Lemma 7.2, A is doubly extremal if and only if R∗PBR =
R∗R. If kerT ∗ = kerR∗ or, equivalently, (ranT )c = (ranR)c, it follows that
PBR = R, and hence, R∗PBR = R∗R. Conversely, assume that R∗PBR = R∗R,
which yields ‖PBRx‖ = ‖Rx‖, x ∈ X, and hence, (ranR)c ⊆ ranPB and kerPB ⊆
kerR∗. Since ranPB = (ranT )c or kerPB = kerT ∗, we get

kerT ∗ ⊆ kerR∗. (7.3)
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On the other hand, if h ∈ kerR∗, then h is orthogonal to (ranR)c and

0 = (h |Ty) = 〈T ∗h, y〉, y ∈ Y,

and thus, kerR∗ ⊆ kerT ∗. Taking into account (7.3) we obtain the desired equal-
ity. �

The preceding assertion shows that the equality (7.2) does not depend on the
choice of the square root (R,H) of A and that, in the case of a minimal square
root, the operator Aex is doubly extremal if and only if kerT ∗ = {0}. Moreover,
writing (7.2) in the equivalent form (ranT )c = (ranR)c, we obtain a generaliza-
tion of [13, Theorem 1.6]. This means that Aex is doubly extremal if and only if
the inverse image of ranB under the map R∗ is dense in H.

Corollary 7.4. If ranR∗ = ranB, then the operator Aex is doubly extremal.

To give another criterion for Aex to be doubly extremal, we equip the space
Y ′ with the σ(Y ′, Y )-topology (i.e., the smallest topology such that for arbitrary
y ∈ Y , the functional y′ 7→ 〈y′, y〉 is continuous on Y ′). Let (A,B) be a positive
pair and let (R,H) be a square root of A. Denote by H1 the subspace of all h ∈ H
such that there exists a sequence {xn}n∈N of elements of X with the following
properties:

(a) limn→∞Rxn = h with respect to the norm topology of H,
(b) limn→∞B∼xn = 0 with respect to the σ(Y ′, Y )-topology.

Lemma 7.5. The space H1 is equal to (ranR)c ∩ kerT ∗.

Proof. An element h ∈ H belongs to H1 if and only if there exists a sequence
{xn}n∈N of elements of X such that limn→∞ Rxn = h and for all y ∈ Y ,

〈T ∗h, y〉 = lim
n→∞

(Rxn |Ty)

= lim
n→∞

(xn |By)

= lim
n→∞

(B∼xn |y)

= 0. �

Proposition 7.6. An operator Aex is doubly extremal if and only if H1 = {0}.

Proof. Since H1 = {0} if and only if kerR∗ = kerT ∗ by Lemma 7.5, the assertion
follows from Proposition 7.3. �

Corollary 7.7. If an operator Aex is doubly extremal, then kerA = kerB∼. If
kerA = kerB∼ and ranR is closed, then Aex is doubly extremal.

Proof. If Aex is doubly extremal, then (T ∗[−1]B∼, H) is a square root of A, and
hence, kerB∼ ⊆ kerT ∗[−1]B∼ = kerA by Lemma 3.4. The first assertion of
the corollary follows since kerA ⊆ kerB∼ by Lemma 4.2. Now assume that
kerA = kerB∼ and that ranR is closed. If h ∈ H1, then there exist x ∈ X
and a sequence {xn}n∈N of elements of X such that h = Rx = limn→∞Rxn and
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limn→∞〈B∼xn, y〉 = 0 for all y ∈ Y . It follows that

〈B∼x, y〉 = 〈R∗Ty, x〉
= (Rx |Ty)
= lim

n→∞
(Rxn |Ty)

= lim
n→∞

〈By, xn〉

= lim
n→∞

〈B∼xn, y〉

= 0, y ∈ Y,

which implies that x ∈ kerB∼ = kerA = kerR and h = 0. An application of
Proposition 7.6 completes the proof. �
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