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Abstract. We investigate pointwise convergence of entangled ergodic aver-
ages of Dunford–Schwartz operators T0, T1, . . . , Tm on a Borel probability space.
These averages take the form
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where f ∈ Lp(X,µ) for some 1 ≤ p < ∞, and α : {1, . . . ,m} → {1, . . . , k}
encodes the entanglement. We prove that, under some joint boundedness and
twisted compactness conditions on the pairs (Ai, Ti), convergence holds almost
everywhere for all f ∈ Lp. We also present an extension to polynomial powers
in the case p = 2, in addition to a continuous version concerning Dunford–
Schwartz C0-semigroups.

1. Introduction

Entangled ergodic averages were first introduced by Accardi, Hashimoto, and
Obata in [1], who saw them as a key ingredient in providing an analogue of the
central limit theorem for quantum probability models. Entangled ergodic averages
take the general form
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where Ai (1 ≤ i ≤ m − 1) and Ti (1 ≤ i ≤ m) are operators on a Banach space
E, and α : {1, . . . ,m} → {1, . . . , k} is a surjective map. The operators Ai act
as transitions between the actions of the operators Ti, which iteratively govern
the dynamics, whereas the entanglement map α provides a coupling between the
stages.

Subsequent work on the subject initially focused on strong convergence of these
Cesàro averages (see Liebscher [19], Fidaleo [9]–[11], and Eisner and Kunszenti-
Kovács [7]). In Eisner and Kunszenti-Kovács [8] and Kunszenti-Kovács [18], atten-
tion was turned to pointwise almost-everywhere convergence in the context of the
Ti’s being operators on function spaces E = Lp(X,µ) (1 ≤ p < ∞), where (X,µ)
is a standard probability space (i.e., a compact metrizable space with a Borel
probability measure), with partial results for the case p 6= 2. The former paper
[8] focuses on the case k = 1 with the Ti’s being Dunford–Schwartz operators,
whereas the latter [18] allows for multiparameter entanglement, but at the price
of only dealing with Koopman operators.

In this article, we deal with the full case of general entanglement maps α and
Dunford–Schwartz operators Ti, and we show convergence almost everywhere on
the whole Lp space for all 1 ≤ p < ∞ under weakened assumptions, significantly
improving on previous results. We introduce a formalism for the iterated func-
tion splittings used in the proofs in order to make them more concise, better
highlighting what the main steps are and where the different assumptions of the
statements come into play. We also provide results concerning polynomial and
time-continuous versions of the ergodic theorems considered.

Recall that a Dunford–Schwartz operator T is an operator acting as a contrac-
tion on all Lp spaces over a probability space (X,µ), so that when introducing
such an operator we will only specify the probability space it “acts” on, whereas
the p we consider will be fixed thereafter. Also, in what follows, N will denote the
set of positive integers, and T will denote the unit circle in C.

Our main result is as follows.

Theorem 1.1. Let m > 1 and k be positive integers, let α : {1, . . . ,m} →
{1, . . . , k} be a not-necessarily surjective map, and let T1, T2, . . . , Tm be Dunford–
Schwartz operators on a Borel probability space (X,µ). Let p ∈ [1,∞), let E :=
Lp(X,µ), and let E = Ej;r ⊕ Ej;s be the Jacobs–de Leeuw–Glicksberg decomposi-
tion corresponding to Tj (1 ≤ j ≤ m). Furthermore, let Aj ∈ L(E) (1 ≤ j < m)
be bounded operators. For a function f ∈ E and an index 1 ≤ j ≤ m − 1, write
Aj,f := {AjT

n
j f |n ∈ N}. Suppose that the following conditions hold.

(A1) (Twisted compactness) For any function f ∈ E, index 1 ≤ j ≤ m−1, and
ε > 0, there exists a decomposition E = U ⊕R with 0 < dimU < ∞ such
that

PRAj,f ⊂ Bε

(
0, L∞(X,µ)

)
,

with PR denoting the projection along U onto R.
(A2) (Joint L∞-boundedness) There exists a constant C > 0 such that we have

{AjT
n
j |n ∈ N, 1 ≤ j ≤ m− 1} ⊂ BC(0,L

(
L∞(X,µ)

)
.

Then we have the following:
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(1) for each f ∈ E1;s,
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pointwise almost everywhere;
(2) for each f ∈ E1;r,

1

Nk

∑
1≤n1,...,nk≤N

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·A2T
nα(2)

2 A1T
nα(1)

1 f

converges pointwise almost everywhere.

Remark. Note that it was proved in [8] that the Volterra operator V on L2([0, 1])
defined through

(V f)(x) :=

∫ x

0

f(z) dz,

as well as all of its powers, can be decomposed into a finite sum of operators,
each of which satisfies conditions (A1) and (A2) when paired with any Dunford–
Schwartz operator. Hence the conclusions of Theorem 1.1 apply whenever the
operators Ai are chosen to be powers of V .

2. Notation and tools

Before proceeding to the proof of our main result, we need to clarify some of
the notions used and introduce notation that will simplify our arguments.

The proof works by iteratively splitting the functions into finitely many parts,
so introducing vector indices will be very helpful. Given a vector v ∈ Nd (d ≥ 1),
let v ∈ Nd−1 be the vector obtained by deleting its last coordinate, and let v∗

denote its last coordinate. Also, we will write l(v) := d to denote the number of
coordinates of the vector, x ⊂ v if there exist vectors w0, w1, . . . , wb (b ≥ 1) such
that w0 = x, wb = v, and for each 1 ≤ i ≤ b we have wi−1 = wi, and finally, x ⊆ v
if x = v or x ⊂ v.

Let N denote the set of all bounded sequences {an} ⊂ `∞(C) satisfying

lim
N→∞

1

N

N∑
n=1

|an| = 0.

By the Koopman–von Neumann lemma (see, e.g., Petersen [22, p. 65]), (an) ∈ N
if and only if it lies in `∞ and converges to zero along a sequence of density 1.

Definition 2.1. Given a Banach space E and an operator T ∈ L(E), the operator
T is said to have relatively weakly compact orbits if for each f ∈ E, the orbit set
{T nf |n ∈ N} is relatively weakly closed in E. For any such operator, there exists
a corresponding Jacobs–de Leeuw–Glicksberg decomposition of the form (see [5,
Theorem II.4.8])

E = Er ⊕ Es,
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where

Er := lin{f ∈ E : Tf = λf for some λ ∈ T},
Es :=

{
f ∈ E :

(
ϕ(T nf)

)
∈ N for every ϕ ∈ E ′}.

Note that every power-bounded operator on a reflexive Banach space has rela-
tively weakly compact orbits. Thus, for example, the above decomposition is valid
for every contraction on Lp(X,µ) for p ∈ (1,∞). If T is a Dunford–Schwartz oper-
ator on (X,µ), then T clearly has relatively weakly compact orbits not only in
Lp(X,µ) (1 < p < ∞), but in L1(X,µ) as well (see Lin, Olsen, and Tempelman
[21, Proposition 2.6] and Kornfeld and Lin [14, pp. 226–227]). The Jacobs–de
Leeuw–Glicksberg decomposition is therefore valid for Dunford–Schwartz opera-
tors on Lp(X,µ) for every p ∈ [1,∞).

Let T be a Dunford–Schwartz operator on (X,µ). The (linear) modulus |T |
of T is defined as the unique positive operator on L1(X,µ) having the same
L1- and L∞-norm as T such that |T nf | ≤ |T |n|f | holds almost everywhere for
every f ∈ L1(X,µ) and every n ∈ N. The modulus of a Dunford–Schwartz
operator is again a Dunford–Schwartz operator. (For details, see Dunford and
Schwartz [4, p. 672] and Krengel [15, pp. 159–160].) Also, it is easily seen that
for T Dunford–Schwartz, the operators λT (λ ∈ T) are themselves Dunford–
Schwartz and have the same modulus. For example, every Koopman operator
(i.e., an operator induced by a µ-preserving transformation on X) is a positive
Dunford–Schwartz operator, and hence coincides with its modulus.

A key property of Dunford–Schwartz operators needed for this article is that the
validity of pointwise ergodic theorems typically extends from Koopman operators
to Dunford–Schwartz operators. For instance, for every f ∈ L1(X,µ), the ergodic
averages

1

N

N∑
n=1

T nf

converge almost everywhere as N → ∞ (see Dunford and Schwartz [4, p. 675]).
We will also need to define some classes of sequences that act as good weights

for pointwise ergodic theorems. A sequence (an)n∈N ⊂ C is called a trigonometric
polynomial (see [12]) if it is of the form an =

∑t
j=1 bjρ

n
j , where the bj’s are complex

numbers and ρj ∈ T for all 1 ≤ j ≤ t.
Let P ⊂ `∞ denote the set of Bohr almost-periodic sequences, that is, the set

of uniform limits of trigonometric polynomials. The following properties of the
set P will be used: it is closed in l∞, closed under multiplication, and is a sub-
class of (Weyl) almost-periodic sequences AP(N), that is, sequences whose orbit
under the left shift is relatively compact in l∞. Actually, AP(N) = P ⊕ c0 (see
Bellow and Losert [2, p. 316]), corresponding to the Jacobs–de Leeuw–Glicksberg
decomposition of AP(N) induced by the left shift (see, e.g., [5, Theorem I.1.20]).
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By Çömez, Lin, and Olsen [3, Theorem 2.5], every element (an)
∞
n=1 of AP(N),

and hence of P, is a good weight for the pointwise ergodic theorem for Dunford–
Schwartz operators. That is, for every Dunford–Schwartz operator T on a prob-
ability space (X,µ) and every f ∈ L1(X,µ), the weighted ergodic averages

1

N

N∑
n=1

anT
nf

converge almost everywhere as N → ∞.
A sequence (an)n∈N ⊂ C is called linear (see [6]) if there exist a Banach space

E, an operator T ∈ L(E) with relatively weakly compact orbits, and y ∈ E,
y′ ∈ E ′ such that an = y′(T ny) for all n ∈ N. Let us call a linear sequence stable
if we can choose y ∈ Es, and reversible if we can chose y ∈ Er. It is easy to see
that stable linear sequences all lie in N , whereas reversible linear sequences all
lie in P.

We will later also need properties of polynomial subsequences of linear
sequences, and thus a corresponding class of good weights for the pointwise poly-
nomial ergodic theorem.

Definition 2.2. Given 1 ≤ p < ∞ and a subsequence (ns)s∈N of N, the class
Bp,(ns)s∈N of p, (ns)s∈N-Besicovitch sequences is the closure of the trigonometric
polynomials in the p, (ns)s∈N-seminorm defined by

∥∥(an)n∈N∥∥p

p,(ns)s∈N
= lim sup

N→∞

1

N

N∑
n=1

|ans|p.

By [20, Theorem 2.1], the set of bounded sequences in these classes is indepen-
dent of the choice of p; that is, B1,(ns)s∈N ∩ l∞ = Bp,(ns)s∈N ∩ l∞ for all p ∈ (1,∞).
Note that the seminorm defined above is trivially dominated by the l∞-norm, and
hence P ⊂ B1,(ns)s∈N ∩ l∞ for any subsequence (ns)s∈N of N. The closedness of P
under multiplication thus yields the following lemma.

Lemma 2.3. Let (an;j)n∈N be a reversible linear sequence for each 1 ≤ j ≤ t.

Then (bn)n∈N defined by bn :=
∏t

j=1 an;j lies in B1,(ns)s∈N ∩ l∞ for any subsequence

(ns)s∈N of N.

The essential property of elements of B1,(ns)s∈N ∩ l∞ is given by the following
theorem.

Theorem 2.4 ([12, Theorem 2.1]). Let T be a Dunford–Schwartz operator on a
standard probability space (X,µ), let 1 ≤ p < ∞, and let q(x) be a polynomial
with integer coefficients taking positive values on N. Then for any f ∈ Lp(X,µ)
and (bn)n∈N ∈ B1,(q(n))n∈N ∩ l∞, the limit

lim
N→∞

1

N

N∑
n=1

bq(n)T
q(n)f

exists almost surely.
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Finally, we need information about the sequences (λ∗;n) along polynomial
indices. Recall that an operator is almost weakly stable if the stable part of
the Jacobs–de Leeuw–Glicksberg decomposition is the whole space.

Proposition 2.5 ([17, Theorem 1.1]). Let T be an almost weakly stable contrac-
tion on a Hilbert space H. Then T is almost weakly polynomial stable; that is, for
any h ∈ H and nonconstant polynomial q with integer coefficients taking positive
values on N, the sequence {T q(j)h}∞j=1 is almost weakly stable.

As a consequence, we obtain the following result.

Corollary 2.6. Let T be a Dunford–Schwartz operator on the standard probability
space (X,µ), let q be a nonconstant polynomial with integer coefficients taking
positive values on N, and let A be an arbitrary operator on L2(X,µ). Then for
any g, ϕ ∈ L2(X,µ) with g in the stable part of L2(X,µ) with respect to T , we
have that the sequence 〈AT q(n)g, ϕ〉 is bounded and lies in N .

3. Proof of Theorem 1.1

We will proceed by successive splitting and reduction. For each operator Ti,
starting from T2, we split the functions it is applied to into several terms using
condition (A1) of Theorem 1.1. Most of the obtained terms can be easily dealt
with, but for the remaining “difficult” terms, we move on to Ti+1, up to and
including Tm. We first prove part (1) of Theorem 1.1, and then we use this result
to complete the proof for part (2) of Theorem 1.1.

In what follows, we will assume without loss of generality that for the constant
in Theorem 1.1, we have C ≥ 1. Given a function f ∈ E1;s and ε ∈ (0, 1), do the
following.

(I) First, set d = 0, c := εC−m, and let I0 consist of the empty index.
(II) By assumption (A1), for each fv (v ∈ Id) we may find a decomposition

E = Uv ⊕Rv with `v := dimUv < ∞ and

PRvAd+1,fv ⊂ Bcv

(
0, L∞(X,µ)

)
.

For each v ∈ Id, choose a maximal linearly independent set fv;1, . . . , fv;`v
in Uv. Then for each n ∈ N, we can write the unique decomposition

Ad+1T
n
d+1fv = λv,1;nfv,1 + · · ·+ λv,`v ;nfv,`v + rv;n

for appropriate coefficients λv,j;n ∈ C and some remainder term rv,n ∈ Rv

with ‖rv;n‖∞ < cv. Furthermore, choose elements ϕv;1, . . . , ϕv;`v ∈ E ′ with
the property

ϕv;i(fv,j) = δi,j and ϕv;i|Rv = 0 for every i, j ∈ {1, . . . , `v}.
Set

uv := ‖fv‖ · ‖A∗
d+1‖ max

1≤j≤`v
‖ϕv;j‖.

(III) Let

Id+1 := {w ∈ Nd+1|w ∈ Id, 1 ≤ w∗ ≤ `w}.
Also, for each w ∈ Id+1, let cw := cw/uw`w.
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(IV) Increase d by 1, and unless d = m− 1, restart from step (II).

(V) For each w ∈ Im−1, choose the function f̃w ∈ L∞ such that

‖fw − f̃w‖1 ≤ ‖fw − f̃w‖p < cw · ε/|Im−1|.

Proof of Theorem 1.1(1). Applying the above splitting procedure to f ∈ E1;s, we
may bound our original Cesàro averages by a finite sum of averages. For almost
every z ∈ X, we have

1

Nk

∑
1≤n1,...,nk≤N

|T nα(m)
m Am−1T
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m−1 · · ·A2T
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2 A1T
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1 f |(z)
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∑
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1
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∏
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|
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1

Nk
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|T nα(m)
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∏
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|λx;nα(l(x))
|

+
∑

v∈Im−1

1

Nk

∑
1≤n1,...,nk≤N

∣∣T nα(m)
m (fv − f̃v)

∣∣(z) ∏
l(x)>0,x⊆v

|λx;nα(l(x))
|

+
∑

w∈Il(w),0≤l(w)<m−1

Cm

Nk

∑
1≤n1,...,nk≤N

cw
∏

l(x)>0,x⊆w

|λx;nα(l(x))
|.

We will bound each of these three sums separately. Note that by the definition
of the linear forms, we have for each v ∈ Il(v) (1 ≤ l(v) ≤ m− 1)

λv;n = ϕv;v∗(Al(v)T
n
l(v)fv) = (A∗

l(v)ϕv;v∗)(T
n
l(v)fv),

and hence

|λv;n| ≤ ‖fv‖ · ‖A∗
l(v)‖ max

1≤j≤`v
‖ϕv;j‖ = uv,

but also, since f ∈ E1;s, we have (λj;n)n∈N ∈ N for each 1 ≤ j ≤ `.
Using that N is closed under multiplication by bounded sequences, on the one

hand we obtain that

lim
N→∞

∑
w∈Il(w),0≤l(w)<m−1

Cm

Nk

∑
1≤n1,...,nk≤N

cw
∏

l(x)>0,x⊆w

|λx;nα(l(x))
|

=
∑

w∈Il(w),0≤l(w)<m−1

Cmcw

(
lim

N→∞

1

Nk

∑
1≤n1,...,nk≤N

∏
l(x)>0,x⊆w

|λx;nα(l(x))
|
)

= Cm
∑
w∈I0

cw = Cmc = ε.

On the other hand, also using that f̃v is essentially bounded for each v ∈ Im−1

and that Tm as a Dunford–Schwartz operator is a contraction on L∞, we obtain
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that

lim
N→∞

∑
v∈Im−1

1

Nk

∑
1≤n1,...,nk≤N

|T nα(m)
m f̃v|(z)

∏
l(x)>0,x⊆v

|λx;nα(l(x))
| = 0

for almost every z ∈ X.
Thus only the middle sum remains to be bounded. To treat that term, we will

make use of the pointwise ergodic theorem for Dunford–Schwartz operators. Since
the modulus of a Dunford–Schwartz operator is itself Dunford–Schwartz, we may

apply the pointwise ergodic theorem to |Tm| and the functions |fv − f̃v| to obtain

that for each v ∈ Im−1, there exists a function 0 ≤ fv ∈ L1 with ‖fv‖1 ≤ |fv− f̃v|1
and a set Sv with µ(Sv) = 1 such that

lim
N→∞

1

N

N∑
n=1

|Tm|n
∣∣(fv − f̃v)

∣∣(z) = fv(z)

for all z ∈ Sv.
Note that by the norm bound in step (V), there then exists a set Sv ⊂ Sv with

µ(Sv) > 1− ε/|Im−1| such that

lim
N→∞

1

N

N∑
n=1

|Tm|n
∣∣(fv − f̃v)

∣∣(z) ≤ cw

for all z ∈ Sv. We obtain that for every z ∈
⋂

v∈Im−1
Sv, we have

lim sup
N→∞

∑
v∈Im−1

1

Nk

∑
1≤n1,...,nk≤N

∣∣T nα(m)
m (fv − f̃v)

∣∣(z) ∏
l(x)>0,x⊆v

|λx;nα(l(x))
|

≤ lim
N→∞

∑
v∈Im−1

1

Nk

∑
1≤n1,...,nk≤N

(
|Tm|nα(m)|fv − f̃v|

)
(z)

∏
l(x)>0,x⊆v

ux

≤
∑

v∈Im−1

cv
∏

l(x)>0,x⊆v

ux = εC−m ≤ ε.

In total, we obtain that for every ε > 0, we have

lim sup
N→∞

1

Nk

∑
1≤n1,...,nk≤N

|T nα(m)
m Am−1T

nα(m−1)

m−1 · · ·A2T
nα(2)

2 A1T
nα(1)

1 f |(z) < ε

for all z ∈
⋂

v∈Im−1
Sv. Since µ(

⋂
v∈Im−1

Sv) > 1−|Im−1| ·ε/|Im−1| = 1−ε, letting

ε → 0 concludes our proof of part (1).
We now turn our attention to part (2), and we show almost-everywhere con-

vergence of the averages on the reversible part E1;r with respect to the operator
T1. Again we will proceed by iterated splitting of the function but will also make
use of part (1).

Given a function f ∈ E1;r, and an ε > 0, do the following.

(i) First, set d = 0, c := εC−m, and let I0 consist of the empty index.
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(ii) By assumption (A1), for each fv (v ∈ Id) we may find a decomposition
E = Uv ⊕Rv with `v := dimUv < ∞ and

PRvAd+1,fv ⊂ Bcv

(
0, L∞(X,µ)

)
.

For each v ∈ Id, choose a maximal linearly independent set gv,1, . . . , gv,`v
in Uv. Then for each n ∈ N, we can write the unique decomposition

Ad+1T
n
d+1fv = λv,1;ngv,1 + · · ·+ λv,`v ;ngv,`v + rv;n

for appropriate coefficients λv,j;n ∈ C and some remainder term rv,n ∈ Rv

with ‖rv;n‖∞ < cv. Furthermore, choose elements ϕv;1, . . . , ϕv;`v ∈ E ′ with
the property

ϕv;i(gv,j) = δi,j and ϕv;i|Rv = 0 for every i, j ∈ {1, . . . , `v}.

Set

uv := ‖fv‖ · ‖A∗
d+1‖ max

1≤j≤`v
‖ϕv;j‖.

(iii) For each v ∈ Id and 1 ≤ j ≤ `v, let fv,j := PEd+2;r
gv,j be the reversible

part of gv,j with respect to Td+2, and let qv,j := gv,j − fv,j be its stable
part.

(iv) Let

Id+1 := {w ∈ Nd+1|w ∈ Id, 1 ≤ w∗ ≤ `w}.

Also, for each w ∈ Id+1, let cw := cw/uw`w.
(v) Increase d by 1, and unless d = m− 1, restart from step (II).

�

Proof of Theorem 1.1(2). Let us apply the iterated decomposition (i)–(vi)
detailed above to the function f ∈ E1;r. We obtain that

1

Nk

∑
1≤n1,...,nk≤N

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·A2T
nα(2)

2 A1T
nα(1)

1 f

=
∑

v∈Im−1

1

Nk

∑
1≤n1,...,nk≤N

( ∏
l(x)>0,x⊆v

λx;nα(l(x))

)
T

nα(m)
m gv

+
∑

w∈Il(w),0<l(w)<m−1

1

Nk

∑
1≤n1,...,nk≤N

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+1T
nα(`(w)+1)

`(w)+1 qw
∏

l(x)>0,x⊆w

λx;nα(l(x))

+
∑

w∈Il(w),0≤l(w)<m−1

1

Nk

∑
1≤n1,...,nk≤N

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)

∏
l(x)>0,x⊆w

λx;nα(l(x))
.
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First, let us look at the terms

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·A`(w)+1T
nα(`(w)+1)

`(w)+1 qw
∏

l(x)>0,x⊆w

λx;nα(l(x))

involving the qw’s. For each w ∈ Il(w) with 0 < l(w) < m − 1, we note that the
products ∏

l(x)>0,x⊆w

λx;nα(l(x))

are bounded in absolute value by the constant∏
l(x)>0,x⊆w

ux,

and by using part (1) with the new value m′ := m− l(w) > 1, we obtain for each
w that

lim sup
N→∞

∣∣∣ 1

Nk

∑
1≤n1,...,nk≤N

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+1T
nα(`(w)+1)

`(w)+1 qw
∏

l(x)>0,x⊆w

λx;nα(l(x))

∣∣∣(z)
≤

( ∏
l(x)>0,x⊆w

ux

)
lim sup
N→∞

1

Nk

∑
1≤n1,...,nk≤N

|T nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+1T
nα(`(w)+1)

`(w)+1 qw|(z) = 0

for almost every z ∈ X. Since there are finitely many different such terms involv-
ing the qw’s, they contribute a total of 0 to the Cesàro means on a set of full
measure.

Second, let us look at the terms

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)

∏
l(x)>0,x⊆w

λx;nα(l(x))

involving the rw;∗’s. Note that since we work on the reversible part and lack a
coefficient sequence λ∗ in N , we cannot conclude the same way as in part (1).
Let us therefore fix w ∈ Il(w) with 0 ≤ l(w) < m− 1. Then, using (A2), we have
that∥∥∥T nα(m)

m Am−1T
nα(m−1)

m−1 · · ·A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)

∏
l(x)>0,x⊆w

λx;nα(l(x))

∥∥∥
∞

≤ Cm−l(w)−2‖rw;nα(l(w)+1)
‖

∏
l(x)>0,x⊆w

ux < Cmcw
∏

l(x)>0,x⊆w

ux

= ε
∏
x⊂w

1

`x
.
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This in turn implies that for every N ,∥∥∥ ∑
w∈Il(w),0≤l(w)<m−1

1

Nk

∑
1≤n1,...,nk≤N

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)

∏
l(x)>0,x⊆w

λx;nα(l(x))

∥∥∥
∞

≤
∑

w∈Il(w),0≤l(w)<m−1

1

Nk

∑
1≤n1,...,nk≤N

×
∥∥∥T nα(m)

m Am−1T
nα(m−1)

m−1 · · ·A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)

∏
l(x)>0,x⊆w

λx;nα(l(x))

∥∥∥
∞

<
∑

w∈Il(w),0≤l(w)<m−1

ε
∏
x⊂w

1

`x
= ε

m−2∑
d=1

∑
w∈Id

∏
x⊂w

1

`x

= ε
m−2∑
d=1

1 = ε(m− 2).

It only remains to estimate the terms( ∏
l(x)>0,x⊆v

λx;nα(l(x))

)
T

nα(m)
m gv

involving the functions gv (v ∈ Im−1). We have

1

Nk

∑
1≤n1,...,nk≤N

( ∏
l(x)>0,x⊆v

λx;nα(l(x))

)
T

nα(m)
m gv

=
( 1

Nk−1

∑
1≤nj≤N(1≤j≤k,j 6=α(m))

( ∏
l(x)>0,α(l(x)) 6=α(m),x⊆v

λx;nα(l(x))

))

×
( 1

N

N∑
n=1

( ∏
l(x)>0,α(l(x))=α(m),x⊆v

λx;n

)
T n
mgv

)
.

We will show that as N tends to infinity, the first, complex-valued factor is con-
vergent, whereas the second, function-valued factor converges almost everywhere.
This will then imply that the product also converges almost everywhere.

Let us fix v ∈ Im−1. We obtain for each x ⊆ v with l(x) > 0 that

λx;n = ϕx;x∗(Al(x)T
n
l(x)fx) = 〈A∗

l(x)ϕx;x∗, T
n
l(x)fx〉,

and since fx is in the reversible part of E with respect to Tl(x), the sequence
(λx;n)n∈N is a reversible linear sequence. Using that P is closed under multipli-
cation, we have that for each 1 ≤ j ≤ m( ∏

l(x)>0,α(l(x))=j,x⊆v

λx;n

)
n∈N

∈ P.
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In particular, for each v ∈ Im−1, the Cesàro means( 1

Nk−1

∑
1≤nj≤N(1≤j≤k,j 6=α(m))

( ∏
l(x)>0,α(l(x)) 6=α(m),x⊆v

λx;nα(l(x))

))
converge.

Finally, let us turn our attention to the factor

1

N

N∑
n=1

( ∏
l(x)>0,α(l(x))=α(m),x⊆v

λx;n

)
T n
mgv.

Since elements of P are good weights for the pointwise ergodic theorem for
Dunford–Schwartz operators, this converges pointwise almost everywhere.

In conclusion, for almost every z ∈ X, we have(
lim sup
N→∞

− lim inf
N→∞

) 1

Nk

∑
1≤n1,...,nk≤N

(T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·A2T
nα(2)

2 A1T
nα(1)

1 f)(z)

≤
∑

v∈Im−1

(
lim sup
N→∞

− lim inf
N→∞

) 1

Nk

∑
1≤n1,...,nk≤N

( ∏
l(x)>0,x⊆v

λx;nα(l(x))

)
(T

nα(m)
m gv)(z)

+
∑

w∈Il(w),0<l(w)<m−1

(
lim sup
N→∞

− lim inf
N→∞

) 1

Nk

×
∑

1≤n1,...,nk≤N

(T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+1T
nα(`(w)+1)

`(w)+1 qw)(z)
∏

l(x)>0,x⊆w

λx;nα(l(x))

+
∑

w∈Il(w),0≤l(w)<m−1

(
lim sup
N→∞

− lim inf
N→∞

) 1

Nk

×
∑

1≤n1,...,nk≤N

(T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)
)(z)

∏
l(x)>0,x⊆w

λx;nα(l(x))

= 0 + 0 +
∑

w∈Il(w),0≤l(w)<m−1

(
lim sup
N→∞

− lim inf
N→∞

)
× 1

Nk

∑
1≤n1,...,nk≤N

(T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)
)(z)

∏
l(x)>0,x⊆w

λx;nα(l(x))

≤ 2 sup
N∈N

∥∥∥ ∑
w∈Il(w),0≤l(w)<m−1

1

Nk
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×
∑

1≤n1,...,nk≤N

T
nα(m)
m Am−1T

nα(m−1)

m−1 · · ·

A`(w)+2T
nα(`(w)+2)

`(w)+2 rw;nα(l(w)+1)

∏
l(x)>0,x⊆w

λx;nα(l(x))

∥∥∥
∞

≤ 2ε(m− 2).

Since this holds for every ε > 0, we have thus concluded the proof of Theo-
rem 1.1(2). �

Remark. The pointwise limit—if it exists—is clearly the same as the strong limit,
and takes the form given in [7, Theorem 3].

4. Pointwise polynomial ergodic version

In this section, our goal is to prove a polynomial version of Theorem 1.1. With
these tools in hand, we can now state and prove almost everywhere pointwise
convergence of entangled means on Hilbert spaces.

Theorem 4.1. Let m > 1 and k be positive integers, let α : {1, . . . ,m} →
{1, . . . , k} be a not-necessarily surjective map, and let T1, T2, . . . , Tm be Dunford–
Schwartz operators on a standard probability space (X,µ). Let E := L2(X,µ),
and let E = Ej,r ⊕ Ej,s be the Jacobs–de Leeuw–Glicksberg decomposition corre-
sponding to Tj (1 ≤ j ≤ m). Furthermore, let Aj ∈ L(E) (1 ≤ j < m) be bounded
operators. Suppose that conditions (A1) and (A2) of Theorem 1.1 hold. Further-
more, let q1,q2, . . . ,qk be nonconstant polynomials with integer coefficients taking
positive values on N. Then we have the following:

(1) for each f ∈ E1,s,

1

Nk

∑
1≤n1,...,nk≤N

|T qα(m)(nα(m))
m · · ·A2T

qα(2)(nα(2))

2 A1T
qα(1)(nα(1))

1 f | → 0

pointwise almost everywhere;
(2) for each f ∈ E1,r, the averages

1

Nk

∑
1≤n1,...,nk≤N

T
qα(m)(nα(m))
m · · ·A2T

qα(2)(nα(2))

2 A1T
qα(1)(nα(1))

1 f

converge pointwise almost everywhere.

Proof. We will follow the proof of Theorem 1.1, using the same recursive split-
ting. The question is then why the convergences still hold when averaging along
polynomial subsequences.

For part (1), we have three terms to bound: those involving the remainder

functions r∗;n, the ones involving the essentially bounded functions f̃∗, and finally

the ones with the small approximation errors f∗ − f̃∗. Using Corollary 2.6, we
obtain that the subsequences λj;q(n) involved (1 ≤ j ≤ `) also lie in N , leading to
the same bounds as in the linear case for the first two types of terms. For the terms

involving the functions f∗ − f̃∗, we use the polynomial version of the pointwise
ergodic theorem for Dunford–Schwartz operators, Theorem 2.4, to obtain that for
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each v ∈ Im−1, there exists a function 0 ≤ fv ∈ L1 and a set Sv with µ(Sv) = 1
such that

lim
N→∞

1

N

N∑
n=1

|Tm|q(n)
∣∣(fv − f̃v)

∣∣(z) = fv(z)

for all z ∈ Sv. Since the polynomial Cesàro means are also contractive in L1 for
Dunford–Schwartz operators, the rest of the arguments remain unchanged, and
this concludes the proof of part (1).

For part (2), we again have three types of terms. The terms involving the func-
tions q∗ can again be treated using part (1) and shown to have a zero contribution
almost everywhere, and the terms with the r∗;n’s also do not require any change
in the arguments used. Only the terms involving the functions gv (v ∈ Im−1)
remain. For these, we use Lemma 2.3 combined with Theorem 2.4 to obtain the
almost-everywhere convergence needed. �

5. The continuous case

In this section, we finally turn our attention to a variant of the above results,
where we replace the discrete action of the Dunford–Schwartz operators with the
continuous-action C0-semigroups. In other words, the semigroups {T n

i |n ∈ N+}
are replaced by strongly continuous semigroups {Ti(t)|t ∈ [0,∞)}.

Let T (·) := (T (t))t∈[0,∞) be a C0-semigroup of Dunford–Schwartz operators
on L1(X,µ). Then, by the standard approximation argument, using that the
unit ball in L∞(X,µ) is invariant under the semigroup, T (·) is automatically a
C0-semigroup (of contractions) on Lp(X,µ) for every 1 ≤ p < ∞. In addition, by
Fubini’s theorem (see, e.g., Satō [23, p. 3]), for every f ∈ L1(X,µ) the function
(T (·)f)(x) is Lebesgue integrable over finite intervals in [0,∞) for almost every
x ∈ X. Similarly, for C0-semigroups T0(·), . . . , Ta(·) on E := Lp(X,µ), operators
A0, . . . , Aa−1 ∈ L(E), and f ∈ E, the product(

Ta(·)Aa−1Ta−1(·) · · ·A1T1(·)A0T0(·)f
)
(x)

is Lebesgue integrable over finite intervals in [0,∞) for almost every x ∈ X.
By Dunford and Schwartz [4, pp. 694, 708], the pointwise ergodic theorem

extends to every strongly measurable semigroup T (·) of Dunford–Schwartz opera-
tors. In addition, it can be shown through a simple adaptation of the arguments in
Lin, Olsen, and Tempelman [21, Proof of Proposition 2.6] that every C0-semigroup
of Dunford–Schwartz operators has relatively weakly compact orbits in L1(X,µ).
Thus, the continuous version of the Jacobs–de Leeuw–Glicksberg decomposition
(see, e.g., [5, Theorem III.5.7]) is valid for such semigroups.

In the discrete case, the modulus |T | of the operator T was used to obtain a
discrete semigroup of positive operators that dominates (T n)n∈N while keeping
the Dunford–Schwartz property. The time-continuous case turns out to be more
involved, as there is no “first” operator whose modulus can be used to generate
the dominating semigroup. Just as in the discrete case, we usually have |T 2| 6=
|T |2; in the C0 setting, (|T (t)|)t≥0 will generally not be a strongly continuous
semigroup. For example, by Kipnis [13] or Kubokawa [16], for a C0-semigroup
T (·) of contractions there exists a minimal C0-semigroup of positive operators
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dominating T (·), which we will denote by |T |(·). Of course, |T |(·) = T (·) for
positive semigroups. Moreover, the construction in [13, pp. 372–373] implies that
if T (·) consists of Dunford–Schwartz operators, then so does |T |(·).

With the above, the proof of Theorem 1.1 can be extended to the time-
continuous setting to obtain the following C0 version of our main theorem.

Theorem 5.1. Let m > 1 and k be positive integers, let α : {1, . . . ,m} →
{1, . . . , k} be a not-necessarily surjective map, and let (T1(t))t≥0, . . . , (Tm(t))t≥0

be C0-semigroups of Dunford–Schwartz operators on a standard probability space
(X,µ). Let p ∈ [1,∞), let E := Lp(X,µ), and let E = Ej,r⊕Ej,s be the Jacobs–de
Leeuw–Glicksberg decomposition corresponding to Tj(·) (1 ≤ j ≤ m). Further-
more, let Aj ∈ L(E) (1 ≤ j < m−1) be bounded operators. For a function f ∈ E
and an index 1 ≤ j ≤ m − 1, write Aj,f := {AjTj(t)f |t ∈ [0,∞)}. Suppose that
the following conditions hold.

(A1c) (Twisted compactness) For any function f ∈ E, index 1 ≤ j ≤ m−1, and
ε > 0, there exists a decomposition E = U ⊕R with dimU < ∞ such that

PRAj,f ⊂ Bε

(
0, L∞(X,µ)

)
,

with PR denoting the projection onto R along U .
(A2c) (Joint L∞-boundedness) There exists a constant C > 0 such that we have{

AjTj(t)|t ∈ [0,∞), 1 ≤ j ≤ m− 1
}
⊂ BC(0,L

(
L∞(X,µ)

)
.

Then we have the following:

(1) for each f ∈ E1,s,

lim
T →∞

1

T k

∫
{t1,...,tk}∈[0,T ]k

∣∣Tm(tα(m)) · · ·A2T2(tα(2))A1T1(tα(1))f
∣∣ → 0

pointwise almost everywhere;
(2) for each f ∈ E1,r,

1

T k

∫
{t1,...,tk}∈[0,T ]k

Tm(tα(m))Am−1Tm−1(tα(m−1)) · · ·A2T2(tα(2))A1T1(tα(1))f

converges pointwise almost everywhere.
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Institute Lendület Limits of Structures Research Group.

References

1. L. Accardi, Y. Hashimoto, and N. Obata, Notions of independence related to the free
group, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), no. 2, 201–220.
Zbl 0913.46057. MR1628248. DOI 10.1142/S0219025798000132. 634

2. A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual
ergodic theorem along subsequences, Trans. Amer. Math. Soc. 288 (1985), no. 1, 307–345.
Zbl 0619.47004. MR0773063. DOI 10.2307/2000442. 637

http://www.emis.de/cgi-bin/MATH-item?0913.46057
http://www.ams.org/mathscinet-getitem?mr=1628248
https://doi.org/10.1142/S0219025798000132
http://www.emis.de/cgi-bin/MATH-item?0619.47004
http://www.ams.org/mathscinet-getitem?mr=0773063
https://doi.org/10.2307/2000442


ERGODIC THEOREMS FOR DUNFORD–SCHWARTZ OPERATORS 649
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8. T. Eisner and D. Kunszenti-Kovács, On the pointwise entangled ergodic theorem, J. Math.
Anal. Appl. 449 (2017), no. 2, 1754–1769. Zbl 1373.37013. MR3601615. 635, 636

9. F. Fidaleo, On the entangled ergodic theorem, Infin. Dimens. Anal. Quantum Probab.
Relat. Top. 10 (2007), no. 1, 67–77. Zbl 1112.37004. MR2310564. DOI 10.1142/
S0219025707002622. 635

10. F. Fidaleo, The entangled ergodic theorem in the almost periodic case, Linear Algebra Appl.
432 (2010), no. 2-3, 526–535. Zbl 1187.37011. MR2577698. DOI 10.1016/j.laa.2009.08.035.
635

11. F. Fidaleo, Nonconventional ergodic theorems for quantum dynamical systems, Infin.
Dimens. Anal. Quantum Probab. Relat. Top. 17 (2014), no. 2, art. ID rnm1450009.
Zbl 1307.46051. MR3212679. 635

12. R. L. Jones, M. Lin, and J. Olsen, Weighted ergodic theorems along subsequences of density
zero, New York J. Math. 3A (1997/1998), 89–98. Zbl 0906.47007. MR1611121. 637, 638

13. C. Kipnis, Majoration des semi-groupes de contractions de L1 et applications, Ann. Inst.
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