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Abstract. The operator ideal of (p, q)-factorable operators can be character-

ized as the class of operators that factors through the embedding Lq′(µ) ↪→
Lp(µ) for a finite measure µ, where p, q ∈ [1,∞) are such that 1/p+ 1/q ≥ 1.
We prove that this operator ideal is included into a Banach operator ideal
characterized by means of factorizations through rth and sth power factorable
operators, for suitable r, s ∈ [1,∞). Thus, they also factor through a posi-
tive map Ls(m1)

∗ → Lr(m2), where m1 and m2 are vector measures. We use
the properties of the spaces of u-integrable functions with respect to a vector
measure and the uth power factorable operators to obtain a characterization
of (p, q)-factorable operators and conditions under which a (p, q)-factorable
operator is r-summing for r ∈ [1, p].

1. Introduction

The class of p-factorable operators (denoted by Lp) was introduced by Kwapień
in [10], who discovered the following relation between such operators and the
p′-dominated operators, that is, L∗

p = Dp′ . The equality L∗
p,q = Dq′,p′ , involv-

ing the generalization to the (p, q) case of the previous classes, is also known.
Moreover, (p, q)-dominated operators can be characterized as the product of p-
and q-summing operators, that is, Dp,q = Πq ◦ Πdual

p (see [5, Theorem 19.3]).
Maurey [12] also studied the class of operators that factor through Lp-spaces of
a finite measure, providing an extrapolation theorem for p-summing operators
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which establishes, in one of its versions, that Πp(X,Y ) = Πr(X,Y ) for every
r ∈ [1, p], provided that Πp(X, `p) = Πr(X, `p) for some 1 ≤ r < p < ∞ and
that X is a Banach space (see [6, Theorem 3.17]). From this result, it is easy to
deduce a corollary for (p, q)-factorable operators. For instance, if 1 < r < p < ∞,
1 < s < q < ∞, Πr′(X, `r

′
) = Πp′(X, `r

′
), and Πs′(X, `s

′
) = Πq′(X, `s

′
), then

Lp,q(X, Y ) = Lr,s(X,Y ). Another extrapolation result follows from the Maurey–
Rosenthal theorem (see, e.g., [4, Corollaries 2–5]). In this case, if 1/p+ 1/q ≥ 1,
r < p, and s < q, and if X and Y are, respectively, r′-convex and s-concave
Banach lattices, then any positive (p, q)-factorable operator is (r, s)-factorable.

As far as we know, there is no known connection between p-factorable and pth
power factorable operators in the literature. Our aim in this article is to estab-
lish such a connection and to obtain applications to the class of (p, q)-factorable
operators. To be precise, we provide a number of extrapolation results for (p, q)-
factorable operators via a new Banach operator ideal that can be characterized
by means of factorizations through Lr-spaces of vector measures. After that, our
technique allows us to factor the involved operators through Lr-spaces of scalar
measures.

We have organized the paper as follows. After the preliminary Section 2, we
introduce the class of operators that factor through pth power factorable operators
in Section 3. The class of pth power factorable operators was first defined in
[15, Chapter 5] and generalized in [9, Lemma 3.3]. These operators have two
main properties. First, every pth power factorable operator factors through an
Lp-space of a vector measure (see, e.g., [15, Theorem 4.14], [9], [8]). Second, every
pth power factorable operator is rth power factorable for every r ∈ [1, p] (see
[15, Section 2]). These two properties play a key role in our main results. Finally,
in Section 4, we prove that this class is in fact a Banach operator ideal. Then
we apply several results related to the compactness and convexity-concavity of
the operators involved to obtain extrapolation theorems on the Banach ideal of
(p, q)-factorable operators.

2. Notation and preliminaries

Throughout the paper, we use standard notation of real Banach spaces and
consider only linear and continuous operators. Let X be a Banach space. The
unit ball is denoted by BX , and the topological dual is denoted by X∗. Given
a Banach space Y , the Banach space of linear and continuous operators from
X into Y with the usual norm is denoted by L(X,Y ), and we understand that
T ∈ L(X,Y ) implies that T ∗ ∈ L(Y ∗, X∗). The isometric embedding of a Banach
space into its bidual spaces is denoted by kX : X ↪→ X∗∗. Let (Ω,Σ, µ) be a
positive finite measure space. The space of classes of measurable functions equal
almost everywhere with respect to µ is denoted by L0(µ). Let A ∈ Σ; hence
χA ∈ L0(µ) denotes the characteristic function. A Banach function space (BFS
for short) over µ is a Banach space Z(µ) continuously embedded into L0(µ) and
satisfying the following.

(i) (Ideal property). If g ∈ Z(µ) and |f | ≤ |g| (f ∈ L0(µ)), then f ∈ Z(µ)
and ‖f‖Z(µ) ≤ ‖g‖Z(µ).
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(ii) For every A ∈ Σ, χA ∈ Z(µ).

Observe that L∞(µ) ⊆ Z(µ) ⊆ L1(µ), since µ is assumed to be finite. The Köthe
dual space is denoted by Z(µ)′, that is, the BFS of all integral functionals of the
topological dual Z(µ)∗.

A BFS Z(µ) is called σ-order continuous or simply order continuous (OC for
short) if, for every sequence of functions (fi)i ⊆ Z(µ)+ such that fi ↓ 0, we have
‖fi‖Z(µ) ↓ 0 (note that σ-OC and OC coincide in BFS; see [15, Remark 2.5]).

A BFS Z(µ) is called σ-Fatou or simply Fatou if, for every sequence of functions
(fi)i ⊆ Z(µ)+ such that fi ↑ f ∈ L0(µ) and supi ‖fi‖Z(µ) < ∞, we have f ∈ Z(µ)

and ‖fi‖Z(µ) ↑ ‖f‖Z(µ). The main characterizations of these properties are that

a BFS Z(µ) is OC if and only if Z(µ)∗ = Z(µ)′, and it is Fatou if and only
if Z(µ)′′ = Z(µ). Recall that every BFS is a Banach lattice with the pointwise
order. Let X be a Banach lattice, let V be a Banach space, and let p ∈ [1,∞).
An operator R ∈ L(V,X) is called p-convex if there exists a constant K > 0 such
that ∥∥∥( n∑

i=1

|Rvi|p
)1/p∥∥∥

X
≤ K

( n∑
i=1

‖vi‖pV
)1/p

,

for every choice of v1, . . . , vn ∈ V . An operator S ∈ L(X,V ) is called p-concave
if there exists a constant K > 0 such that( n∑

i=1

‖Sxi‖pV
)1/p

≤ K
∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

X
,

for every choice of x1, . . . , xn ∈ X. In the case where V = X, and R and S are the
identity maps, we say that X is p-convex and p-concave, respectively. All these
definitions and results can be found in [11].

We note the following more specific terminology. Let 0 < p < ∞, and let Z(µ)
be a BFS. We call the pth power space (sometimes called the (1/p)th power space)
of Z(µ), the space

Z(µ)[p] :=
{
f ∈ L0(µ) : |f |1/p ∈ Z(µ)

}
,

equipped with the quasinorm ‖f‖Z(µ)[p]
:= ‖|f |1/p‖pZ(µ). If Z(µ) is p-convex,

then Z(µ)[p] is a BFS if and only if the constant of p-convexity is 1 (see [15,
Proposition 2.23(iii)]). As a main property, it satisfies the inclusion Z(µ) ⊆
Z(µ)[p] ⊆ Z(µ)[q] for 1 ≤ p ≤ q < ∞, keeping in mind the fact that µ is
finite (see [15, Proposition 2.22]). Let Z(µ) be an OC BFS, let X be a Banach
space, and let 1 ≤ p < ∞. We say that T ∈ L(Z(µ), X) is pth power fac-
torable if there exists a continuous linear operator T[p] : Z(µ)[p] → X such that
T[p] is a linear extension of T , that is, T = T[p] ◦ i[p], where i[p] denotes the
inclusion Z(µ) ⊆ Z(µ)[p] (see [15, Definition 5.1]). Let X and Y be Banach
spaces. The class of all pth power factorable operators in L(Z(µ), Y ) is denoted
by Fp(Z(µ), Y ), and we denote by Fdual

q (X,Z(µ)) the class of all operators
R ∈ L(X,Z(µ)) such that R∗ ∈ Fq(Z(µ)

∗, X∗). We will use the following two
characterizations. We say that S ∈ L(Z(µ), Y ∗∗) is pth power factorable if and
only if there is some K > 0 such that ‖Sf‖Y ∗∗ ≤ K‖f‖Z(µ)[p]

for all f ∈ Z(µ)
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or, equivalently, |〈f, S∗y∗∗∗〉| ≤ K‖y∗∗∗‖(Y ∗∗)∗‖f‖Z(µ)[p]
for every y∗∗∗ ∈ (Y ∗∗)∗

and every f ∈ Z(µ). Now assume that Z(µ) has an OC dual space. Then given
R ∈ L(X,Z(µ)), we say that R∗ is qth power factorable if and only if there is
some K > 0 such that |〈Rx, g〉| ≤ K‖x‖X‖g‖(Z(µ)′)[q]

for every x ∈ X and every

g ∈ Z(µ)′ = Z(µ)∗.
Regarding vector measures, let X be a Banach space, and let m : Σ → X be a

(countably additive) vector (space-valued) measure. For each x∗ ∈ X∗, we define
the following scalar measure as 〈m,x∗〉(A) := 〈m(A), x∗〉. The space L0(m) is the
space of ‖m‖ almost everywhere classes of real functions, where ‖m‖ is the semi-
variation of m. It is said that a function f ∈ L0(m) is m-integrable if it satisfies
the following.

(i) For each x∗ ∈ X∗, f ∈ L1(|〈m,x∗〉|).
(ii) For each A ∈ Σ, there is a unique vector denoted by

∫
A
f dm ∈ X such

that 〈
∫
A
f dm, x∗〉 =

∫
A
f d〈m,x∗〉 for all x∗ ∈ X∗.

A Rybakov measure for m is any control measure of m, that is, a scalar
measure µ : Σ → [0,∞) such that ‖m‖ � µ � ‖m‖. Such a measure has
the form |〈m,x∗〉| for some x∗ ∈ X∗ (see [7, Section IX.2] for more details
on these measures). The space of (equivalence classes of) m-integrable func-
tions is denoted by L1(m), which is a BFS over any Rybakov measure with
norm ‖f‖L1(m) := supx∗∈BX∗

∫
Ω
|f | d|〈m,x∗〉|. Note that Lp(m) = L1(m)[1/p] and

that L1(m) = Lp(m)[p]. The space Lp(m) is p-convex and Lp(m) ⊆ L1(m).
The integration map associated to a vector measure m : Σ → X is denoted
by Im : L1(m) → X, and its restriction to the subspaces Lp(m) is denoted by

I
(p)
m . Observe that, for every vector measure, we have that ‖Im‖ = 1 (see [15,
(3.99)]). If Z(µ) is an OC BFS, X is a Banach space, and T ∈ L(Z(µ), X), then
the expression mT (A) := T (χA), for A ∈ Σ, defines a vector measure such that
|〈mT , x

∗〉| � mT � µ for all x∗ ∈ X∗. Moreover, we always have the factorization

T : Z(µ)
[i]
↪→ L1(mT )

ImT−→ X, where [i] denotes the inclusion/quotient map (see,
e.g., [2]) and satisfies that ‖[i]‖ = ‖T‖. We can find all these definitions and
results in [7] and [15].

The definition of the operator ideal of (p, q)-factorable operators, denoted by
Lp,q, can be found in [5, Section 17.10]. Here we give a characterization. Let X
and Y be Banach spaces, and let p, q ∈ [1,∞) be such that 1/p + 1/q ≥ 1,

T ∈ L(X,Y ) is (p, q)-factorable if there exists a factorization kY ◦ T : X
R→

Lq′(µ)
I
↪→ Lp(µ)

S→ Y ∗∗, where µ is a finite measure and I is the natural inclusion.
The norm is given by αp,q(T ) := inf ‖R‖‖I‖‖S‖, where the infimum is taken over
all such factorizations. In the case where we include the norm, it is denoted
by [Lp,q, α] (see [5, Theorem 8.11]). We have that Lr,s ⊆ Lp,q is satisfied when
1 ≤ r ≤ p < ∞ and 1 ≤ s ≤ q < ∞. The ideal of p-integral operators, denoted
by [Ip, ιp], is characterized by the (p, 1)-factorable operators, that is, Ip = Lp,1.
Recall that every p-integrable operator is p-summing, a class which is denoted
by [Πp, πp]. General information regarding the theory of operator ideals can be
found in [5], [6], and [16].
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3. Factorization through pth power factorable operators

In this section, we define the class of Fp,q-factorable operators and obtain the
first characterizations and properties of this class. Note that pth power factoriza-
tion makes sense only when it is defined over an OC BFS of finite measure, but
the codomain is open to be any vector space. We have used this fact to define our
class, that is, Banach operators that factor through a BFS that satisfies order con-
tinuity and Fatou conditions. Despite the fact that such conditions are restrictive,
there are several operator ideals characterized by means of factorizations through
BFS’s with these conditions. For example, p-nuclear operators factor through an
`p space, p-factorable operators factor through Lp-spaces over finite measures,
and certain (q, p)-summing operators factor through Lorentz spaces. The class
of operators that factor through an OC and Fatou BFS with OC dual space is
clearly an operator ideal with the usual norm. We focus our study on a subclass
of this operator ideal, defined by means of conditions of pth power factorization
for the operators involved. We will see that this class is in fact a Banach operator
ideal that has applications to the study of (p, q)-factorable operators.

Definition 3.1. Let 1 ≤ p, q < ∞, let X and Y be Banach spaces, and let T ∈
L(X,Y ). We say that T is Fp,q-factorable if there exist a finite measure µ, an OC
and Fatou BFS Z(µ) with OC dual space, and two operators R ∈ Fdual

q (X,Z(µ))
and S ∈ Fp(Z(µ), Y

∗∗) such that kY ◦ T = S ◦R.

From now on, unless otherwise specified, X and Y will be Banach spaces. Let
1 ≤ p, q < ∞. We denote by Fp,q(X,Y ) the class of all Fp,q-factorable operators
in L(X,Y ), endowed with the norm (justified in the following section) defined as
ϕp,q(T ) := inf ‖S‖‖R‖, where the infimum is taken over all operators R and S as
in the definition above. Throughout this section, we assume that [Fp,q, ϕp,q] is a
normed operator ideal.

Remark 3.2. Suppose that T ∈ L(X,Y ) factors through a BFS. Then T is
F1,1-factorable since every continuous operator (between the suitable spaces) is
1st power factorable. Observe that we do not need an extension to the 1st power
space, so we do not need the order continuity or Fatou conditions. For exam-
ple, the class of the F1,1-factorable operators includes all the p-factorable and
p-integrable operators for every p ∈ [1,∞). The Fatou condition is required to
obtain a commutative diagram as in the following remark. For instance, Fp,1-
factorization does not require the BFS in the factorization to be Fatou.

Remark 3.3. From the canonical factorizations of pth power factorable operators
(see [15, Section 5.2]), and taking into account the fact that Z(µ) and Z(µ)∗ are
OC and Z(µ) is Fatou, we deduce the following two factorization schemes:

X
T //

R

((
((R∗)[q])

∗◦kX
��

Y � � kY // Y ∗∗

((Z(µ)′)[q])
′ � �

j∗
[q] // Z(µ)′′ = Z(µ)

S

77

� �
i[p] // Z(µ)[p]

S[p]

OO

(3.1)
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where j[q] and i[p] are continuous inclusions. Observe that the order continuity
of Z(µ) and Z(µ)∗ implies that Z(µ)∗ = Z(µ)′ and also Z(µ)∗∗ = (Z(µ)∗)∗ =
(Z(µ)′)∗ = Z(µ)′′. Thus, Fatou and reflexive are the same for Z(µ). This allows
us to identify the operator R with the composition R∗∗ ◦ kX . In consequence,
the diagram makes sense. Moreover, if Z(µ) is OC, then so is Z(µ)[q] (see [15,
Lemma 2.21(iii)]). Thus ((Z(µ)∗)[q])

∗ = ((Z(µ)′)[q])
′.

The factorization scheme above is equivalent to the following one (see [9,
Lemma 3.3]):

X
kY ◦T //

R

%%

I∗mR∗ ◦kX

ww

Y ∗∗

L1(mR∗)∗ � �
γ∗
q // Lq(mR∗)∗

[j]∗
// Z(µ)

[i]
//

S

::

Lp(mS)
� � γp // L1(mS)

ImS

ee

(3.2)

where γr denotes the canonical inclusion. Recall that every pth power factorable
operator is rth power factorable for every r ∈ [1, p]. As a result, T factors through
Lr(mT ) for r ∈ [1, p].

Let us prove that [Fp,q, ϕp,q] is a Banach operator ideal. The proof is quite
standard just following the guidelines of [6, Theorem 5.2].

Theorem 3.4. Let 1 ≤ p, q < ∞, and let X0, X, Y0, and Y be Banach spaces.
Then we have the following.

(i) Fp,q(X,Y ) is a linear subspace of L(X,Y ) containing all the finite-rank
operators of L(X,Y ). Moreover, ϕp,q is a Banach space norm on
Fp,q(X,Y ), and ‖T‖ ≤ ϕp,q(T ) for all T ∈ Fp,q(X,Y ).

(ii) The composition of an Fp,q-factorable operator with any operator is Fp,q-
factorable. More formally, if T ∈ Fp,q(X,Y ), G ∈ L(X0, X) and F ∈
L(Y, Y0), then FTG ∈ Fp,q(X,Y ) and ϕp,q(FTG) ≤ ‖F‖ϕp,q(T )‖G‖.

Proof. (i) The definition of ϕp,q ensures that ‖T‖ ≤ ϕp,q(T ), for every T ∈
Fp,q(X,Y ). Let x∗

0 ∈ X∗ and y0 ∈ Y . A trivial factorization of the finite-rank
operator F (x) := 〈x, x∗

0〉y0 (x ∈ X) is given by the operators S1 ∈ L(R, Y )
defined as S1(t) := ty0 and R1 ∈ L(X,R) defined as R1(x) := 〈x, x∗

0〉. It provides
the first part of the first statement as follows. Observe that R can by identi-
fied with the BFS Ls(ν) (1 < s < ∞) by just taking Ω as the singleton set
with the trivial σ-algebra and having ν be the trivial probability measure. Since
R∗

1(t) = tx∗
0, we have that such an operator and kY ◦S1 (see [15, Lemma 5.4]) are

both rth power factorable for every r ∈ [1,∞). Clearly kY ◦F = kY ◦S1 ◦R, and
ϕp,q(F ) ≤ ‖R1‖‖kY ◦ S1‖ = ‖x∗

0‖X∗‖y0‖Y .
Since axioms of normed space are easy to verify, let us show completeness. It

is enough to show that absolutely convergent series converge. Accordingly, let
(Ti)i ⊆ Fp,q(X,Y ) be a sequence for which

∑
i ϕp,q(Ti) < ∞. We immediately

have
∑

i ‖Ti‖ < ∞, so
∑

i Ti converges, say, to T ∈ L(X,Y ). We are going to
prove that T ∈ Fp,q(X,Y ) and that ϕp,q(T ) ≤

∑
i ϕp,q(Ti).

Let ε > 0. For each i ≥ 1, we find a finite measure space (Ωi,Σi, µi) such that
µi(Ωi) = 1/2i, an OC, Fatou BFS Zi(µi) with OC dual space, so that χΩi

∈
BZi(µi), and operators Ri : X → Zi(µi) and Si : Zi(µi) → Y ∗∗ such that Si is pth
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power factorable, R∗
i is qth power factorable, and kY ◦ Ti = Si ◦ Ri. Thus, the

operator Ti factors as

X
((R∗

i )[q])
∗

−→
((
Zi(µi)

′)
[q]

)′
↪→ Zi(µi)

′′ = Zi(µi) ↪→ Zi(µi)[p]
Si[p]−→ Y ∗∗,

where Ri and Si are chosen so that ‖Si[p]‖ ≤ ϕp,q(Ti) + ε/2i and ‖R∗
i [q]‖ = 1/2i.

Hence,
∑

i ‖Si[p]‖ ≤
∑

i ϕp,q(Ti) + ε and
∑

i ‖R∗
i [q]‖ = 1. Observe that by the

election of Zi(µi), we necessarily have ‖Si‖ ≤ ‖Si[p]‖ and ‖R∗
i ‖ ≤ ‖R∗

i [q]‖ for every

i ≥ 1. Let (Ω,Σ) be the direct sum measurable space of the (Ωi,Σi), assuming
that the Ωi’s are pairwise disjoint, and let Ω :=

⋃
i Ωi and Σ := {A ⊂ Ω : A∩Ωi ∈

Σi for all i}. Define a probability measure µ on Σ by specifying that for each j
and for each Aj ∈ Σj, µ(Aj) := µj(Aj). Then we define the BFS Z(µ) by means
of the norm

‖f‖Z(µ) :=
∑
i

‖Si[p]‖1/p
2

(
∑

j ‖Sj [p]‖)1/p
2 ‖f|Ωi

‖
Zi(µi)

, (3.3)

where f ∈ L0(µ). To show that ‖ · ‖Z(µ) is a BFS norm is routine. Let us show that

it is an OC and Fatou norm with OC dual norm. First, we claim that Z(µ) is OC.
Let (fj)j be a sequence of positive functions in Z(µ) such that fj ↓ 0, and define

αk :=
‖Sk[p]‖1/p

2

(
∑

j ‖Sj [p]‖)1/p
2 , for k ≥ 1. Let ε > 0, and take j = 1. Then there exists i1 ≥ 1

such that
∑

k≥i1
αk‖f1|Ωk

‖
Zk(µk)

< ε/2. In addition, by order continuity of Zk(µk),

for each k ∈ {1, . . . , i1 − 1} there exists jk ≥ 1 such that ‖fj |Ωk
‖
Zk(µk)

< ε
αk2k+1 ,

for every j ≥ jk. Take j0 := max{j1, . . . , ji1−1}; hence ‖fj0 |Ωk
‖
Zk(µk)

< ε
αk2k+1 for

every k ∈ {1, . . . , i1−1}. Moreover, ‖fj0 |Ωk
‖
Zk(µk)

≤ ‖f1|Ωk
‖
Zk(µk)

for every k ≥ 1.

Therefore,

‖fj0‖Z(µ) =
∑

1≤k≤i1−1

αk‖fj0 |Ωk
‖
Zk(µk)

+
∑
k≥i1

αk‖fj0 |Ωk
‖
Zk(µk)

< ε.

Thanks to the ideal property of BFS’s, ‖fj‖Z(µ) ↓ 0. Now, we show that Z(µ)′ is

OC. Let 0 < gj ∈ Z(µ)′ be a sequence such that gj ↓ 0. Since Zk(µk)
′ is OC, for

each k ≥ 1 there exists jk ≥ 1 such that ‖gj |Ωk
‖
Zk(µk)′

< ε/2k+1, for every j ≥ jk.

Let j ≥ jk. Hence, there exists fε ∈ BZ(µ) such that

‖gj‖Z(µ)′ = sup
f∈BZ(µ)

‖fgj‖L1(µ) ≤ ‖fεgj‖L1(µ) + ε/2

=
∑
k

‖fε|Ωk
gj |Ωk

‖
L1(µk)

+ ε/2 ≤
∑
k

‖fε|Ωk
‖
Z(µk)

‖gj |Ωk
‖
Zk(µk)′

+ ε/2 < ε.

Again, by the ideal property of Z(µ)′, we conclude that ‖gj‖Z(µ)′ ↓ 0. Let us prove

that Z(µ) is Fatou. Let ε > 0 and f ∈ Z(µ); thus there exists hε,k ∈ Z(µ)′ such
that ‖f|Ωk

‖
Zk(µk)′′

≤ ‖hε,k |Ωk
f|Ωk

‖
L1(µk)

+ ε/2k. Taking into account that αk ≤ 1
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and that Zk(µk) is Fatou for every k ≥ 1, we obtain

‖f‖Z(µ) =
∑
k

αk‖f|Ωk
‖
Zk(µk)

≤
∑
k

‖f|Ωk
‖
Zk(µk)′′

≤
∑
k

‖hε,k |Ωk
f|Ωk

‖
L1(µk)

+ ε/2k

≤ sup
h∈Z(µ)′

∑
k

‖h|Ωk
f|Ωk

‖
L1(µk)

+ ε = ‖f‖Z(µ)′′ + ε.

It is time to show the factorization scheme. Define S ∈ L(Z(µ), Y ∗∗) by S(f) :=∑
i Si(f|Ωi

), and define R ∈ L(X,Z(µ)) by R(x) :=
∑

i Ri(x)χΩi
. Clearly, S and

R are linear and ‖R‖ ≤ 1. Let us check that kY ◦ T = S ◦R:

S ◦R(x) =
∑
j

Sj

((∑
i

Ri(x)χΩi

)∣∣∣
Ωj

)
=

∑
j

Sj

(
Rj(x)

)
=

∑
j

kY ◦ Tj(x) = kY ◦ T (x).

Now we claim that S is pth power factorable. Let f ∈ Z(µ). From (3.3), we get

‖f|Ωi
‖
Z(µ)[p]

=
‖Si[p]‖1/p

(
∑

j ‖Sj [p]‖)1/p
∥∥|f|Ωi

|1/p
∥∥p

Zi(µi)
. (3.4)

Therefore, we have that∑
i

‖f|Ωi
‖
Z(µ)[p]

=
∑
i

‖Si[p]‖1/p

(
∑

j ‖Sj [p]‖)1/p
∥∥|f|Ωi

|1/p
∥∥p

Zi(µi)

≤
(∑

i

‖Si[p]‖1/p
2

(
∑

j ‖Sj [p]‖)1/p
2

∥∥|f|Ωi
|1/p

∥∥
Zi(µi)

)p

=
∥∥∥∑

i

|f|Ωi
|1/p

∥∥∥p

Z(µ)
=

∥∥|f |1/p∥∥p

Z(µ)
= ‖f‖Z(µ)[p]

. (3.5)

Finally, thanks to (3.4), Hölder’s inequality, and (3.5), we obtain

‖Sf‖Y ∗∗ =
∥∥∥∑

i

Si(f|Ωi
)
∥∥∥
Y ∗∗

≤
∑
i

∥∥Si(f|Ωi
)
∥∥
Y ∗∗

≤
∑
i

‖Si[p]‖
∥∥|f|Ωi

|1/p
∥∥p

Zi(µi)

=
(∑

j

‖Sj [p]‖
)1/p

·
∑
i

‖Si[p]‖1/p
′‖f|Ωi

‖
Z(µ)[p]

≤
∑
j

‖Sj [p]‖ ·
(∑

i

‖f|Ωi
‖p
Z(µ)[p]

)1/p

≤
∑
j

‖Sj [p]‖ ·
∑
i

‖f|Ωi
‖
Z(µ)[p]

≤
∑
j

‖Sj [p]‖ · ‖f‖Z(µ)[p]
.
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This means that S is pth power factorable and ‖S‖ ≤ ‖S[p]‖ ≤
∑

j ‖Sj [p]‖. Now
we prove that R∗ is qth power factorable. First note that R∗(g) =

∑
i R

∗
i (g|Ωi

).
Taking into account Hölder’s inequality, we proceed as follows:∥∥R∗(g)

∥∥
X∗ =

∥∥∥∑
i

R∗
i (g|Ωi

)
∥∥∥
X∗

=
∑
i

∥∥R∗
i (g|Ωi

)
∥∥
X∗

≤
∑
i

‖R∗
i [q]‖‖g|Ωi

‖
(Zi(µi)′)[q]

≤
(∑

i

‖R∗
i [q]‖

q′
)1/q′(∑

i

‖g|Ωi
‖q(Zi(µi)′)[q]

)1/q

= D
(∑

i

‖g|Ωi
‖q
(Zi(µi)′)[q]

)1/q

= D
(∑

i

(
sup

f∈BZi(µi)

∥∥f|Ωi
|g|Ωi

|1/q
∥∥
L1(µi)

)q2)1/q

≤ D
(

sup
f∈BZ(µ)

∑
i

∥∥f|Ωi
|g|Ωi

|1/q
∥∥
L1(µi)

)q

= D‖g‖(Z(µ)′)[q]
.

Then R∗ is qth power factorable and ‖R∗‖ ≤ ‖(R∗)[q]‖ ≤ D = (2q
′ − 1)−1. In

conclusion, T is Fp,q-factorable, with

ϕp,q(T ) ≤ ‖S‖‖R‖ = ‖S‖‖R∗‖ ≤
∑
i

‖R∗
i [q]‖

∑
i

‖Si[p]‖ ≤
∑
i

ϕp,q(Ti) + ε.

Since ε is arbitrary, we also have that ϕp,q(T ) ≤
∑

i ϕp,q(Ti).
The ideal property (ii) simply takes into account the fact that pth power fac-

torable operators have the left ideal property (see [15, Lemma 5.4]); that is, the
composition on the left-hand side with another operator of Banach spaces is pth
power factorable. So, the factorization

X0
G→ X

R−→ Z(µ)
S−→ Y ∗∗ F ∗∗

→ Y ∗∗
0

produces the corresponding extensions through the qth power space of Z(µ)′:
G∗ ◦R∗

[q] ◦ j[q], and through the pth power space of Z(µ): F ∗∗ ◦S[p] ◦ i[p]. Therefore,

ϕp,q(GTF) ≤ ‖G∗ ◦R∗‖ · ‖F ∗∗ ◦ S‖ ≤ ‖G‖ · ‖R‖ · ‖S‖ · ‖F‖.
The arbitrary factorization S◦R implies that ϕp,q(GTF) ≤ ‖G‖·ϕp,q(T )·‖F‖. �

The following proposition is an immediate consequence of the definition. It
establishes the first inclusion property for Fp,q-factorable operators.

Proposition 3.5. Let 1 ≤ r ≤ p < ∞ and 1 ≤ s ≤ q < ∞. Let X and Y be
Banach spaces. Then Fp,q(X,Y ) ⊆ Fr,s(X,Y ), and ϕr,s(T ) ≤ ϕp,q(T ) for every
T ∈ Fp,q(X,Y ).

Proof. We just prove the norm equality. Let ε > 0 and T ∈ Fp,q(X,Y ). Hence
there exist a finite measure µ, a Fatou and OC BFS with OC dual space Z(µ),
and two operators R ∈ Fdual

q (X,Z(µ)) and S ∈ Fp(Z(µ), Y
∗∗) such that kY ◦T =

S ◦ R. On the one hand, we know that S = S[r] ◦ i[r] = S[p] ◦ i[p] and also that
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R∗ = R∗
[s] ◦ j[s] = R∗

[q] ◦ j[q]. On the other hand, from the diagram above, we can
choose R and S so that

ϕp,q(T ) + ε ≥ ‖R‖‖S‖ = ‖R∗
[q] ◦ j[q]‖‖S[p] ◦ i[p]‖ = ‖R∗

[s] ◦ j[s]‖‖S[r] ◦ i[r]‖ ≥ ϕr,s(T ),

obtaining the inequality from the arbitrary choice of ε > 0. �

As we have seen in the preliminary section, several characterizations of pth
power factorable operators exist. We present below some of these characteriza-
tions in order to provide some new ones for Fp,q-factorable operators.

Proposition 3.6. Let 1 ≤ p, q < ∞, let X and Y be Banach spaces, and let
T ∈ L(X,Y ). Then the following statements are equivalent.

(i) T ∈ Fp,q(X,Y ).
(ii) There exist a finite measure µ, an OC and Fatou BFS Z(µ), with OC dual

space, and two operators F ∈ L(X, ((Z(µ)′)[q])
′) and G ∈ L(Z(µ)[p], Y ∗∗)

such that kY ◦T = G ◦ i[p] ◦ (j[q])∗ ◦F , where i[p] and j[q] are the inclusions
into the pth and qth power spaces of Z(µ) and Z(µ)′, respectively.

(iii) There exist a finite measure µ, an OC and Fatou BFS Z(µ), with OC dual
space, and two operators R ∈ L(X,Z(µ)) and S ∈ L(Z(µ), Y ∗∗) such that
kY ◦ T = S ◦R and the diagram

X

F
��

T // Y � � kY // Y ∗∗

Lq(mR∗)∗
H // Lp(mS)

G

::

commutes, where F and G are bounded operators, H = [i] ◦ [j]∗, and [i]
and [j] denote the inclusion/quotient maps.

Proof. (i) ⇒ (ii): This is clear from diagram (3.1).
(ii) ⇒ (iii): We use the characterization of pth power factorable operator given

in [9, Lemma 3.3] to obtain the factorization

T : X
I∗mR∗ ◦kX−→ Lq(mR∗)∗

[j]∗−→ Z(µ)
[i]−→ Lp(mS)

ImS−→ Y ∗∗,

where [j] and [i] are not inclusions necessarily.

(iii) ⇒ (i): By hypothesis, it follows that Z(µ)
[i]
↪→ Lp(mS) and Z(µ)′

[i]
↪→

Lq(mR∗). Hence, the characterization in [9, Lemma 3.3] again implies (i). �

Note that characterization (ii) of the above proposition coincides with the char-
acterization of (p, q)-factorable operators when we take Z(µ) := Lc(µ) for a suit-
able c ∈ [1,∞) (see [5, Theorem 18.11]). We study this fact in the next section.

We now proceed to prove that, with additional conditions, there is an interpre-
tation of the Fp,q-factorable operators in terms of interpolation.

Theorem 3.7. Let 1 ≤ p, q < ∞, let X and Y be Banach spaces such that Y
and Y ∗ are reflexive, and let T ∈ L(X,Y ). Then the following two statements are
equivalent.

(i) T ∈ Fp,q(X,Y ).
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(ii) There exist a finite measure µ, an OC and Fatou BFS Z(µ), with OC
dual space, a constant K > 0, and operators R ∈ L(X,Z(µ)) and S ∈
L(Z(µ), Y ∗∗) such that KY ◦ T = S ◦R and∣∣〈Tx, y∗〉∣∣ ≤ K

(
‖x‖X

∥∥(S∗ ◦ kY ∗)y∗
∥∥
(Z(µ)′)[q]

)θ(‖y∗‖Y ∗‖Rx‖Z(µ)[p]

)1−θ
,

for every x ∈ X, y∗ ∈ Y ∗ and every θ ∈ (0, 1).

Then (i) ⇒ (ii).
If in (ii) we have that R(X) is dense in Z(µ) and S∗ ◦ kY ∗(Y ∗) is dense in

Z(µ)′, then (ii) ⇒ (i).

Proof. (i) ⇒ (ii): Let x ∈ X and y∗ ∈ Y ∗. From the factorization kY ◦ T = S ◦R,
the characterization of sth power factorable operators given in Section 2, and
taking into account the fact that y∗ = (k∗

Y ◦ kY ∗)y∗, by reflexivity of Y and Y ∗,
we get∣∣〈Tx, y∗〉∣∣ = ∣∣〈Tx, (k∗

Y ◦ kY ∗)y∗
〉∣∣ = ∣∣〈kY ◦ Tx, kY ∗y∗〉

∣∣
=

∣∣〈Rx, (S∗ ◦ kY ∗)y∗
〉∣∣θ∣∣〈Rx, S∗(kY ∗y∗)

〉∣∣1−θ

≤ K
(
‖x‖X

∥∥(S∗ ◦ kY ∗)y∗
∥∥
(Z(µ)′)[q]

)θ(‖y∗‖Y ∗‖Rx‖Z(µ)[p]

)1−θ
,

for some K ≥ (‖R∗
[q]‖)θ(‖S[p]‖‖kY ∗‖)1−θ and for every θ ∈ (0, 1).

(ii) ⇒ (i): This follows from the next property of the exponential map. We
claim that 0 ≤ a ≤ bθ · c1−θ for every θ ∈ (0, 1) implies that a ≤ b and a ≤ c.
Assume that b ≤ c, thus a ≤ c. Moreover, bθ · c1−θ is a decreasing function
of θ. Hence, by continuity of such a function, we have that a ≤ inf{bθ · c1−θ : θ ∈
(0, 1)} = b. Analogously, we get the same result assuming that c ≤ b. By applying
this property, the characterization given in Section 2, and the density hypothesis,
we obtain our result. Let ε > 0, and fix f ∈ Z(µ)′ and x∗ ∈ X∗. By density of
(S∗◦kY ∗)(Y ∗), there exists y∗0 ∈ Y ∗ such that ‖f−(S∗(kY ∗))y∗0‖Z(µ)′ < ε/2. Thus,
there exists some K0 > 0 such that∣∣〈Rx, f〉

∣∣ ≤ ∣∣〈Rx, f − (S∗ ◦ kY ∗)y∗0
〉∣∣+ ∣∣〈Rx, (S∗ ◦ k∗)y∗0

〉∣∣
≤ K0‖x‖X

(
ε/2 +

∥∥(S∗ ◦ kY ∗)y∗0
∥∥
(Z(µ)′)[q]

)
≤ K0‖x‖X

(
ε/2 +

∥∥(S∗ ◦ kY ∗)y∗0 − f
∥∥
(Z(µ)′)[q]

+ ‖f‖(Z(µ)′)[q]

)
≤ K0‖x‖X

(
ε+ ‖f‖(Z(µ)′)[q]

)
.

Since ε > 0 is arbitrary for a fixed f ∈ Z(µ)′, we have that R∗ is qth power
factorable. To show that S is pth power factorable, we just take into account the
fact that (k∗

Y ◦ kY ∗)y∗ = y∗ ∈ Y ∗ = Y ∗∗∗ and proceed in an analogous way. �

The dual operator ideal of an operator ideal [U , ω] is defined as follows. Let
T ∈ L(X,Y ). We say that T ∈ Udual(X,Y ) if and only if T ∗ ∈ U(Y ∗, X∗) and has
norm ωdual(T ) := ω(T ∗). This operator ideal is denoted by [U , ω]dual (see, e.g., [16,
Section 4.4]). It is easy to show that Lp,q = Ldual

q,p (see, e.g., [16, Section 19.1.4]).
The class of Fp,q-factorable operators sometimes satisfies the same property.
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Proposition 3.8. Let 1 ≤ p, q < ∞. Let X and Y be Banach spaces such that
Y is reflexive. Then Fp,q(X,Y ) = Fdual

q,p (X,Y ).

Proof. Let X and Y be Banach spaces, and let T ∈ Fp,q(X,Y ). Then there exist
a finite measure µ and an OC and Fatou BFS Z(µ), with OC dual space, such

that kX∗ ◦ T ∗ : Y ∗ = (Y ∗∗)∗
S∗
→ Z(µ)′

R∗
→ X∗ kX∗

↪→ (X∗)∗∗ for some operators R
and S, where kX∗ ◦ R∗ is qth power factorable. Now, taking into account the
fact that Y is reflexive and Z(µ) is so (thanks to the order continuity and Fatou
properties), we have that S∗∗ = S, hence it is pth power factorable. This means
that T ∗ ∈ Fq,p(Y

∗, X∗). The conditions on Z(µ)′ also hold, because it is OC and
the dual Z(µ)′′ = Z(µ) is so by hypothesis. Moreover, Z(µ)′ is also Fatou since
(Z(µ)′)′′ = (Z(µ)′′)′ = Z(µ)′, and Z(µ)′′ is also OC since it coincides with Z(µ).
With this and by the same process, we obtain the other inclusion. The equality
of norms is trivially fulfilled. �

Remark 3.9. As we have seen, there are several situations where we need reflex-
ivity properties of the range or its dual. This is due to the definition of Fp,q-
factorable operator, in which we have included a factorization through an oper-
ator S ∈ Fp(Z(µ), Y

∗∗). This bidual as a range space has a main role in the
following section, in which we relate this class with the class of (p, q)-factorable
operators.

To finish the section, we construct an example related to the Hardy operator
and based on the example shown in [9, Section 3].

Example 3.10. Let Ω := [0, 1], and let (Ω,Σ, µ) be a measure space so that
dx � µ. Let m : Σ → E be a Banach space-valued measure such that dx �
〈m,x∗

0〉 � dx, for some x∗
0 ∈ BE∗ , and let the Radon–Nikodým derivative be

d〈m,x∗
0〉

dx
≥ 1. For example, if E := L1[0, 1] and m(A) = χA, we have that

〈m,χ[0,1]〉 = dx and so d〈m,x∗
0〉/dx = 1, for x∗

0 := χ[0,1] ∈ BL∞[0,1]. Let 1 ≤
u ≤ r < ∞, let X(µ) be a BFS, and let h ∈ Lu(Ω)X(µ) := {f ∈ L0(µ) :
f · Lu(Ω) ⊆ X(µ)}, the space of multiplication operators, which makes sense
since dx � µ. Also, it is a Banach space endowed with the norm ‖h‖Lu(Ω)X(µ) :=

supf∈BLu(Ω)
‖hf‖X(µ).

We define the operator G : Lr(m) → X(µ) as

Gf(y) := h(y)

∫
Ω

f · χ[0,y] dx.

Note that the operator G is the Hardy operator when h(y) = 1/y and X(µ) is
chosen suitably. Let v ∈ [u, r]. We claim that G is Fp,q-factorable for p ∈ [1, v/u]
and q ∈ [1, v′]. We have the factorization

G : Lr(m)
V→ Lv(Ω)

Mh→ X(µ),

where V f(y) :=
∫
Ω
f · χ[0,y] dx denotes the Volterra operator and Mh is the mul-

tiplication operator. The operator Mh is pth power factorable for p ∈ [1, v/u].
Thus, by the definition of h,

‖Mhf‖X(µ) ≤ ‖h‖Lu(Ω)X(µ)‖f‖Lu(Ω) ≤ K‖f‖Lv(Ω)[p] ,



EXTRAPOLATION THEOREMS FOR (p, q)-FACTORABLE OPERATORS 509

for some K > 0. Now, let us check that V is continuous. Since v ≤ r and
d〈m,x∗

0〉
dx

≥ 1, we have that

‖V f‖Lv(Ω) ≤ ‖f‖Lv(Ω) ≤ C
(∫

Ω

|f |r d〈m,x∗
0〉

dx
dx

)1/r

= C
(∫

Ω

|f |r d〈m,x∗
0〉
)1/r

≤ C‖f‖Lr(m),

for some C > 0. The adjoint operator of V is defined as V ∗g(y) =
∫
Ω
g · χ[y,1] dx.

Let e∗0 ∈ BE∗ such that µ0 := |〈m, e∗〉| is a Rybakov measure of m. As Lr(m) is

OC, we have that Lr(m)∗ = Lr(m)′ = Lr(m)L
1(µ0). Taking into account the fact

that Lr(m) ⊆ L1(m) and Fubini’s theorem, we obtain

‖V ∗g‖Lr(m)∗ = sup
f∈BLr(m)

‖f · V ∗g‖L1(µ0) ≤ sup
f∈BLr(m)

sup
e∗∈BE∗

∫
Ω

f · V ∗g d
∣∣〈m, e∗〉

∣∣
≤ sup

f∈BLr(m)

sup
e∗∈BE∗

∫
Ω

∣∣f(y)∣∣ ∫
Ω

∣∣g(x)∣∣ dx d∣∣〈m, e∗〉
∣∣(y)

= sup
f∈BLr(m)

∫
Ω

∣∣g(x)∣∣ sup
e∗∈BE∗

∫
Ω

∣∣f(y)∣∣ d∣∣〈m, e∗〉
∣∣(y) dx

= sup
f∈BLr(m)

∫
Ω

∣∣g(x)∣∣‖f‖L1(m) dx ≤ ‖g‖L1(Ω) ≤ D‖g‖Lv′ (Ω)[q]
,

for some D > 0 and any q ∈ [1, v′]. This means that V ∗ is qth power factorable.

4. Extrapolation theorems

In the previous section, we presented the Banach operator ideal of Fp,q-
factorable operators. We now show that every Fp,q-factorable operator between
finite-dimensional Banach spaces is 1-summing. Moreover, with a condition on the
indexes, it is not hard to show that there is continuous inclusion from the oper-
ator ideal of (p, q)-factorable operators into the operator ideal of Fp,q-factorable
operators. Thanks to this fact, we show a number of extrapolation results and
also characterize (p, q)-factorable operators.

From the characterization of (p, q)-factorable operators by means of the embed-
ding Lq′(µ) ↪→ Lp(µ), it is not hard to show the first inclusion relation between
such operators and the Fp,q-factorable operators.

Proposition 4.1. Let 1 ≤ p, q, r, s < ∞ such that 1/(pr)+1/(qs) ≥ 1. Let X and
Y be Banach spaces. Then Lp,q(X,Y ) ⊆ Fr,s(X,Y ) and ϕr,s ≤ αp,q. In particular,
if 1/p2 + 1/q2 ≥ 1, then Lp,q(X,Y ) ⊆ Fp,q(X,Y ).

Proof. Let T ∈ Lp,q(X,Y ). Then there exists a probability measure µ such that

T : X
R0→ Lq′(µ)

I
↪→ Lp(µ)

S0→ Y ∗∗,

where I is the canonical inclusion. Choosing any c ∈ [pr, (qs)′], we have the
factorization for such an inclusion map

I : Lq′(µ)
I1
↪→ L(c′/s)′(µ)

I2
↪→ Lc(µ)

I3
↪→ Lc/r(µ)

I4
↪→ Lp(µ).
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Since Lu/v(µ) = Lu(µ)[v], we have that R := I2 ◦ I1 ◦ R0 ∈ Fdual
s (X,Lc(µ)) and

S := S0 ◦ I4 ◦ I3 ∈ Fr(L
c(µ), Y ∗∗) (see [15, Lemma 5.4]). Let ε > 0, and choose

R0 and S0 so that

αp,q(T ) + ε ≥ ‖S0‖‖I‖‖R0‖ = ‖S0‖‖I4 ◦ I3‖‖I2 ◦ I1‖‖R0‖ ≥ ϕr,s(T ).

The equality of the norms of the inclusion maps is given by the choice of µ as a
probability measure. �

With this inclusion property and conditions for compactness of the opera-
tors involved, we can obtain some extrapolation results. For example, when the
operator is over finite-dimensional Banach spaces, such operators are actually
absolutely summing.

Proposition 4.2. Let 1 ≤ p, q < ∞ be such that 1/p + 1/q ≥ 1, and let E and
F be finite-dimensional spaces. Then Fp,q(E,F ) ⊆ Π1(E,F ) and π1 ≤ ϕp,q.

Proof. Let T ∈ Fp,q(E,F ). Hence there exist a BFS Z(µ) and two operators
R ∈ Fdual

q (E,Z(µ)) and S ∈ Fp(Z(µ), F ) such that T = S ◦R. Observe that the
vector measures mR∗ and mS take values in the finite-dimensional spaces E∗ and
F , respectively. This implies that Lq(mR∗)∗ = Lq′(|mR∗|) and Lp(mS) = Lp(|mS|)
order isomorphically (see, e.g., [15, Remark 3.17]). In consequence, taking into
account diagram (3.2) and Maurey’s factorization theorem (see, e.g., [5, Theo-
rem 18.9]), there exists a probability measure µ0 such that T factors through the
embedding L∞(µ0) ↪→ L1(µ0); that is, T ∈ L1,1(E,F ) = I1(E,F ) ⊆ Π1(E,F ).
Let ε > 0, and take R and S as above, that is, that satisfies (3.2) and also

ϕp,q(T ) + ε ≥ ϕ1,1(T ) + ε ≥ ‖S‖‖R‖ =
∥∥[i]∥∥∥∥[j]∗∥∥

= ‖ImS
‖
∥∥[i]∥∥∥∥[j]∗∥∥‖I∗mR∗‖ = ‖ImS

‖‖F‖‖I‖‖G‖‖I∗mR∗‖
≥ ‖ImS

◦ F‖‖I‖‖G ◦ I∗mR∗‖ ≥ α1,1(T ) = ι1(T ) ≥ π1(T ), (4.1)

where L∞(|mR∗|) G→ L∞(µ0)
I
↪→ L1(µ0)

F→ L1(|mS|). Recall (see Proposition 3.5,
[5, Theorem 18.9]) that ‖[i]‖ = ‖S‖, ‖[j]‖ = ‖R‖, and ‖ImS

‖ = ‖ImR∗‖ = 1. �

There are some other conditions that imply compactness of the operators
involved.

Theorem 4.3. Let 1 ≤ p, q < ∞ and 1 < r, s < ∞ be such that 1/(pr)+1/(qs) ≥
1. Then Lp,q(`

t, `w) ⊆ Lu,v(`
t, `w) for every w ∈ [1, 2), t ∈ (2,∞], u ∈ (1, r], and

v ∈ (1, s].

Proof. Let T ∈ Lp,q(`
t, `w). By virtue of Proposition 4.1, T is Fr,s-factorable.

Keep in mind (3.2), which establishes the factorization of kY ◦ T through a pos-
itive operator Lv(mR)

∗ → Lu(mS), for u ∈ (1, r] and v ∈ (1, s]. Thanks to
[15, Lemma 3.53(v)], we can ensure that the ranges of the vector measures mS

and mR∗ are relatively compact. Now, [15, Proposition 3.56] says that this is

equivalent to the fact that the restrictions of the integration maps I
(v)
mR∗ and

I
(u)
mS are compact. Finally, the proof of [13, Theorem 1] gives the isomorphic
identities Lu(mS) = Lu(|mS|) and Lv(mR∗) = Lv(|mR∗ |). That is, R factors
through Lv(mR∗)∗ = Lv′(|mR∗|) for every v ∈ (1, s], and S factors through
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Lu(mS) = Lu(|mS|) for every u ∈ (1, r]. In conclusion, kY ◦ T = S ◦ R factors
through a positive map [i]◦ [j]∗ : Lv′(|mR∗|) → Lu(|mS|) (see Proposition 3.6(iii));
that is, T ∈ Lu,v(`

t, `w) (see [5, Theorem 18.11]). The proof of the norm inequality
is as in (4.1), taking into account Propositions 3.5 and 4.1. �

Remark 4.4. Once we have diagram (3.2), there are several possible ways that
lead us to an (r, 1)-factorable, and thus r-summing, operator. One direction we
can follow, studied above, consists of finding conditions that ensure that L1(mR∗)
is an abstract Lebesgue (AL) space (see, e.g., [3], [13]–[15]). Another direction we
can take is oriented to finding factorizations through Lp-spaces of a finite scalar
measure. For example, we can study if the vector measures involved, mS and
mR∗ , have σ-finite variation (see, e.g., [1]). Let T ∈ Lp,q(X,Y ). Hence there is a
probability measure µ such that kY ◦ T : X → Y ∗∗ factors through the natural
embedding I : Lq′(µ) ↪→ Lp(µ). From the proof of Proposition 4.1, we have that
such embedding is Fr,s-factorable, provided that 1/(pr) + 1/(qs) ≥ 1. Moreover,
we know that the canonical embeddings F := (I2◦I1)∗ and G := I4◦I3 have finite
variation (where the Ij’s are defined in the proof of this proposition). Neverthe-
less, despite the fact that we cannot ensure that such embeddings are compact,
in the case where the Radon–Nikodým derivatives d|mF |/dµ ∈ L(c′/r)′(µ) and
d|mG|/dµ ∈ L(c/s)′(µ), by virtue of [15, Proposition 5.13], we can factor this
embedding as

I : Lq′(µ) → Ls(mF )
∗ ⊆ Ls′

(
|mF |

)
→ Lc(µ) → Lr

(
|mG|

)
⊆ Lr(mG) → Lp(µ),

and so we obtain an (r, s)-factorable operator.

We conclude the article with a characterization of the Lp,q operator ideal. Let
1 ≤ p, q, r, s < ∞ be such that 1/pr + 1/qs ≥ 1 and T ∈ L(X,Y ). Observe that
1/u2 + 1 > 1 for every 1 ≤ u ≤ r. From Propositions 3.5 and 4.1, we have that

πu(T ) ≤ ιu(T ) = αu,1(T )
(•)
≥ ϕu,1(T ) ≤ ϕr,s(T ) ≤ αp,q(T ).

For this reason, we are interested in finding conditions that allow us to reverse the
inequality (•). As we noted in the preliminary section, despite Z(µ) being a BFS,
its pth power space Z(µ)[p] may be a quasi-BFS; hence the following definition is
a seminorm, instead of a norm: ‖f‖b,Z(µ)[p] := sup{|〈f, ξ〉| : ξ ∈ B(Z(µ)[p])

∗}, where
f ∈ L0(µ). Let 1 ≤ p < ∞ and 0 < q < ∞, let Z(µ) be a BFS, and let X be
a Banach space. An operator T ∈ L(Z(µ), X) is bidual (p, q)-power-concave if
there is a constant K > 0 such that

n∑
j=1

‖Tfj‖q/pX ≤ K
∥∥∥ n∑
j=1

|fj|q/p
∥∥∥
b,Z(µ)[q]

,

for every choice of f1, . . . , fn ∈ Z(µ) and n ∈ N (see [15, Definition 6.1]). Let
1 ≤ p, q < ∞ and 1 ≤ r, s ≤ ∞, and let X and Y be Banach spaces. Let us denote
by F r,s

p,q(X,Y ) the set of all operators T ∈ L(X,Y ) such that there exists an OC
and Fatou BFS Z(µ), with OC dual space which is r-convex and s-concave, so
that kY ◦T = S◦R for some operators R ∈ Fdual

q (X,Z(µ)) and S ∈ Fp(Z(µ), Y
∗∗).
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Obviously, Fp,q(X,Y ) = F1,∞
p,q (X,Y ). Let us denote F r

p,q(X,Y ) := F r,r
p,q(X,Y ) and

consider this subclass with the norm ϕp,q.

Theorem 4.5. Let 1 ≤ p, q, r, s < ∞ be such that 1/(pr) + 1/(qs) = 1. Let X
and Y be Banach spaces, and let T ∈ L(X,Y ). Then the following statements are
equivalent:

(i) T ∈ Lr,s(X,Y ),
(ii) T ∈ Fpr

p,q(X,Y ).

In this case, αr,s(T ) = ϕp,q(T ).

Proof. (i) ⇒ (ii): This follows from the proof of Proposition 4.1, by just taking
c = pr and Z(µ) = Lc(µ), which is c-concave and c-convex. Moreover, ϕp,q(T ) ≤
αr,s(T ).

(ii) ⇒ (i): Define c := pr. Hence c′ = qs, thus r = c/p and s = c′/q. Keep

in mind that kY ◦ T : X
R→ Z(µ)

S→ Y ∗∗, where Z(µ) is c-concave and c-convex,
and S is pth power factorable. Thanks to [15, Proposition 6.2(iii)], S is bidual

(p, c)-power-concave, which implies, by [15, Theorem 6.27(iii)], that S : Z(µ)
MχΩ
↪→

Lc(h dµ)
γp
↪→ Lc/p(h dµ)

(S0)[p]→ Y ∗∗, for some 0 < h ∈ L1(µ), where MχΩ
denotes the

multiplication operator and γp denotes the canonical inclusion map. Analogously,

R∗ : Z(µ)′
MχΩ
↪→ Lc′(g dµ)

γq
↪→ Lc′/q(g dµ)

(R0)[q]→ X∗, where 0 < g ∈ L1(µ). Let us
choose µ so that ‖γp‖ ≤ 1 and ‖γq‖ ≤ 1. Taking duals in the second factorization
and combining this with the first one, we obtain that kY ◦ T factors through the
positive map U : Ls′(g dµ) → Lr(h dµ) defined by U := γp ◦MχΩ

◦M∗
χΩ

◦ γ∗
q . By

virtue of [5, Corollary 18.10], U factors as U : Ls′(g dµ)
U1→ Ls′(µ0)

I
↪→ Lr(µ0)

U2→
Lr(h dµ), so that αr,s(U) = ‖U‖ = ‖U2‖‖I‖‖U1‖. Thus, we conclude that T ∈
Lr,s(X,Y ).

In order to show the norm inequality, we describe our arguments for the pth
power operator S; the same will be valid for R∗. From [15, Theorem 6.27(iii)],
one can easily check that ‖S‖ = ‖(S0)[p]‖, just by testing with simple functions
and taking into account that ‖γp ◦MχΩ

‖ ≤ 1, by the election of µ. That is, given
ε > 0, there exist f ∈ BLc/p(hdµ) and a suitable simple function sf ∈ BZ(µ) such
that∥∥(S0)[p]

∥∥− ε/2 ≤
∥∥(S0)[p](f)

∥∥
Y ∗∗

≤
∥∥(S0)[p]

(
γp ◦MχΩ

(sf )
)∥∥

Y ∗∗ +
∥∥(S0)[p]

(
f − γp ◦MχΩ

(sf )
)∥∥

Y ∗∗

≤
∥∥S(sf )∥∥Y ∗∗ + ε/2 ≤ ‖S‖+ ε/2.

Thus, ‖S‖ ≥ ‖(S0)[p]‖‖γp ◦MχΩ
‖. An analogous result is obtained for R∗; that is,

‖R‖ = ‖R∗‖ ≥ ‖M∗
χΩ

◦ γ∗
q‖‖(R0)

∗
[q] ◦ kX‖. Let ε > 0. Then choose Z(µ), R, and S

such that

ϕp,q(T ) + ε ≥ ‖S‖‖R‖ ≥
∥∥(S0)[p]

∥∥‖γp ◦MχΩ
‖‖M∗

χΩ
◦ γ∗

q‖
∥∥(R0)

∗
[q] ◦ kX

∥∥
≥

∥∥(S0)[p]
∥∥αr,s(γp ◦MχΩ

◦M∗
χΩ

◦ γ∗
q )
∥∥(R0)

∗
[q] ◦ kX

∥∥ ≥ αr,s(T ).

The arbitrariness of ε brings us to the result. �
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Corollary 4.6. Let 1 ≤ u ≤ p < ∞ and 1 ≤ v ≤ q < ∞ be such that 1/pu +
1/qv ≥ 1. Let r ∈ [u, p] and s ∈ [v, q] be such that 1/(rt) + 1/(sw) = 1, and
let X and Y be Banach spaces such that F c

u,v(X,Y ) ⊆ F rt
t,w(X,Y ) for some c ∈

[pu, (qv)′]. Then Lp,q(X,Y ) ⊆ Lr,s(X,Y ).

The proof is a simple application of Proposition 4.1 and Theorem 4.5. After
some computations, it is possible to obtain indexes that satisfy the conditions of
this corollary.

Example 4.7. Let us take the following values in the corollary above: p = 12; u =
4; q = s = 49

48
; v = w = 2500

2499
; r = 7; t = 625

91
' 6.7. Therefore, we have:

pu = 48; qv = sw = 625
612

; rt = (sw)′ = (qv)′ = 625
13
. Thus, 1/(pu) + 1/(qv) '

1.000033 ≥ 1 and 1/(rt) + 1/(sw) = 1. Let X and Y be Banach spaces, and
let Y0 a finite-dimensional subspace of Y . From the proof of Theorem 3.4(i),
every finite-rank operator is Ft,w-factorable for every t, w ∈ [1,∞); hence it is
clear that F c

u,v(X,Y0) ⊆ F rt
t,w(X,Y0). The corollary above implies that, for every

finite-dimensional subspace Y0 ⊆ Y , L12, 49
48
(X,Y0) ⊆ L7, 49

48
(X,Y0).
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