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Abstract. In this article, we consider some algebraic properties of Toeplitz
operators on weighted pluriharmonic Bergman space on the unit ball. We char-
acterize the commutants of Toeplitz operators whose symbols are certain sep-
arately radial functions or holomorphic monomials, and then give a partial
answer to the finite-rank product problem of Toeplitz operators.

1. Introduction

Let Bn denote the open unit ball of Cn, and let v be the normalized Lebesgue
volume measure on this unit ball. Fix a real number α > −1. The weighted
Lebesgue measure vα on Bn is defined by dvα(z) = cα(1 − |z|2)α dv(z), where cα
is a normalizing constant so that vα(Bn) = 1. A direct computation shows that

cα =
Γ(n+ α + 1)

Γ(n+ 1)Γ(α + 1)
.

Let L2
α denote L2(Bn, dvα), and let 〈·, ·〉α denote its inner product.

The weighted Bergman space A2
α consists of all functions in L2

α which are
holomorphic on Bn. It is well known that A2

α is a closed subspace of L2
α. We

denote the orthogonal projection from L2
α onto A2

α by Pα.
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The weighted pluriharmonic Bergman space b2α is the Hilbert space consisting
of all pluriharmonic functions on Bn which are also in L2

α. It is easy to verify that

b2α = A2
α + A2

α,

where A2
α = {f̄ : f ∈ A2

α, f(0) = 0}. For z, w ∈ Bn, let

Kz(w) =
1

(1− 〈w, z〉)(n+α+1)

be the reproducing kernel of A2
α. Then the reproducing kernel of b2α is

Rz(w) = Kz(w) +Kz(w)− 1, z, w ∈ Bn.

Let Qα denote the orthogonal projection from L2
α onto b2α. For a function ϕ ∈

L∞(Bn, dvα), the Toeplitz operator Tϕ with symbol ϕ is defined by

Tϕ(f) = Qα(ϕf) =

∫
Bn

f(w)ϕ(w)Rz(w) dvα(w), f ∈ b2α.

On the Hardy space of the unit disk, Brown and Halmos [4, Theorem 9] first
showed that two Toeplitz operators are commuting if and only if either both
symbols of these operators are analytic, or both symbols are conjugate analytic,
or a nontrivial linear combination of the symbols is constant. Recently, Ding, Sun,
and Zheng [9, Theorem 1.5] made progress on the commuting problem for the
Hardy space of the bidisk and obtained an analogous result to the Brown and
Halmos theorem as above, although their result is a little more complicated. On
the polydisk, Lee [17, Main Theorem] obtained a concise result when one of the
symbols of the operators is pluriharmonic.

On the Bergman space of the unit disk, Axler and Čučković [2, Theorem 1]
showed that a result similar to that of the Brown and Halmos theorem holds for
Toeplitz operators with bounded harmonic symbols. Although the commuting
problem of Toeplitz operators with general bounded symbols is still far from its
solution, some results for special symbols were obtained (see [20], [7]). Another
problem that deserves consideration is the commutant problem. Čučković [6] first
showed that the commutant of a Toeplitz operator with the monomial symbol
zn(n ≥ 1) consists of analytic Toeplitz operators. Several years later, Axler,
Čučković, and Rao [3] obtained the same result when replacing the monomial
symbol with a nonconstant analytic symbol. Čučković and Rao [7] gave a nec-
essary and sufficient condition for a Toeplitz operator to commute with another
Toeplitz operator whose symbol is a monomial zsz̄t(|s|+ |t| > 0), and they proved
that the commutant of a Toeplitz operator with a radial symbol just consists of
Toeplitz operators with radial symbols.

On the Bergman space of several complex variables, the situation is much
more complicated. Zheng [22] studied commuting Toeplitz operators with pluri-
harmonic symbols on the unit ball. Recently, Zhou and Dong [23] studied the
commuting problem of Toeplitz operators whose symbols are quasihomogeneous
functions. In that paper, they showed that the commutant of a radial Toeplitz
operator includes nonradial Toeplitz operators, which is different from the one-
variable case. Later on, they completely characterized the commutant of a radial
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Toeplitz operator in [10], which was also obtained by Trieu Le [13] using a different
method.

On the harmonic Bergman space, the commuting problem is harder, but some
progress has been made in the literature (see [5], [11] and the references therein).
Dong and Zhou [11] also investigated the commutant problem of Toeplitz opera-
tors whose symbols are radial functions or (conjugate-)analytic monomials.

On the pluriharmonic Bergman space of the unit ball, Lee and Zhu [18] and
Lee [16] separately studied the commuting problem of Toeplitz operators, and
obtained some results analogous to the harmonic Bergman space of the unit
disk. To make some new progress, we will investigate the commutants of Toeplitz
operators whose symbols are certain separately radial functions or holomorphic
monomials.

For the finite-rank product problem, Aleman and Vukotić [1] showed that the
product of finitely many Toeplitz operators on the Hardy space of the unit disk
is of finite rank if and only if at least one of the operators is zero. On the Hardy
space of the polydisk, Ding [8] proved a similar conclusion for Toeplitz operators
with pluriharmonic symbols. In the settings of the Bergman space of the unit disk
(see [15]) and the unit ball (see [14]), Trieu Le solved the problem for Toeplitz
operators (except possibly one) diagonal with respect to the standard orthonormal
basis. In the following, we will investigate this problem for Toeplitz operators on
the pluriharmonic Bergman space of the unit ball.

Our article is organized as follows. In Section 2, we introduce some notation
which will be used later. In Section 3, we characterize the commutant of the
Toeplitz operator Tg, where g is a certain separately radial function (see Theo-
rem 3.3). As a corollary, we will give an example to show that the Toeplitz oper-
ator commuting with a radial Toeplitz operator is not necessarily a radial one.
This is a different phenomenon from the case of one variable. We also characterize
the commutants of the Toeplitz operator Tzk , where k is a nonzero multi-index
(see Theorem 3.13). In Section 4, we investigate the finite-rank product problem
of Toeplitz operators (except possibly one) whose symbols are of the form zsz̄tϕ,
where s, t ∈ Nn and ϕ is a nonzero separately radial function (see Theorem 4.5).

2. Preliminaries

First we introduce some notation. For any multi-indexm = (m1, . . . ,mn) ∈ Nn,
we write |m| = m1 + · · · + mn, m! = m1! · · ·mn!, z

m = zm1
1 · · · zmn

n , and z̄m =
z̄m1
1 · · · z̄mn

n for z = (z1, . . . , zn) ∈ Bn. For two multi-indexes m = (m1, . . . ,mn)
and k = (k1, . . . , kn), we write m � k if mi ≥ ki, i = 1, . . . , n, and we write m � k
otherwise. We also write m � k if m � k and there exists at least one subscript
i such that mi > ki. If m � k, then define m − k = (m1 − k1, . . . ,mn − kn).
The standard orthonormal basis for the weighted Bergman space A2

α is {em}m�0,
where

em(z) =
[Γ(n+ |m|+ α + 1)

m!Γ(n+ α + 1)

]1/2
zm, m ∈ Nn, z ∈ Bn.

As a result, the standard orthonormal basis for the weighted pluriharmonic
Bergman space b2α is {em}m�0 ∪ {ēm}m�0.
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For any bounded measurable function g on Bn, any m ∈ Nn, and α > −1,
define

g̃(m) = 〈Tgem, em〉α =

∫
Bn

g(z)em(z)ēm(z) dvα(z).

It is clear that g̃(m) = 〈Tgēm, ēm〉α and ˜̄g(m) = g̃(m) for m ∈ Nn.
For any 1 ≤ j ≤ n, let σj : N × Nn−1 → Nn be the map defined by the

formula σj(s, (r1, . . . , rn−1)) = (r1, . . . , rj−1, s, rj+1, . . . , rn−1) for all s ∈ N and
(r1, . . . , rn−1) ∈ Nn−1. If S is a subset of Nn and 1 ≤ j ≤ n, then we define

S̃j =
{
r̃ = (r1, . . . , rn−1) ∈ Nn−1 :

∑
s∈N

σj(s,r̃)∈S

1

s+ 1
= ∞

}
.

The following definition comes from [13].

Definition 2.1 ([13, Definition 3.1]). We say that S has property (P) if one of the
following statements holds:

(1) S = ∅, or
(2) S 6= ∅, n = 1 and

∑
s∈S

1
s+1

<∞, or

(3) S 6= ∅, n ≥ 2 and for any 1 ≤ j ≤ n, the set S̃j has property (P) as a
subset of Nn−1.

Remark 2.2. By the preceding definition, we can immediately get the following
statements.

(1) If S ⊂ N and S does not have property (P), then
∑

s∈S
1

s+1
= ∞. If

S ⊂ Nn with n ≥ 2 does not have property (P), then S̃j does not have
property (P) as a subset of Nn−1 for some 1 ≤ j ≤ n.

(2) If S1 and S2 are subsets of Nn that both have property (P), then S1 ∪ S2

also has property (P).
(3) If S ⊂ Nn has property (P) and l ∈ Zn, then (S+ l)∩Nn also has property

(P). Here, S + l = {m+ l : m ∈ S}.
(4) If S ⊂ Nn has property (P), then N×S also has property (P) as a subset

of Nn+1. This follows by induction on n.
(5) The set Nn does not have property (P) for all n ≥ 1. This together with

(2) shows that if S ⊂ Nn has property (P), then Nn \ S does not have
property (P).

(6) For any k = (k1, . . . , kn) in Nn, the set S = {m ∈ Nn : m � k} has
property (P). This follows from (2), (4), and the fact that

S ⊂
n⋃

j=1

N× · · · × N× {0, . . . , kj − 1} × N× · · · × N.

3. Commutants of Toeplitz operators

3.1. Toeplitz operators with certain separately radial symbols. In this
section, we investigate commutants of Toeplitz operators with certain separately
radial symbols on the weighted pluriharmonic Bergman space of the unit ball Bn.



TOEPLITZ OPERATORS BERGMAN SPACE 443

Recall that a function ψ on Bn is radial if ψ(z) depends only on |z|. In contrast
to radial functions, a function ϕ on Bn is called a separately radial function if
ϕ(z1, . . . , zn) = ϕ(|z1|, . . . , |zn|). In order to state the main result in this section,
we need the following two lemmas from [13].

Lemma 3.1 ([13, Corollary 3.5]). Let γ = (γ1, . . . , γn) be an n-tuple of integers,
and let f be in L1(Bn, dv). If for almost all z ∈ Bn, f(e

iγ1θz1, . . . , e
iγnθzn) = f(z)

for almost all θ ∈ R, then whenever l = (l1, . . . , ln) ∈ Zn with γ1l1+· · ·+γnln 6= 0,
we have

∫
Bn
f(z)zm+lz̄m dv(z) = 0 for all m ∈ Nn with m+ l � 0.

Lemma 3.2 ([13, Proposition 3.6]). Suppose that g(z) = |z1|2s1 · · · |zn|2snh(|z|)
for z ∈ Bn, where s1, . . . , sn ≥ 0 and h : [0, 1) → C is a bounded measurable func-
tion. Assume that g is not a constant function on Bn. Then for l = (l1, . . . , ln) ∈
Zn with

∑
l = 0 and s1l1 = · · · = snln = 0, we have g̃(m + l) = g̃(m) for all

m ∈ Nn with m+ l � 0.

Let g be of the form defined in Lemma 3.2. We now can characterize the
commutant of Tg on weighted pluriharmonic Bergman space.

Theorem 3.3. For f ∈ L∞, TfTg = TgTf on b2α if and only if for 1 ≤ j ≤ n
with sj 6= 0, f(eiθz) = f(z) and f(z1, . . . , zj−1, |zj|, . . . , zn) = f(z) for almost all
θ ∈ R and almost all z ∈ Bn.

Proof. Since g(z1, . . . , zn) = g(|z1|, . . . , |zn|) for almost all z ∈ Bn, it is easy to
verify that Tg is diagonal with respect to the standard orthonormal basis and
that Tgem = g̃(m)em, Tgēm = g̃(m)ēm for all m ∈ Nn. It is clear that TfTg = TgTf
on b2α if and only if for all l ∈ Zn and m ∈ Nn with m+ l � 0, the following four
identities hold true:

(a) 0 = 〈(TfTg − TgTf )em+l, em〉α = (g̃(m+ l)− g̃(m))〈Tfem+l, em〉α,
(b) 0 = 〈(TfTg − TgTf )em+l, ēm〉α = (g̃(m+ l)− g̃(m))〈Tfem+l, ēm〉α,
(c) 0 = 〈(TfTg − TgTf )ēm+l, em〉α = (g̃(m+ l)− g̃(m))〈Tf ēm+l, em〉α,
(d) 0 = 〈(TfTg − TgTf )ēm+l, ēm〉α = (g̃(m+ l)− g̃(m))〈Tf ēm+l, ēm〉α.
Suppose that TfTg = TgTf on b

2
α. Since Tg is diagonal, A

2
α is a reducing subspace

of Tg and hence PTg = TgP = PTgP , where P denotes the orthogonal projection
from b2α onto A2

α. If Tf and Tg commute as operators on b2α, then it follows that
PTfP commutes with PTgP . Since PTfP (resp., PTgP ) is in fact the Toeplitz
operator with symbol f (resp., g) acting on A2

α, it follows from [13, Theorem 1.2]
that for 1 ≤ j ≤ n with sj 6= 0, f(eiθz) = f(z) and f(z1, . . . , zj−1, |zj|, . . . , zn) =
f(z) for almost all θ ∈ R and almost all z ∈ Bn.

Now suppose that for 1 ≤ j ≤ n with sj 6= 0, f(eiθz) = f(z) and f(z1, . . . , zj−1,
|zj|, . . . , zn) = f(z) for almost all θ ∈ R and almost all z ∈ Bn. Let l =
(l1, . . . , ln) ∈ Zn. If

∑
l 6= 0 or sjlj 6= 0(hence sj 6= 0 and lj 6= 0) for some

1 ≤ j ≤ n, then Lemma 3.1 shows that 〈Tfem+l, em〉α = 0 for all m ∈ Nn with
m + l � 0. If

∑
l = 0 and s1l1 = · · · = snln = 0, then Lemma 3.2 tells us that

g̃(m+ l) = g̃(m) for all m ∈ Nn with m+ l � 0. Therefore, (a) holds for all l ∈ Zn

and m ∈ Nn with m+ l � 0.
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Since f(eiθz) = f(z), we have∫
Bn

f(z)z2m+l dvα(z) =

∫
Bn

f(eiθz)z2m+l dvα(z)

= e−i(2|m|+
∑

l)θ

∫
Bn

f(z)z2m+l dvα(z).

It is clear from the above equations that for all m � 0 with m + l � 0,∫
Bn
f(z)z2m+l dvα(z) = 0, which implies that (b) holds. Similarly, (c) holds for

all m ∈ Nn with m+ l � 0.
Finally, 〈Tf ēm+l, ēm〉α = 〈Tf̄em+l, em〉α. Under the assumption of f , for 1 ≤ j ≤

n with sj 6= 0, f̄(eiθz) = f̄(z) and f̄(z1, . . . , zj−1, |zj|, . . . , zn) = f̄(z) for almost
all θ ∈ R and almost all z ∈ Bn. By an argument similar to the proof of (a), (d)
also holds for all m ∈ Nn with m+ l � 0. Therefore, TfTg = TgTf on b2α. �

In the case n = 1, Dong and Zhou [11, Theorem 4.3] proved that if a Toeplitz
operator commutes with another Toeplitz operator with a radial symbol, then its
symbol is also radial. The following corollary shows that the situation is different
when n > 1.

Corollary 3.4. Let g be a nonconstant radial function on Bn. Then for f ∈ L∞,
TfTg = TgTf on b2α if and only if f(eiθz) = f(z) for almost all θ ∈ R and almost
all z ∈ Bn.

Example 3.5. Let f(z) = z1z̄2 be a function on B2. Then f(e
iθz) = f(z) for almost

all θ ∈ R and almost all z ∈ B2, but f is obviously not a radial function.

3.2. Toeplitz operators with holomorphic monomial symbols. Next we
investigate commutants of Toeplitz operators with holomorphic monomial sym-
bols on the weighted pluriharmonic Bergman space of the unit ball. Recall that
the Mellin transform ϕ̂ of a function ϕ ∈ L1([0, 1], r dr) is defined by

ϕ̂(z) =

∫ 1

0

ϕ(s)sz−1 ds.

It is clear that ϕ̂ is well defined on the right half-plane {z : Re z > 2}. It is
important and helpful to know that the Mellin transform ϕ̂ is uniquely determined
by its value on an arithmetic sequence of integers. In fact, we have the following
classical conclusion (see [21, p. 102]).

Lemma 3.6. Suppose that f is a bounded analytic function on {z : Re z > 0}
which vanishes at the pairwise distinct points z1, z2, . . ., where

(1) inf{|zk|} > 0, and
(2)

∑
k≥1Re(1/zk) = ∞.

Then f vanishes identically on {z : Re z > 0}.

Remark 3.7. By the above lemma, if ϕ ∈ L1([0, 1], r dr) and there exists a
sequence (nk)k≥0 ⊂ N such that
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ϕ̂(nk) = 0,
∑
k≥0

1

nk

= ∞,

then ϕ̂(z) = 0 for all z ∈ {z : Re z > 2}, and so ϕ = 0.

For two multi-indexes p = (p1, . . . , pn) and s = (s1, . . . , sn), the notation p ⊥ s
means that p1s1 + · · · + pnsn = 0. It is clear that if p ⊥ s, then m + p � s is
equivalent to m � s for any multi-index m.

Definition 3.8. Let l ∈ Zn, and let f be a function in L1(Bn, dvα). Then we say
that f is a quasihomogeneous function of quasihomogeneous degree l if f is of the
form ξlϕ, where ϕ is a radial function; that is,

f(rξ) = ξlϕ(r)

for any ξ in the unit sphere Sn and r ∈ [0, 1).

Remark 3.9. Clearly, any l ∈ Zn can be uniquely written as p− s, where p and s
are two multi-indexes such that p ⊥ s. Thus in this article, we always define the
function

ξl = ξpξ̄s, ξ ∈ Sn,

for any l ∈ Zn.

The following lemma will be used later.

Lemma 3.10. Suppose that p, s are two multi-indexes and that ϕ is an integrable
radial function such that Tξpξ̄sϕ is a bounded operator. Then for any multi-index
m,

Tξpξ̄sϕ(z
m)

=


(p+m)!(n−1+|p|+|m|−|s|)!
(p+m−s)!(n−1+|m|+|p|)!

̂[(1−r2)αϕ](2n+2|m|+|p|−|s|)
̂(1−r2)α(2n+2|m|+2|p|−2|s|)

zp+m−s p+m � s,

s!(n−1+|s|−|m|−|p|)!
(s−m−p)!(n−1+|s|)!

̂[(1−r2)αϕ](2n+|s|−|p|)
̂(1−r2)α(2n+2|s|−2|m|−2|p|)

z̄s−m−p p+m � s,

0 otherwise.

Proof. For multi-indexes m and k,〈
Pα[ξ

pξ̄sϕzm], zk
〉
α

=

∫
Bn

ξpξ̄sϕ(z)zmz̄k dvα(z)

=

∫
[0,1)

2ncα(1− r2)αϕ(r)r2n+|m|+|k|−1 dr

∫
Sn
ξpξ̄sξmξ̄k dσ(ξ)

=

{
2n!cα(p+m)!

(n−1+|m|+|p|)!
̂[(1− r2)αϕ](2n+ 2|m|+ |p| − |s|) p+m− s = k,

0 otherwise.
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If p+m � s, we have

〈zp+m−s, zk〉α

=

∫
Bn

zp+m−sz̄k dvα(z)

=

∫
[0,1)

2ncα(1− r2)αr2n+|p|+|m|−|s|+|k|−1 dr

∫
Sn
ξp+m−sξ̄k dσ(ξ)

=

{
2n!cα(p+m−s)!

(n−1+|p|+|m|−|s|)!
̂(1− r2)α(2n+ 2|p|+ 2|m| − 2|s|) p+m− s = k,

0 otherwise.

Furthermore, 〈Pα[ξ
pξ̄sϕzm], z̄k〉α = 0 = 〈zp+m−s, z̄k〉α holds for all k � 0. So we

obtain

Pα[ξ
pξ̄sϕzm]

=

 (p+m)!(n−1+|p|+|m|−|s|)!
(p+m−s)!(n−1+|p|+|m|)!

̂[(1−r2)αϕ](2n+2|m|+|p|−|s|)
̂(1−r2)α(2n+2|p|+2|m|−2|s|)

zp+m−s p+m � s,

0 p+m � s.

Note that ϕ̄ is still radial, so by a similar calculation, we have

Pα[ξ̄
pξsϕ̄z̄m]

=

 s!(n−1+|s|−|m|−|p|)!
(s−m−p)!(n−1+|s|)!

̂[(1−r2)αϕ](2n+|s|−|p|)
̂(1−r2)α(2n+2|s|−2|m|−2|p|)

zs−m−p p+m � s,

0 p+m � s.

Thus

Tξpξ̄sϕ(z
m) = Pα[ξ

pξ̄sϕzm] + Pα[ξ̄pξsϕ̄z̄m]− Pα[ξ
pξ̄sϕzm](0)

=


(p+m)!(n−1+|p|+|m|−|s|)!
(p+m−s)!(n−1+|m|+|p|)!

̂[(1−r2)αϕ](2n+2|m|+|p|−|s|)
̂(1−r2)α(2n+2|m|+2|p|−2|s|)

zp+m−s p+m � s,

s!(n−1+|s|−|m|−|p|)!
(s−m−p)!(n−1+|s|)!

̂[(1−r2)αϕ](2n+|s|−|p|)
̂(1−r2)α(2n+2|s|−2|m|−2|p|)

z̄s−m−p p+m � s,

0 otherwise. �

Dong and Zhou [11, Theorem 4.2] showed that, on the harmonic Bergman space
of the unit disk, if f is a bounded function, then Tf and Tzk commute if and only
if a nontrivial linear combination of f and zk is constant. What is the situation
on weighted pluriharmonic Bergman space of the unit ball? We will give a partial
answer to this question in Theorem 3.13.

Theorem 3.11. Let f be a nonconstant bounded holomorphic function, and let
g be a nonzero bounded quasihomogeneous function. If Tf and Tg commute on b2α,
then g is a monomial. Moreover, if α = 0, then Tf and Tg commute if and only
if f = λg + µ for some constants λ, µ.

Proof. Let f =
∑

β�0 fβz
β be the power series representation of f , and let g =

ξlϕ = ξpξ̄sϕ, where p, s are two multi-indexes such that p ⊥ s and l = p − s. If
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Tf and Tξpξ̄sϕ commute, then TfTξpξ̄sϕz
m = Tξpξ̄sϕTfz

m for every multi-index m.
By Lemma 3.10, we have

TfTξpξ̄sϕz
m =


∑

β�0 TfβzβTξpξ̄sϕz
m p+m � s,∑

β+m+p�s +
∑

β+m+p�s TfβzβTξpξ̄sϕz
m p+m � s,

0 otherwise

and

Tξpξ̄sϕTfz
m =

∑
β+m+p�s

Tξpξ̄sϕTfβzβz
m +

∑
β+m+p�s

Tξpξ̄sϕTfβzβz
m.

Claim. TfβzβTξpξ̄sϕz
m = Tξpξ̄sϕTfβzβz

m for any multi-index β.

We will discuss three cases.
Case 1. If p+m � s, then p+m+β � s,∀β � 0. Since TfTξpξ̄sϕz

m = Tξpξ̄sϕTfz
m,

we have

TfβzβTξpξ̄sϕz
m = Tξpξ̄sϕTfβzβz

m, ∀β � 0.

Case 2. If p+m � s, then TfβzβTξpξ̄sϕz
m = Tξpξ̄sϕTfβzβz

m when p+m+ β � s

or p+m+ β � s. Since TfβzβTξpξ̄sϕz
m = Tξpξ̄sϕTfβzβz

m = 0 when p+m+ β � s

and p+m+ β � s, we have

TfβzβTξpξ̄sϕz
m = Tξpξ̄sϕTfβzβz

m, ∀β � 0.

Case 3. If p +m � s and p +m � s, then Tξpξ̄sϕz
m = 0, so TfβzβTξpξ̄sϕz

m =
0, ∀β � 0. Since Tξpξ̄sϕTfz

m = TfTξpξ̄sϕz
m = 0 and Tξpξ̄sϕTfβzβz

m = 0 whenever

p+m+ β � s and p+m+ β � s, we have Tξpξ̄sϕTfβzβz
m = 0 for p+m+ β � s

or p+m+ β � s, and thus

TfβzβTξpξ̄sϕz
m = Tξpξ̄sϕTfβzβz

m = 0, ∀β � 0.

Because f is nonconstant, there exists some γ with |γ| ≥ 1 such that fγ 6= 0. By
the above claim, we get TzγTξpξ̄sϕz

m = Tξpξ̄sϕTzγz
m. It follows from Lemma 3.10

that

(1) ̂[(1− r2)αϕ](2n + 2|m| + 2|γ| + |p| − |s|) = 0, if p + m + γ � s and
p+m � s, p+m � s;

(2) ̂[(1− r2)αϕ](2n+2|m|+2|γ|+ |p|−|s|) = dm ̂[(1− r2)αϕ](2n+2|m|+ |p|−
|s|), if p+m � s,

where

dm =
(p+m)!(p+m+ γ − s)!(n− 1 + |p|+ |m| − |s|)!(n− 1 + |m|+ |γ|+ |p|)!
(p+m+ γ)!(p+m− s)!(n− 1 + |m|+ |γ|+ |p| − |s|)!(n− 1 + |m|+ |p|)!

×
̂(1− r2)α(2n+ 2|m|+ 2|γ|+ 2|p| − 2|s|)

̂(1− r2)α(2n+ 2|m|+ 2|p| − 2|s|)
.

We first prove s = 0. Otherwise, |s| ≥ 1 and we can consider two cases.
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Case 1. Suppose that γi0 6= 0 and si0 6= 0 for some i0 ∈ {1, . . . , n}. Let
m′ = (s1 +1, . . . , si0−1 +1, si0 − 1, si0+1 +1, . . . , sn +1). Then p+m′ + γ � s and
p+m′ � s, p+m′ � s. Then it follows from (1) that

̂[
(1− r2)αϕ

](
2n+ 2|m′|+ 2|γ|+ |p| − |s|

)
= 0.

Using (2) repeatedly gives

̂[
(1− r2)αϕ

](
2n+ 2|m′|+ 2j|γ|+ |p| − |s|

)
= 0

for j ≥ 1. It is clear that
∑

j≥1
1

2|m′|+2j|γ|−|s| = ∞. Then it follows from Remark 3.7

that (1− r2)αϕ = 0 and so ϕ = 0.
Case 2. Suppose that γ ⊥ s. Obviously, for any multi-index p +m � s, (p +

m)!(p+m+ γ − s)! = (p+m+ γ)!(p+m− s)!. It follows from (2) that

̂[(1− r2)αϕ](2n+ 2|m|+ 2|γ|+ |p| − |s|) ̂(1− r2)α(2n+ 2|m|+ 2|p| − 2|s|)
(n− 1 + |m|+ |γ|+ |p|) · · · (n− 1 + |m|+ |γ|+ |p| − |s|+ 1)

=
̂[(1− r2)αϕ](2n+ 2|m|+ |p| − |s|) ̂(1− r2)α(2n+ 2|m|+ 2|γ|+ 2|p| − 2|s|)

(n− 1 + |m|+ |p|) · · · (n− 1 + |m|+ |p| − |s|+ 1)
.

Denote

F (z) =
̂[(1− r2)αϕ](2z + 2|γ|+ |p|+ |s|) ̂(1− r2)α(2z + 2|p|)

(z + |γ|+ |p|+ |s| − 1) · · · (z + |γ|+ |p|)

−
̂[(1− r2)αϕ](2z + |p|+ |s|) ̂(1− r2)α(2z + 2|γ|+ 2|p|)

(z + |p|+ |s| − 1) · · · (z + |p|)
.

Then F is analytic and bounded on {z : Re z > n} since (1− r2)αϕ, (1− r2)α ∈
L1([0, 1), r2n−1 dr). By the above equation, F (n + |m| − |s|) = 0 for p +m � s.
Note that p + m � s ⇔ m � s since p ⊥ s and

∑
m�s

1
n+|m|−|s| = ∞. Then

Lemma 3.6 implies that F = 0. Thus

̂[(1− r2)αϕ](2z + 2|γ|+ |p|+ |s|)
(z + |γ|+ |p|+ |s| − 1) · · · (z + |γ|+ |p|) ̂(1− r2)α(2z + 2|γ|+ 2|p|)

=
̂[(1− r2)αϕ](2z + |p|+ |s|)

(z + |p|+ |s| − 1) · · · (z + |p|) ̂(1− r2)α(2z + 2|p|)
.

Denote

G(z) =
̂[(1− r2)αϕ](2z + |p|+ |s|)

(z + |p|+ |s| − 1) · · · (z + |p|) ̂(1− r2)α(2z + 2|p|)
.

Then G(z) is a periodic function with period |γ| on {z : Re z > n}, and thus can
be extended to the whole plane C as an entire function. By the definition of the
Mellin transform and the infinite products representation

1

Γ(z)
= zeδz

∞∏
k=1

(
1 +

z

k

)
e−z/k,
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where δ is the Euler’s constant, we have

∣∣G(z)∣∣ ≤ ‖ϕ‖∞
∫ 1

0
(1− r2)αr2 Re z+|p|+|s|−1 dr

|
∫ 1

0
(1− r2)αr2z+2|p|−1 dr|

×
∣∣∣ 1

(z + |p|+ |s| − 1) · · · (z + |p|)

∣∣∣
= O

( 1

(Re z)α+1|z||s|
)

By Liouville’s theorem, we obtain G(z) = 0, which implies that ϕ = 0. Now we
have proved that if s 6= 0, then ϕ = 0, which is a contradiction, so s = 0. Then
it follows from (2) that

̂[
(1− r2)αϕ

](
2n+ 2|m|+ 2|γ|+ |p|

) ̂(1− r2)α
(
2n+ 2|m|+ 2|p|

)
= ̂[

(1− r2)αϕ
](
2n+ 2|m|+ |p|

) ̂(1− r2)α
(
2n+ 2|m|+ 2|γ|+ 2|p|

)
,

which implies that

̂[
(1− r2)αϕ

](
z + 2|γ|

) ̂[
(1− r2)αr|p|

]
(z)

= ̂[
(1− r2)αϕ

](
z + 2|γ|

) ̂(1− r2)α
(
z + |p|

)
= ̂[

(1− r2)αϕ
]
(z) ̂(1− r2)α

(
z + 2|γ|+ |p|

)
= ̂[

(1− r2)αϕ
]
(z) ̂[

(1− r2)αr|p|
](
z + 2|γ|

)
.

By [19, Lemma 6], there exists some constant c such that ϕ(r) = cr|p|, and this
implies that g = czp. Moreover, if α = 0, then our assumption that Tf and Tg
commute together with [18, Theorem 11] gives f = λg + µ for some constants
λ, µ, which is obviously sufficient for the commutativity. �

Remark 3.12. Since Theorem 11 in [18] only dealt with the case α = 0, and we
are presently unable to give a proof for the weighted case, the second part of
Theorem 3.11 is still open for α 6= 0.

Theorem 3.13. Let f(rξ) =
∑

l∈Zn ξlfl(r) ∈ L∞. If Tf commutes with Tzk on
b2α, where k is a nonzero multi-index, then f is holomorphic on Bn. Moreover, if
α = 0, then Tf and Tg commute if and only if f = λg + µ for some constants
λ, µ.

Proof. If Tf and Tzk commute, then TfTzkz
m = TzkTfz

m for any multi-index m.
It follows from Lemma 3.10 that

TfTzkz
m =

∑
m+k+l�0

+
∑

m+k+l�0

Tξlfl(r)Tzkz
m

and

TzkTfz
m =

∑
m+l�0

+
∑

m+l�0,m+l+k�0

+
∑

m+l+k�0

TzkTξlfl(r)z
m.
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Since Tf and Tzk commute, the above two equations imply that

Tξlfl(r)Tzkz
m =


0 m+ l � 0,m+ l � 0,m+ l + k � 0,

TzkTξlfl(r)z
m


m+ l � 0,

m+ l � 0, m+ l + k � 0,

m+ l + k � 0.

But TzkTξlfl(r)z
m = 0 whenever m+ l � 0,m+ l � 0, so for each multi-index m,

Tξlfl(r)Tzkz
m = TzkTξlfl(r)z

m.

Let l = pl− sl, where pl ⊥ sl. Then by Theorem 3.11, sl = 0 and there exist some
constants cl such that ξlfl(r) = clz

pl , thus f =
∑

l=pl−sl
clz

pl is holomorphic on

Bn. Now suppose that α = 0. Then it follows from [18, Theorem 11] again that
Tf and Tg commute if and only if f = λg + µ for some constants λ, µ. �

4. Finite-rank product of Toeplitz operators

Next we are going to investigate the finite-rank product problem of Toeplitz
operators (except possibly one) whose symbols are of the form zsz̄tϕ, where s, t ∈
Nn and ϕ ∈ L∞ is a nonzero separately radial function on Bn.

The following lemma is proved in [14], which will be used later.

Lemma 4.1 ([14, Theorem 2.3]). Suppose that S ⊂ Nn is a set that has property
(P). Let N be the linear space spanned by the monomials {zm : m ∈ Nn \ S}. Let
L∗(N ,C) denote the space of all conjugate-linear functionals on N . Suppose that
µ is a complex regular Borel measure on Cn with compact support. Let Lµ : N →
L∗(N ,C) be the operator defined by (Lµf)(g) =

∫
Cn fḡ dµ for f, g ∈ N . If Lµ has

finite rank and µ is absolutely continuous with respect to the Lebesgue measure
on Cn, then µ is the zero measure.

Theorem 4.2. Let S1, S2 be two bounded operators on b2α. Suppose there is a set
S ⊂ Nn having property (P) such that Ker(S2) ⊂ M and N ⊂ Ran(S1), where

M is the closed subspace cl{zm : m ∈ S} ⊕ A2
α, and N is the linear subspace

spanned by {zm : m ∈ Nn \ S}. Suppose that f ∈ L2
α makes S2TfS1 a finite-rank

operator. Then f = 0 almost everywhere on Bn.

Proof. Since S2TfS1 has finite rank and N ⊂ Ran(S1), S2Tf (N ) is a finite-
dimensional linear subspace of b2α. Let {h1, . . . , hk} be a basis for this subspace,
and let gi ∈ b2α satisfy S2gi = hi for 1 ≤ i ≤ k. Then Tf (N ) is contained
in span{Ker(S2) ∪ {g1, . . . , gk}}, which is a subspace of span{M ∪ {g1, . . . , gk}}
by our assumption. Let QM denote the orthogonal projection from b2α onto M.
Replacing gi by gi−QMgi if necessary, we may assume that gi ⊥ M for 1 ≤ i ≤ k.
Furthermore, we may also assume that {g1, . . . , gk} is an orthonormal subset of
b2α by using the Gram–Schmidt process.
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For any p in N , we have

Tfp = QMTfp+
k∑

i=1

〈Tfp, gi〉αgi

= QMTfp+
k∑

i=1

〈fp, gi〉αgi.

By our assumption, for q ∈ N , q ⊥ M, so we obtain∫
Bn

fpq̄ dvα = 〈Tfp, q〉α = 〈QMTfp, q〉α +
k∑

i=1

〈fp, gi〉α〈gi, q〉α

=
k∑

i=1

〈fp, gi〉α〈gi, q〉α.

Let dµ = f dvα. Then the above equations tell us that the map Lµ from N into
L∗(N ,C) defined by (Lµp)(q) =

∫
Bn
pq̄ dµ =

∫
Bn
pq̄f dvα has rank at most k. It

then follows from Lemma 4.1 that µ is the zero measure, which in turn implies
that f = 0 almost everywhere on Bn. �

Lemma 4.3. Suppose that f ∈ L2
α is such that the set

M(f) =
{
m ∈ Nn :

∫
Bn

f(z)zmz̄m dvα(z) = 0
}

does not have property (P). Then M(f) = Nn. Moreover, if f is separately radial,

then f̃(m) = 〈Tfem, em〉α = 〈Tf ēm, ēm〉α = 0 for all m ∈ Nn, which implies that
Tf = 0 and hence f = 0.

Proof. The first assertion is an easy corollary of Lemma 3.3 in [13]. The second
assertion follows from Theorems 12 and 13 in [12]. �

Lemma 4.4. For 1 ≤ j ≤ N , suppose that fj(z) = zsj z̄tjϕj(z), where ϕ1, . . . , ϕN

are nonzero separately radial functions in L∞, and s1, . . . , sN and t1, . . . , tN are
multi-indexes. Let S = TfN · · ·Tf1. Then there exist two subsets J and I of Nn

having property (P) such that Pα(KerS) is contained in the closure in A2
α of

span{em : m ∈ J } and span{ek : k ∈ Nn \ I} is a subspace of S(b2α).

Proof. Suppose that ϕ ∈ L∞ is a nonzero separately radial function on Bn. Let
ϕ̃(m) = 〈Tϕem, em〉α for m ∈ Nn. By Lemma 4.3, the set M(ϕ) = {m ∈ Nn :
ϕ̃(m) = 0} has property (P). Now let s, t be in Nn, and let f(z) = zsz̄tϕ(z) for
z ∈ Bn. For multi-indexes m, k, l, we have

〈Tfem, ek〉α = ak〈ϕem+s, ek+t〉α =

{
0 if m+ s 6= k + t,

akϕ̃(m+ s) if m+ s = k + t,

〈Tfem, ēl〉α = bl〈ϕem+s+l, et〉α =

{
0 if m+ s+ l 6= t,

blϕ̃(t) if m+ s+ l = t,
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〈Tf ēm, ek〉α = ck〈ϕēm+t+k, ēs〉α =

{
0 if m+ t+ k 6= s,

ckϕ̃(s) if m+ t+ k = s,

and

〈Tf ēm, ēl〉α = dl〈ϕēm+t, ēs+l〉α =

{
0 if m+ t 6= s+ l,

dlϕ̃(m+ t) if m+ t = s+ l,

where ak is a constant depending on m, s, t, k, n, α. For convenience, we only keep
the “crucial” subscript k. Similarly, bl, ck, dl are all defined in this way. This shows
that

Tfem =
∑
k∈Nn

〈Tfem, ek〉αek +
∑

l∈Nn\{0}

〈Tfem, ēl〉αēl

=


bt−m−sϕ̃(t)ēt−m−s if m+ s− t � 0,

am+s−tϕ̃(m+ s)em+s−t if m+ s− t � 0,

0 otherwise,

(4.1)

and

Tf ēm =
∑
k∈Nn

〈Tf ēm, ek〉αek +
∑

l∈Nn\{0}

〈Tf ēm, ēl〉αēl

=


cs−m−tϕ̃(s)es−m−t if m+ t− s � 0,

dm+t−sϕ̃(m+ t)ēm+t−s if m+ t− s � 0,

0 otherwise.

(4.2)

As a result, for multi-index m �
∑N

j=1(sj + tj), we obtain two positive constants

C1, C2 (depending on m, s1, . . . , sN , t1, . . . , tN , n and α) such that

Sem = C1

N∏
j=1

ϕ̃j

(
m+

j−1∑
i=1

(si − ti) + sj

)
em+

∑N
j=1(sj−tj)

(4.3)

and

Sēm = C2

N∏
j=1

ϕ̃j

(
m+

j−1∑
i=1

(ti − si) + tj

)
ēm+

∑N
j=1(tj−sj)

. (4.4)

Define

J =
{
m : m �

N∑
j=1

(sj + tj)
}
∪
{
m :

N∏
j=1

ϕ̃j

(
m+

j−1∑
i=1

(si − ti) + sj

)
= 0

}

=
{
m : m �

N∑
j=1

(sj + tj)
}
∪

N⋃
j=1

(
M(ϕj)−

( j−1∑
i=1

(si − ti) + sj

))
.

It follows from (4.1) and (4.2) that for multi-index m �
∑N

j=1(sj + tj), Sem is a
multiple of em+

∑N
j=1(sj−tj)

or ē∑N
j=1(tj−sj)−m, and Sēm is a multiple of e∑N

j=1(sj−tj)−m
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or ēm+
∑N

j=1(tj−sj)
. Combining this with (4.3) and (4.4) gives{

Sem : m �
N∑
j=1

(sj + tj)
}
⊥

{
Sem : m �

N∑
j=1

(sj + tj)
}

and {
Sem : m �

N∑
j=1

(sj + tj)
}
⊥ {Sēm : m ∈ Nn}.

By statements (3) and (6) of Remark 2.2, J has property (P). For m ∈ Nn \
J , Sem 6= 0 and em+

∑N
j=1(sj−tj)

is a multiple of Sem. Suppose that h = u+ v̄ ∈ b2α
such that Sh = 0, where u, v ∈ A2

α. Then we have

0 = Sh = S
( ∑
m∈Nn

〈h, em〉αem +
∑

l∈Nn\{0}

〈h, ēl〉αēl
)

=
∑
m∈Nn

〈h, em〉αSem +
∑

l∈Nn\{0}

〈h, ēl〉αSēl.

So for anym ∈ Nn\J , 〈u, em〉α = 〈h, em〉α = 0. Therefore, Pα(KerS) is contained
in the closure in A2

α of span{em : m ∈ J }. Now define

I =
{
k ∈ Nn : k �

N∑
j=1

(sj − tj)
}
∪
(
Nn ∩

(
J +

N∑
j=1

(sj − tj)
))
.

Then I has property (P) and for any k ∈ Nn \ I,m = k −
∑N

j=1(sj − tj) belongs

to Nn \ J . Hence, ek = em+
∑N

j=1(sj−tj)
is a multiple of Sem, and it follows that

span{ek : k ∈ Nn \ I} ⊂ Ran(S). �

Theorem 4.5. Let N1, N2 be two positive integers, let ϕ1, . . . , ϕN1+N2 be bounded
separately radial functions, and let s1, . . . , sN1+N2 , t1, . . . , tN1+N2 be multi-indexes.
For each 1 ≤ j ≤ N1 + N2, define fj(z) = zsj z̄tjϕj(z) for z ∈ Bn. If f ∈ L2

α

makes TfN1+N2
· · ·TfN1+1

TfTfN1
· · ·Tf1(which is densely defined on b2α) a finite-rank

operator, then f is the zero function.

Proof. Let S1 = TfN1
· · ·Tf1 and S2 = TfN1+N2

· · ·TfN1+1
. By Lemma 4.4, there

exist two subsets J and I of Nn having property (P) such that Pα(KerS2) is
contained in the closure in A2

α of span{em : m ∈ J }, and span{ek : k ∈ Nn \I} is
a subspace of S1(b

2
α). Let S = J ∪I. Then S has property (P), KerS2 ⊂ M, and

N ⊂ S1(b
2
α), where M = cl{em : m ∈ S}⊕A2

α, N is the linear subspace spanned
by {em : m ∈ Nn \ S}. If S2TfS1 has finite rank, then Theorem 4.2 implies that
f is the zero function. �

Remark 4.6. Note that the functions f1, . . . , fN1+N2 in the last theorem are no
longer separately radial, so the Toeplitz operators induced by them are not diag-
onal, which means that the Bergman space A2

α is not a reducing subspace of
these operators. Consequently, the approach by considering the compression and
restriction of the Toeplitz operators on the Bergman space is not available as in
the proof of Theorem 3.3. Hence the result is not so obvious.
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1. A. Aleman and D. Vukotić, Zero products of Toeplitz operators, Duke Math. J. 148 (2009),
no. 3, 373–403. Zbl 1170.47013. MR2527321. DOI 10.1215/00127094-2009-029. 441
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