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Abstract. Given a pointed metric space X and a weight v on X̃ (the comple-
ment of the diagonal set in X×X), let Lipv(X) and lipv(X) denote the Banach
spaces of all scalar-valued Lipschitz functions f onX vanishing at the basepoint

such that vΦ(f) is bounded and vΦ(f) vanishes at infinity on X̃, respectively,

where Φ(f) is the de Leeuw’s map of f on X̃, under the weighted Lipschitz
norm. The space Lipv(X) has an isometric predual Fv(X) and it is proved
that (Lipv(X), τbw∗) = (Fv(X)∗, τc) and Fv(X) = ((Lipv(X), τbw∗)′, τc), where
τbw∗ denotes the bounded weak* topology and τc the topology of uniform con-
vergence on compact sets. The linearization of the elements of Lipv(X) is also
tackled. Assuming that X is compact, we address the question as to when
Lipv(X) is canonically isometrically isomorphic to lipv(X)∗∗, and we show that
this is the case whenever lipv(X) is an M-ideal in Lipv(X) and the so-called
associated weights ṽL and ṽl coincide.

Introduction

In his paper [9], J. A. Johnson deals briefly with the spaces L(X, ρ) of functions
satisfying a very general Lipschitz-type condition. For any set X and any non-
negative function ρ on X ×X, L(X, ρ) denotes the Banach space of all bounded
scalar-valued functions f on X such that |f(x)−f(y)| ≤ Cρ(x, y) for some C ≥ 0
and all (x, y) ∈ X ×X, under the norm ‖f‖ = max{‖f‖ρ, ‖f‖∞}, where ‖f‖ρ is
the infimum of all the constants C for which such a domination holds and where
‖f‖∞ is the supremum norm of f . Apparently, his unique reason for presenting
those spaces was to show that generalized Lipschitz spaces such as spaces of func-
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tions satisfying a modulus of continuity condition (see [6]) could be considered
as Lipschitz spaces. In this article, we will introduce the weighted Banach spaces
of Lipschitz functions which are closely related to the spaces L(X, ρ). The clas-
sical Lipschitz spaces are special cases of weighted Lipschitz spaces so that in a
sense our approach is contrary to that of J. A. Johnson.

Let (X, d) be a pointed metric space with a basepoint denoted by e, and let
E be a Banach space over the field K of real or complex numbers. A real-valued

function v on the set X̃ := {(x, y) ∈ X ×X : x 6= y} is said to be a weight on X̃
if it is (strictly) positive and continuous.

The weighted Lipschitz space Lipv(X,E) is the Banach space of all E-valued
Lipschitz functions f on X for which f(e) = 0 such that

sup
{
v(x, y)

‖f(x)− f(y)‖
d(x, y)

: (x, y) ∈ X̃
}
<∞,

endowed with the weighted Lipschitz norm:

Lipv(f) = sup
{
v(x, y)

‖f(x)− f(y)‖
d(x, y)

: (x, y) ∈ X̃
}
.

The weighted little Lipschitz space lipv(X,E) is the closed linear subspace of
Lipv(X,E) consisting of all those functions f with the property that, for every
ε > 0, there exists a δ > 0 such that

v(x, y)
‖f(x)− f(y)‖

d(x, y)
< ε

whenever 0 < d(x, y) < δ. In the case E = K, we will write simply Lipv(X) and
lipv(X).

The Lipschitz space Lip0(X) is the Banach space of all scalar-valued Lipschitz
functions f on X for which f(e) = 0 with the Lipschitz norm

Lip(f) = sup
{ |f(x)− f(y)|

d(x, y)
: (x, y) ∈ X̃

}
,

and the little Lipschitz space lip0(X) is the closed linear subspace of Lip0(X)
formed by all functions f such that for every ε > 0 there exists δ > 0 such that
if 0 < d(x, y) < δ, then |f(x) − f(y)|/d(x, y) < ε. (Lip0 and lip0 spaces have
been intensively studied by N. Weaver [15].) Thus Lipv(X) may be regarded as
all functions f in Lip0(X) such that the quotient |f(x) − f(y)|/d(x, y) satisfies
a growth condition of order O(1/v(x, y)), while lipv(X) are those functions for
which |f(x)− f(y)|/d(x, y) has a growth rate of order o(1/v(x, y)).

The study of Lipv spaces is new and interesting. Furthermore, each space
Lip0(X) can be canonically identified with the space Lipv(X) by taking the weight

v = 1X̃ (the function constantly 1 on X̃), and so our results can be applied to
Lip0 spaces.

Although the weights are arbitrary, we can take weights on X̃ involving the
metric structure of (X, d) as, for example, v = φ ◦ d, where φ is a continuous
injective function from [0,∞) into itself vanishing at 0. Each weight v = φ ◦ d
becomes a metric on X if φ is in addition subadditive and strictly increasing. Such
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a function φ is called a modulus function. The most natural examples of modulus
functions are φ(t) = tp, φ(t) = max{t, tp}, and φ(t) = ln(1 + tp) for t ≥ 0 with
0 < p ≤ 1. Moreover, the function φ(t) = t/(1 + t) (t ≥ 0) is also a modulus
function, and the composition of two modulus functions is again also a modulus
function. Our purpose in this paper is to study the duality theory of Lipv spaces.

We now describe the contents of its two sections. In Section 1, the problems
concerning preduality and linearization of Lipv(X) are tackled. We analyze the
proof of the Ng–Dixmier theorem [14] and show that Lipv(X) is isometrically
isomorphic under the evaluation map to the dual of the closed subspace Fv(X) of
Lipv(X)∗ consisting of all linear functionals γ on Lipv(X) such that the restriction
of γ to the closed unit ball B(Lipv(X)) of Lipv(X) is continuous for the topology
τp of pointwise convergence on X. This approach permits us to describe the closed
unit ball of Fv(X) as the closed convex balanced hull in Lipv(X)∗ of the so-called
weighted Lipschitz evaluation functionals.

We also give a process of linearization of the elements of Lipv(X) which is a
linearizing construction stronger than a predual space, and we characterize the
space Fv(X) by the following universal property: Fv(X) contains X through
the Dirac map δX : x 7→ δx, and for every Banach space E and every map f ∈
Lipv(X,E) there is a unique bounded linear operator Tf : Fv(X) → E such that
Tf ◦ δX = f . Furthermore, ‖Tf‖ = Lipv(f). A result due to N. Weaver [15,
Theorem 2.2.4], justifies our study.

Viewing Lipv(X) as the dual of Fv(X), we study the bounded weak* topol-
ogy τbw∗ on Lipv(X) and state some topological identifications that may be of
independent interest. Namely, we prove that (Lipv(X), τbw∗) = (Fv(X)∗, τc) and
Fv(X) = ((Lipv(X), τbw∗)′, τc), where τc denotes the topology of uniform conver-
gence on compact sets.

In Section 2, we deal the biduality problem as to when Lipv(X) is naturally
isometrically isomorphic to the bidual of lipv(X) for pointed compact metric
spaces X, and we show that this is the case whenever lipv(X) is an M-ideal in
Lipv(X) and the so-called associated weights ṽL and ṽl coincide. Our method of
proof in this section will be an adaptation of the reasoning used by Bierstedt and
Summers [3] and Boyd and Rueda [4] to study the biduals of weighted Banach
spaces of analytic functions. This adaptation to the context of Lipschitz functions
is far from being immediate and requires the previous study on the bounded weak*
topology of Lipv(X).

Notation. Given Banach spaces E and F , we denote by L(E,F ) the Banach
space of all continuous linear mappings from E into F with the canonical norm
of operators. As usual, E∗ stands for L(E,K), JE for the canonical injection from
E into E∗∗, B(E) for the closed unit ball of E, S(E) for the unit sphere of E, and
Ext(B(E)) for the set of extreme points of B(E). Given M ⊂ E and N ⊂ E∗,
M◦ and N◦ denote the polar set of M in E∗ and the prepolar set of N in E,
respectively. The bipolar of M is the set (M◦)◦. We will denote by lin(M) and
aco(M) the closed linear hull and the closed convex balanced hull of M in E,
respectively. For a locally convex space (F, τ), we denote by (F, τ)′ the space of
all continuous linear mappings of (F, τ) into K.



WEIGHTED BANACH SPACES OF LIPSCHITZ FUNCTIONS 243

1. Preduality and linearization of weighted Lipschitz spaces

Let X be a pointed metric space and let v be a weight on X̃. The topology τp of
pointwise convergence on X is the locally convex topology on Lipv(X) generated
by the seminorms of the form

|f |G = sup
{∣∣f(x)∣∣ : x ∈ G

}
, f ∈ Lipv(X),

where G ranges over the family of all finite subsets of X. According to [11, Chap-
ter 7, Theorem 1], B(Lipv(X)) is τp-compact because it is pointwise closed in KX

and, for each point x ∈ X, the set {f(x) : f ∈ B(Lipv(X))} has a compact clo-
sure. Therefore Lipv(X) is a dual Banach space by the Dixmier–Ng theorem [14,
Theorem 1].

Let Fv(X) be the space of all linear functionals γ on Lipv(X) such that the
restriction of γ to B(Lipv(X)) is τp-continuous. An application of the proof of the
Dixmier–Ng theorem to the space Lipv(X) yields the following.

Theorem 1.1. Let X be a pointed metric space and let v be a weight on X̃. Then
Fv(X) is a closed subspace of the space Lipv(X)∗ equipped with the norm

‖γ‖ = sup
{∣∣γ(f)∣∣ : f ∈ B

(
Lipv(X)

)} (
γ ∈ Fv(X)

)
,

and the evaluation map PX : Lipv(X) → Fv(X)∗, defined by

PX(f)(γ) = γ(f)
(
f ∈ Lipv(X), γ ∈ Fv(X)

)
,

is an isometric isomorphism from (Lipv(X),Lipv) onto Fv(X)∗. Moreover,
B(Fv(X)) = PX(B(Lipv(X)))◦ with respect to the duality (Fv(X),Fv(X)∗).

For each (x, y) ∈ X̃, let us define the weighted Lipschitz evaluation functional
at (x, y) by

δv(x,y) = v(x, y)
δx − δy
d(x, y)

,

where δx is the evaluation functional at x given by δx(f) = f(x) for all f ∈
Lipv(X).

Corollary 1.2. Let X be a pointed metric space and let v be a weight on X̃. We
have

(i) B(Fv(X)) = aco({δv(x,y) : (x, y) ∈ X̃}) ⊂ Lipv(X)∗,

(ii) Fv(X) = lin({δx : x ∈ X}) ⊂ Lipv(X)∗.

Proof. (i) It is easy to check that each functional δx with x ∈ X, defined on
Lipv(X), belongs to Fv(X), and hence so does every functional δv(x,y) with (x, y) ∈
X̃. Since PX maps Lipv(X) onto Fv(X)∗ by Theorem 1.1, we have

PX

(
B
(
Lipv(X)

))
=

{
PX(f) : f ∈ Lipv(X),

∣∣δv(x,y)(f)∣∣ ≤ 1,∀(x, y) ∈ X̃
}

=
{
PX(f) : f ∈ Lipv(X),

∣∣PX(f)(δ
v
(x,y))

∣∣ ≤ 1,∀(x, y) ∈ X̃
}

=
{
F ∈ Fv(X)∗ :

∣∣F (δv(x,y))∣∣ ≤ 1,∀(x, y) ∈ X̃
}

=
{
δv(x,y) : (x, y) ∈ X̃

}◦
,
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and therefore PX(B(Lipv(X)))◦ = ({δv(x,y) : (x, y) ∈ X̃}◦)◦. Since

PX

(
B
(
Lipv(X)

))
◦ = B

(
Fv(X)

)
by Theorem 1.1, the equality in (i) follows by the bipolar theorem.

(ii) From (i) we infer that Fv(X) is the closed linear hull in Lipv(X)∗ of the

set {δv(x,y) : (x, y) ∈ X̃}. Then the equality in (ii) follows since the linear hulls of

this set and the set {δx : x ∈ X} coincide. Note that

δx = δx − δe =
(
d(x, e)/v(x, e)

)
δv(x,e) (x ∈ X, x 6= e). �

We now make some comments about Corollary 1.2.

Remark 1.3.

(1) By (i), Fv(X) consists of all linear functionals γ on Lipv(X) of the form

γ(f) =
∞∑
n=1

αnv(xn, yn)
f(xn)− f(yn)

d(xn, yn)

for all f ∈ Lipv(X), where {αn}n∈N ∈ `1 and {(xn, yn)}n∈N ∈ X̃N.
(2) The preceding item (ii) shows that Fv(X) is separable whenever X is

separable.
(3) Another proof of the equality in (ii): if the closed linear hull in Lipv(X)∗ of

the set {δx : x ∈ X} is not equal to Fv(X), then the Hahn–Banach theorem
gives us a nonzero functional PX(f) ∈ Fv(X)∗ for some f ∈ Lipv(X) such
that PX(f)(δx) = f(x) = 0 for all x ∈ X, which yields a contradiction.

We next present a process for linearizing the elements of Lipv(X,E).

Theorem 1.4. Let X be a pointed metric space, and let v be a weight on X̃.

(i) The Dirac map δX : x 7→ δx is in Lipv(X,Fv(X)) and Lipv(δX) ≤ 1.
(ii) Universal property: For each Banach space E and each map

f ∈ Lipv(X,E), there is a unique operator Tf ∈ L(Fv(X), E) such that
Tf ◦ δX = f ; that is, the diagram

X

Fv(X) E

f
δX

Tf

commutes. Furthermore, ‖Tf‖ = Lipv(f).

Proof. (i) For any (x, y) ∈ X̃, we have ‖δx − δy‖ ≤ d(x, y)/v(x, y) because

‖δx − δy‖ = sup
{∣∣f(x)− f(y)

∣∣ : f ∈ B
(
Lipv(X)

)}
.

(ii) Let E be a Banach space and let f ∈ Lipv(X,E). Then the map
Tf : Fv(X) → E∗∗ defined by

Tf (γ)(φ) = γ(φ ◦ f)
(
γ ∈ Fv(X), φ ∈ E∗)
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belongs to L(Fv(X), E∗∗) and

‖Tf‖ = sup
‖γ‖≤1

∥∥Tf (γ)∥∥ = sup
‖φ‖≤1

sup
‖γ‖≤1

∣∣γ(φ ◦ f)
∣∣ = sup

‖φ‖≤1

Lipv(φ ◦ f) ≤ Lipv(f).

Furthermore, if JE : E → E∗∗ is the canonical injection, we have

(Tf ◦ δX)(x)(φ) = Tf (δx)(φ) = δx(φ ◦ f) = φ
(
f(x)

)
= JE

(
f(x)

)
(φ)

for every x ∈ X and φ ∈ E∗, and hence Tf ◦ δX(x) = JE(f(x)) ∈ JE(E) for every
x ∈ X. By Corollary 1.2(ii), it follows that Tf (γ) ∈ JE(E) for every γ ∈ Fv(X).
Now, by identifying JE(f(x)) ∈ JE(E) with f(x) ∈ E, we have Tf ∈ L(Fv(X), E)
and Tf ◦δX = f . Finally, notice that the conditions Tf ◦δx = f and ‖Tf‖ ≤ Lipv(f)
imply that ‖Tf‖ = Lipv(f). Assume now that there exists Sf ∈ L(Fv(X), E) such
that Sf ◦ δX = f . Then Sf (δx) = Tf (δx) for all x ∈ X, and taking into account
again Corollary 1.2(ii), it follows that Sf = Tf . This proves the uniqueness of Tf
and completes the proof of the theorem. �

We next prove that the universal property characterizes Fv(X) uniquely up to
an isometric isomorphism.

Corollary 1.5. Let X be a pointed metric space and let v be a weight on X̃. If
Gv(X) is a Banach space and βX is a map in Lipv(X,Gv(X)) with Lipv(βX) ≤ 1
satisfying the above universal property, then there exists an isometric isomorphism
TβX

from Fv(X) onto Gv(X) such that TβX
◦ δX = βX .

Proof. There exist bounded linear operators TβX
: Fv(X) → Gv(X) and TδX :

Gv(X) → Fv(X) such that TβX
◦ δX = βX , TδX ◦ βX = δX , ‖TβX

‖ = Lipv(βX) ≤ 1
and ‖TδX‖ = Lipv(δX) ≤ 1. Then TβX

◦TδX ◦βX = βX and, since also IdGv(X)◦βX =
βX , it follows that TβX

◦TδX = IdGv(X) by the uniqueness of the universal property.
Similarly, we obtain that TδX ◦ TβX

= IdFv(X). It follows that TβX
is bijective and

also that T−1
βX

= TδX . Moreover, ‖γ‖ = ‖TδX (TβX
(γ))‖ ≤ ‖TβX

(γ)‖ ≤ ‖γ‖ for all
γ ∈ Fv(X). Hence TβX

: Fv(X) → Gv(X) is an isometric isomorphism. �

Theorem 1.4 permits us to identify the spaces Lipv(X,E) and L(Fv(X), E).

Corollary 1.6. Let X be a pointed metric space, let v be a weight on X̃, and
let E be a Banach space. The map f 7→ Tf is an isometric isomorphism from
Lipv(X,E) onto L(Fv(X), E).

Proof. For any α, β ∈ K and f, g ∈ Lipv(X,E), we have

(αTf + βTg) ◦ δX = α(Tf ◦ δX) + β(Tg ◦ δX) = αf + βg.

Now, the uniqueness of Tαf+βg in L(Fv(X), E) satisfying this equality implies that
Tαf+βg = αTf + βTg. Hence the map f 7→ Tf from Lipv(X,E) into L(Fv(X), E)
is linear. Moreover, this map is an isometry by Theorem 1.4. It remains to check
its surjectivity. Given T ∈ L(Fv(X), E), we can define a map f : X → E by
f(x) = T (δx) for all x ∈ X. At this point, since∥∥f(x)− f(y)

∥∥ =
∥∥T (δx)− T (δy)

∥∥ =
∥∥T (δx − δy)

∥∥ ≤ ‖T‖‖δx − δy‖
≤ ‖T‖d(x, y)/v(x, y)
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for all (x, y) ∈ X̃, the function f is in Lipv(X,E). Now, by the universal property,
there is a unique operator Tf ∈ L(Fv(X), E) such that Tf ◦ δX = f , and so
T = Tf . �

We finish this section establishing some facts about topologies on Lipv(X)
which will be needed later. We can view Lipv(X) as the dual of Fv(X) by The-
orem 1.1, and therefore we can consider other topologies on Lipv(X). The weak*
topology τw∗ is the locally convex topology on Lipv(X) defined by the seminorms
of the form

pG(f) = sup
{∣∣γ(f)∣∣ : γ ∈ G

}
, f ∈ Lipv(X),

where G varies over the family of all finite subsets of Fv(X). Since the functionals
δx on Lipv(X) are elements of Fv(X), we have that τw∗ is larger than τp. Moreover,
both topologies coincide on B(Lipv(X)) because B(Lipv(X)) is τw∗-compact. The
bounded weak* topology τbw∗ is the largest topology on Lipv(X) which coincides
with the topology τw∗ on norm-bounded sets of Fv(X). The following proposition
gathers some properties of the bounded weak* topology on Lipv(X) which can
be found or deduced in [12].

Proposition 1.7 ([12, Section 2.7]). Let X be a pointed metric space and let v

be a weight on X̃ Then we have the following.

(1) τw∗ is smaller than τbw∗, and τbw∗ is smaller that the norm topology on
Lipv(X).

(2) τbw∗ agrees with the topology of uniform convergence on sequences in
Fv(X) which tend in norm to zero.

(3) A subset U of Lipv(X) is open in (Lipv(X), τbw∗) if and only if U ∩
nB(Lipv(X)) is open in (nB(Lipv(X)), τw∗) for each n ∈ N.

(4) A subset of Lipv(X) is τbw∗-bounded if and only if it is norm-bounded.
(5) A subset of Lipv(X) is τbw∗-compact if and only if it is norm-bounded and

τw∗-compact.
(6) (Lipv(X), τbw∗) is a complete semi-Montel space.
(7) If γ is a linear functional on Lipv(X), then γ is τbw∗-continuous if and

only if γ is τw∗-continuous.

Let us recall that a locally convex space E is a (DFC)-space if there exists
a Fréchet space F such that E = (F ′, τc), where τc is the topology of uniform
convergence on compact sets of F . Moreover, we will denote by τb the topology
of uniform convergence on bounded sets.

Theorem 1.8. Let X be a pointed metric space, and let v be a weight on X̃.
Then we have the following.

(i) (Lipv(X), τbw∗) is a (DFC)-space. More precisely, ((Lipv(X), τbw∗)′, τb) is
a Fréchet space and the evaluation map is a topological isomorphism from
(Lipv(X), τbw∗) onto (((Lipv(X), τbw∗)′, τb)

′, τc).
(ii) The evaluation map is a topological isomorphism from Fv(X) onto the

space ((Lipv(X), τbw∗)′, τb).
(iii) The identity map is a topological isomorphism from ((Lipv(X), τbw∗)′, τb)

onto ((Lipv(X), τbw∗)′, τc).
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(iv) The evaluation map PX is a topological isomorphism from (Lipv(X), τbw∗)
onto (Fv(X)∗, τc).

Proof. Item (i) follows by applying [13, Theorem 4.1], because in light of the
definition of the topology τbw∗ , its properties (2), (3), and (5) in Proposition 1.7,
and the Banach–Alaoglu theorem, we have that (Lipv(X), τbw∗) is a locally convex
space and that {nB(Lipv(X))}n∈N is an increasing sequence of convex, balanced,
and τbw∗-compact subsets of Lipv(X) with the property that a set U ⊂ Lipv(X)
is τbw∗-open whenever U ∩ nB(Lipv(X)) is open in (nB(Lipv(X)), τbw∗) for every
n ∈ N.

(ii) Using Proposition 1.7(7), it is easily proved that the evaluation map S,
defined by

S(γ)(f) = γ(f)
(
f ∈ Lipv(X), γ ∈ Fv(X)

)
,

is an algebraic isomorphism from Fv(X) onto (Lipv(X), τbw∗)′ and that its inverse
is the map S−1 from (Lipv(X), τbw∗)′ to Fv(X), given by

S−1(φ)(f) = φ(f)
(
f ∈ Lipv(X), φ ∈

(
Lipv(X), τbw∗

)′)
.

Let B be a τbw∗-bounded subset of Lipv(X). By Proposition 1.7(4), B ⊂
λB(Lipv(X)) for some λ > 0. Given that γ ∈ Fv(X), we have that |S(γ)(f)| ≤
λ‖γ‖ for all f ∈ B, and this proves that S is continuous from Fv(X) to
((Lipv(X), τbw∗)′, τb). On the other hand, if φ ∈ (Lipv(X), τbw∗)′, then we have
that φ ∈ Lipv(X)∗ by Proposition 1.7(1), and therefore |S−1(φ)(f)| ≤ ‖φ‖ for
all f ∈ B(Lipv(X)). Since B(Lipv(X)) is a τbw∗-bounded subset of Lipv(X) by
Proposition 1.7(4), we conclude that S−1 is continuous from ((Lipv(X), τbw∗)′, τb)
to Fv(X). This finishes the proof of (ii).

(iii) This follows because (Lipv(X), τbw∗) is semi-Montel.
(iv) This follows from (i) and (ii). Indeed, the evaluation map, say R, is a topo-

logical isomorphism from (Lip0(X), τbw∗) onto (((Lipv(X), τbw∗)′, τb)
′, τc) by (i).

Using (ii), it is easy to check that the transpose map St is a topological iso-
morphism from (((Lipv(X), τbw∗)′, τb)

′, τc) onto (Fv(X)∗, τc). Hence S
t ◦ R is a

topological isomorphism from (Lipv(X), τbw∗) onto (Fv(X)∗, τc), and an easy ver-
ification shows that St ◦R is the evaluation map PX defined in Theorem 1.1. �

Although Theorem 1.8 is interesting in its own right, we have proved it essen-
tially to deduce the following result, which we will use later.

Corollary 1.9. Let X be a pointed metric space and let v be a weight on X̃. If

K is a compact subset of X̃, then the set{
f ∈ B

(
Lipv(X)

)
: sup

(x,y)∈K

[
v(x, y)

|f(x)− f(y)|
d(x, y)

]
≤ 1

}
is a neighborhood of zero in (B(Lipv(X)), τp).

Proof. Define σ : X̃ → Fv(X) by

σ(x, y) = v(x, y)
δx − δy
d(x, y)

, (x, y) ∈ X̃.
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Since the mappings (x, y) 7→ v(x, y), x 7→ δx, and (x, y) 7→ d(x, y) are continuous,
so is σ. Then σ(K) is a compact subset of Fv(X) and therefore the polar

σ(K)◦ =
{
F ∈ Fv(X)∗ : sup

(x,y)∈K

∣∣F(σ(x, y))∣∣ ≤ 1
}

is a neighborhood of zero in (Fv(X)∗, τc). Then, by Theorem 1.8(iv), the set

P−1
X

(
σ(K)◦

)
=

{
f ∈ Lipv(X) : sup

(x,y)∈K

[
v(x, y)

|f(x)− f(y)|
d(x, y)

]
≤ 1

}
is a neighborhood of zero in (Lipv(X), τbw∗). By Proposition 1.7(3), it follows that

B
(
Lipv(X)

)
∩
{
f ∈ Lipv(X) : sup

(x,y)∈K

[
v(x, y)

|f(x)− f(y)|
d(x, y)

]
≤ 1

}
is a neighborhood of zero in (B(Lipv(X)), τw∗). The proof is now complete because(

B
(
Lipv(X)

)
, τw∗

)
=

(
B
(
Lipv(X)

)
, τp

)
. �

2. Biduality of weighted Lipschitz spaces

Given a pointed compact metric space X and a weight v on X̃, we address in
this section the biduality problem as to when Lipv(X) is naturally isometrically

isomorphic to lipv(X)∗∗. Observe that X̃ is a locally compact metric space. Let

Cb(X̃) be the Banach space of all bounded continuous scalar-valued functions on

X̃ with the supremum norm, and let C0(X̃) be its closed subspace of functions

which vanish at infinity. We begin noting that the map Φv : Lipv(X) → Cb(X̃),
defined by

Φv(f)(x, y) = v(x, y)
f(x)− f(y)

d(x, y)

(
f ∈ Lipv(X), (x, y) ∈ X̃

)
,

is an isometric linear embedding from Lipv(X) into Cb(X̃). In the case v = 1X̃ ,
Φv is called the de Leeuw’s map and denoted by Φ, as in [15, p. 34]. We next
study the restriction of the map Φv to lipv(X).

Proposition 2.1. Let X be a pointed compact metric space and let v be a weight

on X̃. Then the map Φv|lipv(X) is an isometric linear embedding from lipv(X) into

C0(X̃). In fact, the supremum Lipv(f) is attained for each f ∈ lipv(X). Moreover,

lipv(X) = Φ−1
v (C0(X̃)) and as a consequence lipv(X) is a closed subspace of

Lipv(X).

Proof. To prove the first assertion, we only need to check that Φv maps lipv(X)

to C0(X̃). Let f ∈ lipv(X) and let ε > 0. Then there is a δ > 0 such that if

(x, y) ∈ X̃ and d(x, y) < δ, then |Φv(f)(x, y)| < ε. Clearly, the set K = {(x, y) ∈
X×X : d(x, y) ≥ δ} is a compact subset of X̃, and if (x, y) ∈ X̃ \K, then we have

that |Φv(f)(x, y)| < ε, and this proves that Φv(f) ∈ C0(X̃). Moreover, we deduce
that ‖Φv(f)‖∞ ≤ ε + ‖Φv(f |K)‖∞, and hence that ‖Φv(f)‖∞ ≤ ‖Φv(f |K)|∞;
therefore ‖Φv(f)‖∞ = ‖Φv(f |K)‖∞ and thus Lipv(f) = |Φv(f)(x, y)| for some
point (x, y) ∈ K.
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Finally, we show that if f ∈ Lipv(X) and Φv(f) ∈ C0(X̃), then f ∈ lipv(X).

Indeed, let ε > 0. Then there exists a compact set K ⊂ X̃ such that

|Φv(f)(x, y)| < ε whenever (x, y) ∈ X̃ \ K. Since {Kδ : δ > 0}, where Kδ =

{(x, y) ∈ X ×X : d(x, y) ≥ δ}, is an exhaustive family of compacts subsets of X̃,

we have that K ⊂ Kδ for some δ > 0. Hence, if (x, y) ∈ X̃ and d(x, y) < δ, then
|Φv(f)(x, y)| < ε and so f ∈ lipv(X). �

The restriction map γ 7→ γ|lipv(X) from Fv(X) to lipv(X)∗ that we introduce
next is the essential tool in our study on the biduality of Lipv(X).

Theorem 2.2. Let X be a pointed compact metric space and let v be a weight on

X̃. Then the restriction map RX : Fv(X) → lipv(X)∗, defined by

RX(γ)(f) = γ(f)
(
f ∈ lipv(X), γ ∈ Fv(X)

)
,

is a nonexpansive linear surjective map. In fact, for each φ ∈ lipv(X)∗, there
exists a γ ∈ Fv(X) such that RX(γ) = φ and ‖γ‖ = ‖φ‖.

Proof. Since Fv(X) ⊂ Lipv(X)∗, it is clear that RX is a linear map from Fv(X)
into lipv(X)∗ satisfying ‖RX(γ)‖ ≤ ‖γ‖ for all γ ∈ Fv(X). We next prove that RX

is surjective. Take φ ∈ lipv(X)∗. The functional T : Φv(lipv(X)) → K, defined by
T (Φv(f)) = φ(f) for all f ∈ lipv(X), is linear, continuous, and ‖T‖ = ‖φ‖. In light
of Proposition 2.1, by the Hahn–Banach theorem there exists a continuous linear

functional T̃ : C0(X̃) → K such that T̃ (Φv(f)) = T (Φv(f)) for all f ∈ lipv(X)

and ‖T̃‖ = ‖T‖. Now, by the Riesz representation theorem, there exists a finite

regular Borel measure µ on X̃ with total variation ‖µ‖ = ‖T̃‖ such that

T̃ (g) =

∫
X̃

g dµ

for all g ∈ C0(X̃), and thus

φ(f) =

∫
X̃

Φv(f) dµ

for all f ∈ lipv(X). If we now define

γ(f) =

∫
X̃

Φv(f) dµ
(
f ∈ Lipv(X)

)
,

it is clear that γ ∈ Lipv(X)∗ and γ(f) = φ(f) for all f ∈ lipv(X). Then ‖γ‖ ≥
‖φ‖ = ‖µ‖. Conversely,∣∣γ(f)∣∣ ≤ ∫

X̃

∣∣Φv(f)
∣∣d|µ| ≤ ∥∥Φv(f)

∥∥
∞‖µ‖ = Lipv(f)‖µ‖

for all f ∈ Lipv(X), and thus ‖γ‖ ≤ ‖µ‖. Hence ‖γ‖ = ‖µ‖ = ‖φ‖. It remains to
show that γ is τp-continuous on B(Lipv(X)). Thus, let {fi} be a net in B(Lipv(X))

which converges pointwise on X to zero. Then {Φv(fi)} converges pointwise on X̃
to zero and, since |Φv(fi)(x, y)| ≤ ‖Φv(fi)‖∞ = Lipv(fi) ≤ 1 for all i ∈ I and for

all (x, y) ∈ X̃, it follows that {γ(fi)} converges to zero by the Lebesgue bounded
convergence theorem. This finishes the proof. �
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The double duality results for Lip0(X) have an interesting history (see [15,
p. 99, Notes 3.3] for an abstract on results obtained about this problem). The
identification between Lip0(X) and lip0(X)∗∗ in those results is justly the iso-
metric isomorphism P−1

X ◦ R∗
X , where PX : Lip0(X) → F(X)∗ is the evaluation,

F(X) is the Lipschitz free Banach space over X, and RX : F(X) → lip0(X)∗ is
the restriction map. This fact justifies the following definition.

Definition 2.3. LetX be a pointed compact metric space and let v be a weight on

X̃. We say that lipv(X)∗∗ is canonically isometrically (topologically) isomorphic
to Lipv(X) if the map P−1

X ◦R∗
X is an isometric (resp., a topological) isomorphism

from lipv(X)∗∗ onto Lipv(X).

Remark 2.4. An easy verifications yields

(P−1
X ◦R∗

X)(φ)(x) = δx
(
(P−1

X ◦R∗
X)(φ)

)
= PX

(
(P−1

X ◦R∗
X)(φ)

)
(δx)

= PX

(
P−1
X

(
R∗

X(φ)
))
(δx)

= R∗
X(φ)(δx)

= φ
(
RX(δx)

)
= φ(δx|lipv(X))

for any φ ∈ lipv(X)∗∗ and x ∈ X.

Taking into account that PX : Lipv(X) → Fv(X)∗ is always an isometric iso-
morphism by Theorem 1.1 and that RX : Fv(X) → lipv(X)∗ is an isometric (resp.,
a topological) isomorphism if and only R∗

X : lipv(X)∗∗ → Fv(X)∗ is an isometric
(resp., a topological) isomorphism, we have the following.

Proposition 2.5. Let X be a pointed compact metric space and let v be a weight

on X̃. The following are equivalent:

(i) lipv(X)∗∗ is canonically isometrically (topologically) isomorphic to
Lipv(X),

(ii) RX is an isometric (resp., a topological) isomorphism from Fv(X) onto
lipv(X)∗.

Therefore the question as to when Lipv(X) is canonically isometrically isomor-
phic to lipv(X)∗∗ is the question as to when RX is an isometric isomorphism. We
next characterize when RX becomes a topological isomorphism.

Proposition 2.6. Let X be a pointed compact metric space and let v be a weight

on X̃. The following are equivalent.

(i) Lipv(X) is canonically topologically isomorphic to lipv(X)∗∗.
(ii) There is a constant λ ≥ 1 such that B(Lipv(X)) is contained in the closure

of λB(lipv(X)) in (B(Lipv(X)), τp).
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(iii) There exists a constant λ ≥ 1 such that

‖γ‖ ≤ λ sup
{∣∣γ(f)∣∣ : f ∈ B

(
lipv(X)

)}
for all γ ∈ Fv(X).

Proof. (i) ⇒ (ii): If (i) holds, then there exists a λ ≥ 1 such that ‖γ‖ ≤ λ‖RX(γ)‖
for all γ ∈ Fv(X). This implies that B(Lipv(X)) is contained in the closure
of λB(lipv(X)) in (B(Lipv(X)), τp). Otherwise, by the Hahn–Banach separation
theorem, we could find a function g ∈ B(Lipv(X)) and a τp-continuous linear
functional γ on Lipv(X) such that |γ(h)| ≤ 1 for all h ∈ λB(lipv(X)) and
|γ(g)| > 1. Since γ ∈ Fv(X) and λ‖RX(γ)‖ = λ‖γ|lipv(X)‖ ≤ 1 < |γ(g)| ≤ ‖γ‖,
we would arrive at a contradiction.

(ii) ⇒ (iii): Let γ ∈ Fv(X). Taking into account (ii) and the fact that
(B(Lipv(X)), τp) = (B(Lipv(X)), τw∗), there exists a constant λ ≥ 1 such that

‖γ‖ = sup
{∣∣γ(h)∣∣ : h ∈ B

(
Lipv(X)

)
∩ λB

(
lipv(X)

)τw∗}
≤ sup

{∣∣γ(h)∣∣ : h ∈ λB
(
lipv(X)

)τw∗}
.

An easy argument shows that this last supremum agrees with

sup
{∣∣γ(h)∣∣ : h ∈ λB

(
lipv(X)

)}
and thus we have ‖γ‖ ≤ λ sup{|γ(f)| : f ∈ B(lipv(X))}.

(iii) ⇒ (i): By Theorem 2.2, RX is a continuous linear surjective map from
Fv(X) onto lipv(X)∗. If (iii) holds, then ‖γ‖ ≤ λ‖RX(γ)‖ for all γ ∈ Fv(X) and,
in particular, RX is injective. Hence RX is a topological isomorphism and we have
(i) by Proposition 2.5. �

We may complete Proposition 2.6 showing, with a similar proof, that the topo-
logical isomorphism RX becomes an isometric isomorphism when the constant λ
takes its minimum value 1. Assertion (iii) of that proposition means that lipv(X)
is a λ-norming subspace of Fv(X)∗. If λ = 1, then it is called norming.

Proposition 2.7. Let X be a pointed compact metric space and let v be a weight

on X̃. The following are equivalent:

(i) Lipv(X) is canonically isometrically isomorphic to lipv(X)∗∗.
(ii) B(lipv(X)) is dense in (B(Lipv(X)), τp).
(iii) lipv(X) is a norming subspace of Fv(X)∗.

Our next objective is to show that Lipv(X) is canonically isometrically isomor-
phic to lipv(X)∗∗ only if it is so topologically; the concepts of the M-ideal and
associated weights ṽl and ṽL are the tools which will permit us to prove it. Let
us begin by recalling that a closed subspace J of a Banach space E is called an
M-ideal if there is a closed subspace J0 of the dual space E∗ such that E∗ is the
`1-sum J⊥ ⊕1 J0, where J

⊥ is the annihilator of J in E∗. (This notion was first
investigated by Alfsen and Effros in [1], and it is studied in detail by Harmand,
Werner, and Werner in [8]. M-ideals in Lipschitz spaces have been addressed by
Berninger and Werner [2] and by Kalton [10].)
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Given a weight v : X̃ → R, define ṽ : X̃ → R by ṽ(x, y) = 1/v(x, y). It is clear
that

B
(
lipv(X)

)
=

{
f ∈ lipv(X) :

|f(x)− f(y)|
d(x, y)

≤ ṽ(x, y),∀(x, y) ∈ X̃
}
,

B
(
Lipv(X)

)
=

{
f ∈ Lipv(X) :

|f(x)− f(y)|
d(x, y)

≤ ṽ(x, y),∀(x, y) ∈ X̃
}
.

Let vl, vL : X̃ → R be given by

vl(x, y) = sup
{ |f(x)− f(y)|

d(x, y)
: f ∈ B

(
lipv(X)

)}
,

vL(x, y) = sup
{ |f(x)− f(y)|

d(x, y)
: f ∈ B

(
Lipv(X)

)}
,

and define ṽl, ṽL : X̃ → R by ṽl(x, y) = 1/vl(x, y) and ṽL(x, y) = 1/vL(x, y). Then

ṽl and ṽL are weights on X̃ for which 0 < v ≤ ṽL ≤ ṽl, and they are called the
weights associated to vl and vL, respectively. Notice that the supremum ṽL(x, y)

is attained for each (x, y) ∈ X̃.
Note that if RX is an isometric isomorphism from Fv(X) onto lipv(X)∗, then

the set

Gv(X) :=
{
γ ∈ Fv(X) : ‖γ‖ = ‖γ|lipv(X)‖

}
coincides with Fv(X). However, Gv(X) is not necessarily a linear space. We next
give some conditions under which Gv(X) is a linear subspace of Fv(X) and
the corresponding versions for Gv(X) in place of Fv(X) of the evaluation map
PX : Lipv(X) → Fv(X)∗ and the restriction map RX : Fv(X) → lipv(X)∗ are
isometric isomorphisms.

Proposition 2.8. Let X be a pointed compact metric space and let v be a weight

on X̃. Assume that lipv(X) is an M-ideal in Lipv(X). Then we have the following.

(i) Gv(X) is a linear subspace of Fv(X) and the restriction map SX : Gv(X) →
lipv(X)∗, defined by

SX(γ)(f) = γ(f)
(
f ∈ lipv(X), γ ∈ Gv(X)

)
,

is an isometric isomorphism.
(ii) If we assume in addition that ṽL = ṽl, then the evaluation map QX :

Lipv(X) → Gv(X)∗, given by

QX(f)(γ) = γ(f)
(
f ∈ Lipv(X), γ ∈ Gv(X)

)
,

is an isometric isomorphism.

Proof. (i) If lipv(X) is an M-ideal in Lipv(X), then every functional in lipv(X)∗ has
a unique norm-preserving extension to a functional in Lipv(X)∗ by [8, Chapter I,
Proposition 1.12]. Hence Gv(X) is a linear subspace of Fv(X). Clearly, SX is a
linear well-defined map from Gv(X) to lipv(X)∗. By the very definition of Gv(X),
SX is an isometry. The surjectivity of SX follows from the second assertion of
Theorem 2.2.
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(ii) It is immediate that QX : Lipv(X) → Gv(X)∗ is linear and continuous (in
fact, ‖QX(f)‖ ≤ Lipv(f) for all f ∈ Lipv(X)). To prove that QX is injective, let
f, g ∈ Lipv(X) and suppose that QX(f) = QX(g). For each x ∈ X, the functional
δx : Lipv(X) → K belongs to Fv(X) by Corollary 1.2, and

‖δx‖ = d(x, e)vL(x, e) =
d(x, e)

ṽL(x, e)
=
d(x, e)

ṽl(x, e)
= d(x, e)vl(x, e) = ‖δx|lipv(X)‖.

Hence δx ∈ Gv(X) and f(x) = QX(f)(δx) = QX(g)(δx) = g(x) for all x ∈ X, and
we conclude that f = g.

Since each γ ∈ Gv(X) is τp-continuous on BLipv(X), the restriction QX |B(Lipv(X))

is continuous with respect to the relative τp-topology and the w∗-topology
σ(Gv(X)∗,Gv(X)). Since B(Lipv(X)) is τp-compact, it follows that
QX(B(Lipv(X))) is σ(Gv(X)∗,Gv(X))-compact. Also, QX(B(Lipv(X))) is convex
and balanced. By the bipolar theorem, QX(B(Lipv(X))) = (QX(B(Lipv(X)))◦)

◦

with respect to the duality (Gv(X)∗,Gv(X)). In view of

QX

(
B
(
Lipv(X)

))
◦ =

{
γ ∈ Gv(X) :

∣∣γ(f)∣∣ ≤ 1,∀f ∈ B
(
Lipv(X)

)}
= B

(
Gv(X)

)
,

we deduce that (QX(B(Lipv(X)))◦)
◦ = B(Gv(X)∗). Hence QX(B(Lipv(X))) =

B(Gv(X)∗). This proves that QX : Lipv(X) → Gv(X)∗ is a surjective isometry. �

Our next result was stated by Kalton in [10, Remark, p. 194] for the case
v = 1X̃ (see [2] for X = [0, 1] with the Hölder metric).

Proposition 2.9. Let X be a pointed compact metric space, let v be a weight on

X̃, and assume that Lipv(X) is canonically topologically isomorphic to lipv(X)∗∗.
Then lipv(X) is an M-ideal in Lipv(X).

Proof. By Proposition 2.6, there exists λ ≥ 1 such that B(Lipv(X)) is contained
in the closure of λB(lipv(X)) in (B(Lipv(X)), τp). We follow the lines of the proof
of [4, Proposition 3.5]. Let f ∈ B(Lipv(X)), let g1, g2, g3 ∈ B(lipv(X)), and let
ε > 0. Let k be the smallest natural with k ≥ max{2, (λ+ 1)/ε}. By Proposition

2.1, we can find a compact set K1 ⊂ X̃ such that∣∣Φv(gi)(x, y)
∣∣ < ε

for i = 1, 2, 3 and all (x, y) ∈ X̃ \ K1. By Corollary 1.9, we can find a function
f1 ∈ λB(lipv(X)) such that

sup
{∣∣Φv(f − f1)(x, y)

∣∣ : (x, y) ∈ K1

}
≤ ε.

Since f1 ∈ lipv(X), we can find a compact set K2 ⊂ X̃ with K1 ⊂ K2 such that∣∣Φv(f1)(x, y)
∣∣ < ε

for all (x, y) ∈ X̃ \K2. Next, we choose f2 in λB(lipv(X)) such that

sup
{∣∣Φv(f − f2)(x, y)

∣∣ : (x, y) ∈ K2

}
≤ ε.

Continuing this process, we get an increasing chain of k compact sets K1 ⊂ K2 ⊂
· · · ⊂ Kk and functions (fj)

k
j=1 in λB(lipv(X)) such that∣∣Φv(fl)(x, y)

∣∣ < ε
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for all (x, y) ∈ X̃ \Kl+1, l = 1, . . . , k − 1, and

sup
{∣∣Φv(f − fl)(x, y)

∣∣ : (x, y) ∈ Kl

}
≤ ε, l = 1, . . . , k.

Then, for 1 ≤ l ≤ k, we have∣∣Φv(f − fl)(x, y)
∣∣ ≤ 1 + ε

for all (x, y) ∈ X̃ with the possible exception of those (x, y) in Kl+1 \Kl. Define

h = (1/k)
∑k

j=1 fj and let (x, y) ∈ X̃. If (x, y) ∈ K1, then since∣∣Φv(f − fl)(x, y)
∣∣ ≤ ε

for 1 ≤ l ≤ k, we have ∣∣Φv(f − gi − h)(x, y)
∣∣ ≤ 1 + ε

for i = 1, 2, 3. For (x, y) in Kl+1 \Kl, we have∣∣Φv(gi)(x, y)
∣∣ < ε

for i = 1, 2, 3 and ∣∣Φv(f − fj)(x, y)
∣∣ ≤ 1 + ε

for all 1 ≤ j ≤ k with the possible exception of l. As Lipv(f − fl) ≤ λ + 1, for
(x, y) ∈ Kl+1 \Kl and i = 1, 2, 3 we have∣∣Φv(f − gi − h)(x, y)

∣∣
≤

k∑
j=1,j 6=l

1

k

∣∣Φv(f − fj)(x, y)
∣∣+ 1

k

∣∣Φv(f − fl)(x, y)
∣∣+ ∣∣Φv(gi)(x, y)

∣∣
≤ k − 1

k
(1 + ε) +

1

k
(λ+ 1) + ε ≤ 1 + 3ε.

We have proved that lipv(X) satisfies the (restricted) 3-ball property and therefore
lipv(X) is an M-ideal in Lipv(X) by [8, Theorem 2.2]. �

We now can connect the information obtained in Propositions 2.6 and 2.7 as
follows.

Theorem 2.10. Let X be a pointed compact metric space and let v be a weight

on X̃. Then the following are equivalent:

(i) Lipv(X) is canonically isometrically isomorphic to lipv(X)∗∗,
(ii) Lipv(X) is canonically topologically isomorphic to lipv(X)∗∗,
(iii) lipv(X) is an M-ideal in Lipv(X) and ṽl = ṽL.

Proof. (i) ⇒ (ii): This is immediate.
(ii) ⇒ (i): If (ii) is true, then RX : Fv(X) → lipv(X)∗ is a topological isomor-

phism by Proposition 2.5. Moreover, lipv(X) is an M-ideal in Lipv(X) by Propo-
sition 2.9, and therefore SX : Gv(X) → lipv(X)∗ is an isometric isomorphism by
Proposition 2.8. We now claim that Fv(X) ⊂ Gv(X). Indeed, let γ ∈ Fv(X).
Then RX(γ) ∈ lipv(X)∗ and therefore RX(γ) = SX(φ) for some φ ∈ Gv(X). As
Gv(X) ⊂ Fv(X) and RX |Gv(X) = SX , it follows that RX(φ) = SX(φ) = RX(γ),
which implies that γ = φ and thus that γ ∈ Gv(X). Therefore Fv(X) = Gv(X)
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and RX = SX . Hence RX : Fv(X) → lipv(X)∗ is an isometric isomorphism, and
we obtain (i) by Proposition 2.5.

(i) ⇒ (iii): If (i) holds, then B(lipv(X)) is dense in (B(Lipv(X)), τp) by Propo-

sition 2.7. We first prove that ṽl coincides with ṽL. Let (x, y) ∈ X̃. It is clear that
vl(x, y) ≤ vL(x, y). To prove the reverse inequality, let f ∈ B(Lipv(X)) and let
ε > 0. By Corollary 1.9, there exists g ∈ B(lipv(X)) such that |Φv(x, y)(f −g)| <
ε. If follows that

|f(x)− f(y)|
d(x, y)

<
ε

v(x, y)
+

|g(x)− g(y)|
d(x, y)

≤ ε

v(x, y)
+ vl(x, y).

Passing to the supremum, we arrive at vL(x, y) ≤ (ε/v(x, y)) + vl(x, y). By the
arbitrariness of ε, we conclude that vL(x, y) ≤ vl(x, y) and thus that vL(x, y) =
vl(x, y). Hence ṽl(x, y) = ṽL(x, y). On the other hand, lipv(X) is an M-ideal in
Lipv(X) by Proposition 2.9.

(iii) ⇒ (i): By Proposition 2.8, QX : Lipv(X) → Gv(X)∗ is an isometric iso-
morphism. Since that is also true of PX : Lipv(X) → Fv(X)∗ by Theorem 1.1, it
follows that PX ◦Q−1

X : Gv(X)∗ → Fv(X)∗ is an isometric isomorphism.
On the other hand, SX : Gv(X) → lipv(X)∗ is an isometric isomorphism by

Proposition 2.8. Since lipv(X)∗ is a separable dual space by Remark 1.3 and
Theorem 2.2, it has the Radon–Nikodým property. Hence Gv(X) also has that
property. By [7, p. 144], Gv(X) is the unique isometric predual of Gv(X)∗. In
fact, Gv(X) is strongly unique (see [5, Definition 2.2.29]) and therefore the map
(PX ◦Q−1

X )∗ : Fv(X)∗∗ → Gv(X)∗∗ carries JFv(X)(Fv(X)) onto JGv(X)(Gv(X)). For
any f ∈ Lipv(X) and γ ∈ Fv(X), a simple calculation gives

(PX ◦Q−1
X )∗

(
JFv(X)(γ)

)(
QX(f)

)
=

(
JFv(X)(γ) ◦ PX ◦Q−1

X

)(
QX(f)

)
= JFv(X)(γ)

(
PX(f)

)
= PX(f)(γ) = γ(f).

Hence Fv(X) = Gv(X). Indeed, let γ ∈ Fv(X). Then (PX ◦ Q−1
X )∗(JFv(X)(γ)) =

JGv(X)(φ) for some φ ∈ Gv(X), and therefore

γ(f) = (PX ◦Q−1
X )∗

(
JFv(X)(γ)

)(
QX(f)

)
= JGv(X)(φ)

(
QX(f)

)
= QX(f)(φ) = φ(f)

for all f ∈ Lipv(X); that is, γ = φ ∈ Gv(X) as desired. Therefore RX = SX .
Hence RX is an isometric isomorphism from Fv(X) onto lipv(X)∗ and we have (i)
by Proposition 2.5. �

We finish the paper with an application on extreme points.

Corollary 2.11. Let X be a pointed compact metric space and let v be a weight

on X̃. Suppose that Lipv(X) is canonically isometrically isomorphic to lipv(X)∗∗.
Then every extreme point of B(Fv(X)) if of the form λδv(x,y) for λ ∈ S(K) and

(x, y) ∈ X̃.

Proof. Let γ ∈ Ext(B(Fv(X)). Hence RX(γ) ∈ Ext(B(lipv(X)∗)) by Proposi-

tion 2.5. Since Φv|lipv(X) is an isometric linear embedding from lipv(X) into C0(X̃)

by Proposition 2.1, we have that there exists F ∈ Ext(B(C0(X̃)∗) such that
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(Φv|lipv(X))
∗(F ) = RX(γ) by [15, Lemma 2.5.1]. By the Arens–Kelley theorem,

F is of the form λψ(x,y) where λ ∈ S(K) and ψ(x,y) is the evaluation functional at

a point (x, y) ∈ X̃ defined on C0(X̃). An easy verification gives

γ(f) = RX(γ)(f)

= (Φv|lipv(X))
∗(λψ(x,y))(f)

= λψ(x,y)

(
Φv(f)

)
= λΦv(f)(x, y)

= λv(x, y)
δx − δy
d(x, y)

(f)

for all f ∈ lipv(X), and thus γ has the desired form. �
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