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Abstract. Using the local approach to the global structure of a symmet-
ric space E, we establish a relationship between strict K-monotonicity, lower
(resp., upper) local uniform K-monotonicity, order continuity, and the Kadec–
Klee property for global convergence in measure. We also answer the question:
Under which condition does upper local uniform K-monotonicity coincide with
upper local uniform monotonicity? Finally, we present a correlation between
K-order continuity and lower local uniform K-monotonicity in a symmetric
space E under some additional assumptions on E.

1. Introduction

The first essential result devoted to upper local uniform K-monotonicity
(ULUKM) was published in [5] by Chilin, Dodds, Sedaev, and Sukochev in 1996.
The authors presented a complete characterization of ULUKM written in terms
of strict K-monotonicity and the Kadec–Klee property for global convergence in
measure in symmetric spaces, among others. Recently, many interesting results
have appeared in [7], [12], and [11] (see also [4], [14]) exploring the global and
local K-monotonicity structure of Banach spaces.

The crucial inspiration for our discussion can be found in [8], where we studied
an application of strict K-monotonicity and K-order continuity to the best domi-
nated approximation with respect to the Hardy–Littlewood–Pólya relation ≺. (It
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is worth mentioning, in view of that previous result, that our work [9] will inves-
tigate, among other things, the full criteria for K-order continuity in symmetric
spaces.) The main goal of the present article and our investigation is to develop
a complete characterization of strict K-monotonicity and K-order continuity, as
well as upper and lower local uniform K-monotonicity in symmetric spaces.

This article is organized as follows. Section 2 contains all the necessary defini-
tions and notation. In Section 3, we focus on a characterization of lower and upper
local uniform K-monotonicity in symmetric space E. First, we investigate a rela-
tion between a point of lower local uniform K-monotonicity and a point of lower
local uniform monotonicity. We also characterize a full correlation between a point
of lower local uniform K-monotonicity and a conjunction of a point of order con-
tinuity and a point of lower K-monotonicity and also an Hg point in a symmetric
space E. Next, we show a correspondence between a point of upper local uniform
K-monotonicity and a point of upper local uniform monotonicity and also an Hg

point in E under some additional assumptions. Our investigation is not restricted
only to the local approach to K-monotonicity structure; we also discuss as a con-
sequence a complete characterization of global K-monotonicity properties in a
symmetric space E. We answer the crucial question: Under which condition does
lower local uniform K-monotonicity and upper local uniform K-monotonicity
coincide in symmetric spaces? In the spirit of the previous result, we also describe
an essential connection between a point ofK-order continuity and a point of lower
local uniform K-monotonicity and also an Hg point in a symmetric space E. It
is worth noting that several results and examples concerning respective global
properties are also presented in this section.

2. Preliminaries

Let R, R+, and N be the sets of reals, nonnegative reals, and positive integers,
respectively. In a Banach space (X, ‖ · ‖X), we use the notation S(X) (resp.,
B(X)) for the unit sphere (resp., closed unit ball). A nonnegative mapping φ
given on R+ is called quasiconcave if φ(t) is increasing and φ(t)/t is decreasing
on R+ and also φ(t) = 0 ⇔ t = 0. Denote as usual by µ the Lebesgue measure on
I = [0, α), where α = 1 or α = ∞, and denote by L0 the set of all (equivalence
classes of ) extended real-valued Lebesgue measurable functions on I. We also use
the notation Ac = I\A for any measurable set A. Let us recall that a Banach
lattice (E, ‖ · ‖E) is said to be a Banach function space (or a Köthe space) if it is
a sublattice of L0 satisfying the following conditions.

(1) If x ∈ L0, y ∈ E, and |x| ≤ |y| almost everywhere, then x ∈ E and
‖x‖E ≤ ‖y‖E.

(2) There exists a strictly positive x ∈ E.

In addition, we employ in our investigation the symbol E+ = {x ∈ E : x ≥ 0}.
An element x ∈ E is said to be a point of order continuity if, for any sequence

(xn) ⊂ E+ with xn ≤ |x| and xn → 0 almost everywhere, we have ‖xn‖E → 0.
A Banach function space E is called order continuous (E ∈ (OC) for short) if
any element x ∈ E is a point of order continuity (see [18]). It is said that a
Banach function space E has the Fatou property when for every (xn) ⊂ E+,
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supn∈N ‖xn‖E < ∞, and xn ↑ x ∈ L0, we have x ∈ E and ‖xn‖E ↑ ‖x‖E. In
addition, we assume that E has the Fatou property, unless mentioned otherwise.

An element x ∈ E+ is called a point of upper local uniform monotonicity (resp.,
a point of lower local uniform monotonicity) or a ULUM point (resp., an LLUM
point) if for any (xn) ⊂ E such that x ≤ xn and ‖xn‖E → ‖x‖E (resp., xn ≤ x
and ‖xn‖E → ‖x‖E), we get ‖xn − x‖E → 0. Let us recall that if each point
of E+ \ {0} is a ULUM point (resp., an LLUM point), then we say that E is
upper local uniformly monotone, or E ∈ (ULUM) (resp., lower local uniformly
monotone, or E ∈ (LLUM)).

An element x ∈ E is said to be an Hg point (resp., an Hl point) in E if for any
sequence (xn) ⊂ E with xn → x globally in measure (resp., locally in measure)
and ‖xn‖E → ‖x‖E, then ‖xn − x‖E → 0. Let us recall that the space E has
the Kadec–Klee property for global convergence in measure (resp., Kadec–Klee
property for local convergence in measure) if any element x ∈ E is an Hg point
(resp., an Hl point) in E (see [5], [12]).

For any function x ∈ L0, we define its distribution function by

dx(λ) = µ
{
s ∈ [0, α) :

∣∣x(s)∣∣ > λ
}
, λ ≥ 0.

The decreasing rearrangement for any element x ∈ L0 is given by

x∗(t) = inf
{
λ > 0 : dx(λ) ≤ t

}
, t ≥ 0.

Throughout the article, we use the notation x∗(∞) = limt→∞ x∗(t) if α = ∞ and
x∗(∞) = 0 if α = 1. For any function x ∈ L0, we denote the maximal function of
x∗ by

x∗∗(t) =
1

t

∫ t

0

x∗(s) ds.

We mention that for any function x ∈ L0, it is well known that x∗ ≤ x∗∗, x∗∗ is
decreasing, continuous, and subadditive. (For more details on dx, x

∗, and x∗∗, see
[1], [17].)

We say that two functions x, y ∈ L0 are equimeasurable (x ∼ y for short) if
dx = dy. A Banach function space (E, ‖·‖E) is called symmetric or rearrangement
invariant (r.i. for short) if for any x ∈ L0 and y ∈ E with x ∼ y, we have x ∈ E
and ‖x‖E = ‖y‖E. In a symmetric space E, we denote by φE the fundamental
function given by φE(t) = ‖χ(0,t)‖E for any t ∈ [0, α) (see [1]). For any two
functions x, y ∈ L1 + L∞, the Hardy–Littlewood–Pólya relation ≺ is defined by

x ≺ y ⇔ x∗∗(t) ≤ y∗∗(t) for all t > 0.

A symmetric space E is called K-monotone (E ∈ (KM) for short) if for any
x ∈ L1 + L∞ and y ∈ E with x ≺ y, we have x ∈ E and ‖x‖E ≤ ‖y‖E. It is
well known that a symmetric space is K-monotone if and only if E is an exact
interpolation space between L1 and L∞. It is worth noting that a symmetric
space E equipped with an order continuous norm or with the Fatou property is
K-monotone (see [17]).

An element x ∈ E is said to be a point of lower K-monotonicity (an LKM
point of E for short) if for any y ∈ E, x∗ 6= y∗ and y ≺ x, we have ‖y‖E < ‖x‖E.
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We note that a symmetric space E is called strictly K-monotone (E ∈ (SKM)
for short) if any element of E is an LKM point.

An element x ∈ E is called a point of K-order continuity of E if for any
sequence (xn) ⊂ E with xn ≺ x and x∗n → 0 almost everywhere, we have
‖xn‖E → 0. Recall that a symmetric space E is said to be K-order continuous
(E ∈ (KOC) for short) if every element x of E is a point of K-order continuity.

An element x ∈ E is said to be a point of upper local uniform K-monotonicity
of E (a ULUKM point for short) if for any (xn) ⊂ E such that x ≺ xn for every
n ∈ N and ‖xn‖E → ‖x‖E, we have ‖x∗ − x∗n‖E → 0. An element x ∈ E is said
to be a point of lower local uniform K-monotonicity of E (an LLUKM point for
short) if for any (xn) ⊂ E with xn ≺ x for all n ∈ N and ‖xn‖E → ‖x‖E, we
have ‖x∗ − x∗n‖E → 0. A symmetric space E is said to be upper local uniformly
K-monotone or E ∈ (ULUKM) (resp., lower local uniformly K-monotone or
(E ∈ (LLUKM)) if every element of E is a ULUKM point (resp., an LLUKM
point). (We refer the reader to [5], [7]–[9], [14] for more details.)

Recall that the Marcinkiewicz function space M
(∗)
φ (resp., Mφ), where φ is a

quasiconcave function on I, is a subspace of L0 such that for all x ∈M
(∗)
φ (resp.,

x ∈Mφ),

‖x‖
M

(∗)
φ

= sup
t>0

{
x∗(t)φ(t)

}
<∞(

resp., ‖x‖Mφ
= sup

t>0

{
x∗∗(t)φ(t)

}
<∞

)
.

Obviously, ‖x‖
M

(∗)
φ

≤ ‖x‖Mφ
for all x ∈ Mφ, that is, the embedding of Mφ in

M
(∗)
φ has norm 1 (Mφ↪→M

(∗)
φ for short). Moreover, it should be noted that the

Marcinkiewicz spaceM
(∗)
φ (resp.,Mφ) is an r.i. quasi-Banach function space (resp.,

r.i. Banach function space) with the fundamental function φ on I. Let us also
recall that for any symmetric space E with the fundamental function φ, we have
the embedding E↪→Mφ with norm 1 (see [1], [17]).

Given 0 < p < ∞ and a locally integrable weight function w ≥ 0, we define
the Lorentz space Λp,w as a subspace of L0 such that

‖x‖Λp,w =
(∫ α

0

(
x∗(t)

)p
w(t) dt

)1/p

<∞,

where W (t) =
∫ t
0
w < ∞ for any t ∈ I and W (∞) = ∞ in the case when

α = ∞. It is worth mentioning that the spaces Λp,w were introduced by Lorentz
in [19], and the space Λp,w is a norm space (resp., quasinorm space) if and only
if 1 ≤ p < ∞ and w is decreasing (see [16]) (resp., W satisfies the condition
∆2; see [21], [16]). It is also known that for any 0 < p < ∞, if W satisfies the
condition ∆2 andW (∞) = ∞, then the Lorentz space Λp,w is an order continuous
r.i. quasi-Banach function space (see [16]).

For 0 < p < ∞ and w ∈ L0 a nonnegative locally integrable weight function,
we consider the Lorentz space Γp,w, that is, a subspace of L0 such that

‖x‖Γp,w = ‖x∗∗‖Λp,w =
(∫ α

0

x∗∗p(t)w(t) dt
)1/p

<∞.



318 M. CIESIELSKI

Unless stated otherwise, we suppose that w belongs to the class Dp; that is,

W (s) :=

∫ s

0

w(t) dt <∞ and Wp(s) := sp
∫ α

s

t−pw(t) dt <∞

for all 0 < s ≤ 1 if α = 1 and for all 0 < s < ∞ otherwise. It is easy to observe
that if w ∈ Dp, then the Lorentz space Γp,w is nontrivial. Moreover, it is clear
that Γp,w ⊂ Λp,w. On the other hand, the following inclusion Λp,w ⊂ Γp,w holds if
and only if w ∈ Bp (see [15]). Let us also recall that (Γp,w, ‖ ·‖Γp,w), introduced by
Calderón in [3], is an r.i. quasi-Banach function space with the Fatou property.
It is well known that in the case when α = ∞, the Lorentz space Γp,w has order
continuous norm if and only if

∫∞
0
w(t) dt = ∞ (see [15]). It is also well known that

by the Lions–Peetre K-method (see [2], [17]), the space Γp,w is an interpolation
space between L1 and L∞. (For more details about the properties of the spaces
Λp,w and Γp,w, we refer the reader to [7], [10], [12], [15], [16].)

3. Lower and upper local uniform K-monotonicity in
symmetric spaces

In this section, we investigate a connection between lower local uniform
K-monotonicity and lower local uniform monotonicity in symmetric spaces. We
also present a complete characterization of an LLUKM point in terms of a point
of order continuity and an LKM point.

Lemma 3.1. Let E be a symmetric space. If x ∈ E is an LLUKM point, then
x∗(∞) = 0.

Proof. Suppose on the contrary that x∗(∞) > 0. Define xn = x∗χ[0,n] for any
n ∈ N. Then, for any n ∈ N, we have 0 ≤ xn ≤ x∗ and also xn ≺ x. It is
clear that xn ↑ x∗ almost everywhere and supn∈N ‖xn‖E ≤ ‖x‖E < ∞. Hence,
by the Fatou property, we conclude that ‖xn‖E → ‖x‖E. Consequently, by the
assumption that x is an LLUKM point, it follows that

‖x∗n − x∗‖E → 0.

Since x∗(∞) > 0, we obtain χI ∈ E, whence for any n ∈ N,

‖x∗n − x∗‖E = ‖x∗χ(n,∞)‖E ≥
∥∥x∗(∞)χ(n,∞)

∥∥
E
= x∗(∞)‖χI‖E > 0.

So, we get a contradiction which finishes the proof. �

Lemma 3.2. Let E be a symmetric space, and let φ be the fundamental function
of E. If x ∈ E is an LLUKM point and x∗(t)φ(t) → 0 as t → 0+, then x is a
point of order continuity.

Proof. Let us assume, on the contrary, that x is not a point of order continuity
in E. Then, by Lemma 2.6 in [10] and Proposition 3.2 in [1], there exist (An) ⊂ I
a decreasing sequence of measurable sets and δ > 0 such that An → ∅ and

δ ≤ ‖x∗χAn‖E (1)
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for all n ∈ N. Let ε ∈ (0, δ). We claim that there exists K ∈ N such that for every
k ≥ K,

‖x∗χ[k,∞)‖E <
ε

2
.

Indeed, taking xn = x∗χ[0,n) for any n ∈ N, we have xn = x∗n ↑ x∗ and also
supn∈N ‖x∗n‖E ≤ ‖x∗‖E < ∞. Hence, by the Fatou property and by symmetry
of E, it follows that ‖xn‖E → ‖x‖E. Consequently, according to the assumption
that x is an LLUKM point, in view of xn ≺ x we obtain our claim. Moreover,
it is easy to see that x∗χAn∩[0,k) ≺ x∗χ[0,min{µ(An),k}) for any k, n ∈ N, whence by
symmetry and by the triangle inequality of the norm in E, we conclude that

‖x∗χAn‖E ≤ ‖x∗χAn∩[0,k)‖E + ‖x∗χAn∩[k,∞)‖E
≤ ‖x∗χ[0,min{µ(An),k})‖E + ‖x∗χAn∩[k,∞)‖E

for any k, n ∈ N. Hence, since µ(An) < K for sufficiently large n ∈ N, passing to
subsequence and relabeling if necessary, by the claim and by condition (1) we get

δ ≤ ‖x∗χAn‖E ≤ ‖x∗χ[0,µ(An))‖E + ‖x∗χAn∩[K,∞)‖E ≤ ‖x∗χ[0,µ(An))‖E +
ε

2

for any n ∈ N. Therefore, for any n ∈ N we have

δ

2
≤ ‖x∗χ[0,µ(An))‖E. (2)

Define tn = µ(An) and zn = x∗(tn)χ[0,tn) + x∗χ[tn,∞) for all n ∈ N. Clearly, zn =
z∗n ≤ x∗ for every n ∈ N and z∗n ↑ x∗ almost everywhere on I. As a consequence,
since supn∈N ‖z∗n‖E ≤ ‖x∗‖E, by the Fatou property and by symmetry of E this
yields ‖zn‖E → ‖x‖E. Hence, since zn ≺ x for any n ∈ N and by the assumption
that x is an LLUKM point, there exists N ∈ N such that for any n ≥ N ,∥∥(x∗ − x∗(tn)

)
χ[0,tn)

∥∥
E
<
ε

4
.

So, by condition (2) and by the triangle inequality of the norm in E we obtain

δ

2
≤ ‖x∗χ[0,tn)‖E ≤

∥∥(x∗ − x∗(tn)
)
χ[0,tn)

∥∥
E
+
∥∥x∗(tn)χ[0,tn)

∥∥
E

≤ ε

4
+ x∗(tn)φ(tn)

for all n ≥ N . Consequently, for any n ≥ N we have

x∗(tn)φ(tn) ≥ δ/4, (3)

whence by the assumption that x∗(t)φ(t) → 0 as t → 0+ we get a contradiction,
which ends the proof. �

Now, we answer the crucial question about whether the condition φ(t)x∗(t) → 0
as t → 0+ in Lemma 3.2 is necessary and whether it can be avoided. Namely,
in the following example we provide a function, in the Lorentz space Λ1,ψ′ ∩ L∞,
that is an LLUKM point and not a point of order continuity.
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Example 3.3. Let ψ be a strictly concave function such that ψ(0+) = 0 and
ψ(∞) = ∞. Consider E = Λ1,ψ′ ∩ L∞ on I = [0, 1], equipped with an equivalent
norm given by

‖x‖E = ‖x‖Λ1,ψ′ + ‖x‖L∞

for any x ∈ E. Assuming that φ is the fundamental function of E, we easily
observe that φ(t) = ψ(t) + 1 for any t > 0. Define x(t) = (1 − t)χ[0,1](t) for any
t ∈ I. First, we prove that the function x is not a point of order continuity in E.
Indeed, taking xn = xχ(0,1/n) for any n ∈ N, it is easy to see that xn → 0 almost
everywhere and that xn ≤ x for any n ∈ N. Next, since limt→0+ φ(t)x

∗(t) = 1, by
Proposition 5.9 in [1], we have

‖xn‖E ≥ ‖xn‖Mφ
≥ sup

t∈(0,1/n]

{
(1− t)

(
1 + ψ(t)

)}
≥ 1

for all n ∈ N. We claim that x is an LLUKM point in E. Since ψ(∞) = ∞
and ψ(0+) = 0, by Proposition 1.4 in [15] it follows that the Lorentz space Λ1,ψ′

is order continuous. Hence, since ψ is strictly concave, by Theorem 2.11 in [5]
we obtain that Λ1,ψ′ is strictly K-monotone and also ULUKM; consequently,
by Theorem 3.13, we conclude that Λ1,ε∗ is LLUKM. Hence, the Lorentz space
E endowed with the given norm is strictly K-monotone, whence x is an LKM
point in E. Assume that (yn) ⊂ E, yn ≺ x for any n ∈ N and ‖yn‖E → ‖x‖E.
Then, since x is an LKM point and x∗(∞) = 0, by Theorem 1 in [9] it follows
that y∗n → x∗ globally in measure. Therefore, by property 2.11 in [17] we get
y∗n(t) → x∗(t) for all t ∈ [0, 1]. In consequence, by monotonicity of the decreasing
rearrangement y∗n and by continuity of x∗ on I, in view of Dini’s theorem for
monotone functions (see [20, p. 81]) it follows that y∗n converges to x∗ uniformly
on I; that is,

‖x∗ − y∗n‖L∞ → 0. (4)

So, it is clear that

‖yn‖L∞ = y∗n(0) → x∗(0) = ‖x‖L∞ .

Furthermore, by the assumption that ‖yn‖E → ‖x‖E and by definition of the
norm in E, we get ‖yn‖Λ1,ψ′ → ‖x‖Λ1,ψ′ . Thus, since yn ≺ x for all n ∈ N and by

the fact that Λ1,ψ′ is LLUKM, we have

‖x∗ − y∗n‖Λ1,ψ′ → 0,

and consequently, in view of condition (4) and by definition of the norm in E, we
are done.

Proposition 3.4. Let E be a symmetric space. If E is LLUKM, then E is order-
continuous.

Proof. Suppose for the contrary that there exists x ∈ E that is not a point of
order continuity. Let φ be the fundamental function of E. By symmetry of E and
by Proposition 5.9 in [1], we have, for any t > 0 and z ∈ E,

z∗(t)φ(t) ≤ ‖z‖
M

(∗)
φ

≤ ‖z‖Mφ
≤ ‖z‖E. (5)
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Next, proceeding similarly as in the proof of Lemma 3.2, in view of conditions
(3) and (5) it is easy to see that

δ

4
≤ ‖x‖L∞φ(0+) ≤ ‖x‖E.

Then, since φ(0+) > 0, by applying condition (5) for any z ∈ E, we observe that

‖z‖L∞φ(0+) ≤ ‖z‖E. (6)

Define y = χ[0,1) and yn = χ[0,1−1/n) for any n ∈ N. Obviously, by the Fatou
property we get ‖yn‖E → ‖y‖E. Thus, since yn ≺ y for all n ∈ N, in view of the
assumption that E is LLUKM, we get

‖χ[0,1/n)‖E = ‖y∗ − y∗n‖E → 0.

Hence, by condition (6) we obtain a contradiction and complete the proof. �

Theorem 3.5. Let E be a symmetric space, and let φ be the fundamental function
of E. If x ∈ E is an LLUKM point and limt→0+ x

∗(t)φ(t) = 0, then |x| is an
LLUM point.

Proof. Let (xn) ⊂ E+ and 0 ≤ xn ≤ |x|, ‖xn‖E → ‖x‖E. Then, by property of
the maximal function, we obtain xn ≺ x. Hence, by the assumption that x is an
LLUKM point, we have

‖x∗n − x∗‖E → 0. (7)

By Lemma 3.1, we get x∗(∞) = 0, whence by Lemma 2.7 in [10] and by the
assumption that 0 ≤ xn ≤ |x| for all n ∈ N, it follows that xn converges to x in
measure. Moreover, since limt→0+ x

∗(t)φ(t) = 0, by Lemma 3.2 this yields that x is
a point of order continuity. Consequently, by condition (7) and by Proposition 2.4
in [13], we conclude that ∥∥xn − |x|

∥∥
E
→ 0. �

Theorem 3.6. Let E be a symmetric space on I = [0, 1), with φ the fundamental
function of E. A point x ∈ E is an LLUKM point and limt→0+ x

∗(t)φ(t) = 0 if
and only if x is an LKM point and a point of order continuity.

Proof. Our proof will consist of two parts.
(Necessity) Immediately, by Remark 3.1 in [7] and by Lemma 3.2, we complete

the proof.
(Sufficiency) Let (xn) ⊂ E, let xn ≺ x, and let ‖xn‖E → ‖x‖E. Since x is a

point of order continuity, it is easy to see that limt→0+ x
∗(t)φ(t) = 0. Moreover,

since x∗(∞) = 0 and x is an LKM point, by Theorem 1 in [9] we obtain that x∗n
converges to x∗ in measure. Hence, by property 2.11 in [17], we get

(x∗n − x∗)+ → 0 and (x∗ − x∗n)
+ → 0 (8)

almost everywhere and in measure on I. Note that, for any n ∈ N, we have

(x∗n − x∗)+ ≤ x∗n and (x∗ − x∗n)
+ ≤ sup

k≥n
(x∗ − x∗k)

+ ≤ x∗ (9)
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almost everywhere on I. In consequence, since supk≥n(x
∗−x∗n)+ ↓ 0 almost every-

where and since x is a point of order continuity, by Lemma 2.6 in [10] we obtain∥∥(x∗ − x∗n)
+
∥∥
E
→ 0.

Thus, by the triangle inequality of the norm in E, to complete the proof it is
enough to show the following condition:∥∥(x∗n − x∗)+

∥∥
E
→ 0. (10)

First, by [8, Lemma 3.1] it is clear that x∗∗(∞) = 0. Therefore, since x∗n ≺ x∗ for
all n ∈ N, by condition (9) it is easy to observe that for any n ∈ N,(

(x∗n − x∗)+
)∗ ≤ x∗n ≤ x∗∗ and (x∗n − x∗)+ ≺ x∗, (11)

whence, by condition (8) and by property 2.12 in [17] we conclude that(
(x∗n − x∗)+

)∗ → 0 (12)

pointwise and also in measure. Furthermore, by condition (11) and by Hardy’s
lemma (see [1, Proposition 3.6]) for any y ∈ E and t > 0, n ∈ N, we have∫ t

0

(
(x∗n − x∗)+

)∗
y∗ ≤

∫ t

0

x∗y∗. (13)

Define, for any n, k ∈ N,

Mk
n =

{
t ∈ I :

(
(x∗n − x∗)+

)∗
(t) >

1

k

}
.

Clearly, by condition (12), for any k ∈ N we have µ(Mk
n) → 0 as n → ∞.

Now, letting y = χMk
n
∈ E, by condition (13) and by symmetry of E, in view of

Corollary 4.7 in [1] we get∥∥((x∗n − x∗)+
)∗
χ[0,µ(Mk

n)]

∥∥
E
≤ ‖x∗χ[0,µ(Mk

n)]
‖E

for every n, k ∈ N. Thus, since x∗χ[0,µ(Mk
n)]

≤ x∗ almost everywhere on I for all
n, k ∈ N and since x∗ is a point of order continuity, it follows that, for any k ∈ N
and ε > 0, there exists N ∈ N such that for any n ≥ N ,∥∥((x∗n − x∗)+

)∗
χ[0,µ(Mk

n)]

∥∥
E
≤ ε

2
.

Moreover, by construction of the setMk
n , picking k ∈ N such that ‖χI‖E/k < ε/2,

it is easy to see that∥∥((x∗n − x∗)+
)∗
χ(µ(Mk

n),1)

∥∥
E
≤

∥∥∥1
k
χ(µ(Mk

n),1)

∥∥∥
E
≤ ε

2

for all n ∈ N. Finally, by the triangle inequality of the norm in E, we prove
condition (10) and finish the proof. �

Now, we investigate a similar result as above for a symmetric space E on [0,∞)
under some additional assumptions on E.
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Theorem 3.7. Let E be a symmetric space on I = [0,∞), let φ be the fundamen-
tal function of E such that φ(t)/t→ 0 as t→ ∞, and let x ∈ E ∩ L1. A point x
is an LLUKM point and limt→0+ x

∗(t)φ(t) = 0 if and only if x is an LKM point
and a point of order continuity.

Proof. Note that proceeding analogously as in the proof of Theorem 3.6 in suffi-
ciency it is enough to show condition (10). First, let us mention that by Lemma 2.5
in [10] and by Lemma 3.1 in [8] and in view of the assumption that x is a point of
order continuity, it follows that x∗(∞) = x∗∗(∞) = 0. Let ε > 0 and tε = dx∗(ε).
Then it is clear that tε < ∞, and so by the monotonicity of the decreasing re-
arrangement x∗, we obtain x∗(t) ≤ ε for all t ≥ tε. To simplify our notation, let
us assume that yn = (x∗n − x∗)+ for any n ∈ N. First, we claim that

‖y∗nχ[0,tε)‖E → 0. (14)

Define a set

An =
{
t ∈ [0, tε] : x

∗(t) ≤ y∗n(t)
}

for every n ∈ N. Then, by the monotonicity of x∗, it is easy to see that x∗(t) ≥ ε
for any t ≤ tε. Next, in view of condition (12), we observe that

µ(An) ≤ µ
(
t ∈ [0, tε] : y

∗
n(t) ≥ ε

)
→ 0. (15)

Moreover, by condition (13) we obtain∫ t

0

y∗nχ[0,µ(An)] ≤
∫ t

0

x∗χ[0,µ(An)]

for all n ∈ N and t > 0. Hence, by Proposition 1.1 in [6], for any t > 0 and n ∈ N
we get

(y∗nχAn)
∗∗(t) =

1

t

∫ t

0

(y∗nχAn)
∗ ≤ 1

t

∫ t

0

y∗nχ[0,µ(An)]

≤ (x∗χ[0,µ(An)])
∗∗(t) ≤ x∗∗(t).

Thus, by symmetry of E we conclude that

‖y∗nχ[0,tε)‖E ≤ ‖y∗nχAn‖E + ‖y∗nχ[0,tε)\An‖E
≤ ‖x∗χ[0,µ(An)]‖E + ‖y∗nχ[0,tε)\An‖E

for each n ∈ N. Consequently, since y∗nχ[0,tε)\An ≤ x∗ for any n ∈ N, by conditions
(12) and (15) as well as by the assumption that x is a point of order continuity
and in view of Lemma 2.6 in [10], we prove our claim (14). Now, without loss
of generality, and passing to a subsequence and relabeling, we may assume that
y∗n(tε) > 0 for all n ∈ N, because otherwise, in view of claim (14), we finish the
proof. Furthermore, by condition (11) and by the assumption that x ∈ E ∩L1, it
is easy to see that ∫ ∞

tε

y∗n ≤
∫ ∞

0

y∗n ≤
∫ ∞

0

x∗ <∞
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for all n ∈ N. Denote, for any n ∈ N,

δn = tε +
1

y∗n(tε)

∫ ∞

tε

y∗n and zn = y∗nχ[0,tε) + y∗n(tε)χ[tε,δn).

Now, we prove that ∥∥y∗n(tε)χ[tε,δn)

∥∥
E
→ 0. (16)

Assume to the contrary that a = infn∈N ‖y∗n(tε)χ[tε,δn)‖E > 0. Then, passing to a
subsequence and relabeling if necessary, we obtain∥∥y∗n(tε)χ[tε,δn)

∥∥
E
↓ a.

Hence, for any n ∈ N, we note that

a ≤
∥∥y∗n(tε)χ[tε,δn)

∥∥
E
= y∗n(tε)φ(δn − tε)

= y∗n(tε)φ
( 1

y∗n(tε)

∫ ∞

tε

y∗n

)
≤ y∗n(tε)φ

( 1

y∗n(tε)

∫ ∞

0

x∗
)
.

Therefore, letting sn =
∫∞
0
x∗/y∗n(tε) for all n ∈ N, we have

a ≤ φ(sn)

sn

∫ ∞

0

x∗

for all n ∈ N. According to condition (12), we observe that y∗n(tε) → 0 and so
sn → ∞. In consequence, by the assumption that φ(t)/t → 0 as t → ∞, we get
a contradiction which provides condition (16). Now, we show that yn ≺ zn for all
n ∈ N. Obviously, y∗∗n = z∗∗n on [0, tε] for each n ∈ N. Moreover, for any n ∈ N
and t ∈ (tε, δn), we have∫ t

0

z∗n =

∫ tε

0

y∗n + y∗n(tε)(t− tε) ≥
∫ tε

0

y∗n +

∫ t

tε

y∗n =

∫ t

0

y∗n,

and also, for any t ≥ δn, we have∫ t

0

z∗n =

∫ tε

0

y∗n + y∗n(tε)(δn − tε) =

∫ tε

0

y∗n +

∫ ∞

tε

y∗n ≥
∫ t

0

y∗n.

Therefore, by symmetry of E we get ‖zn‖E ≥ ‖yn‖E. Thus, by conditions (14) and
(16) and by the triangle inequality of the norm in E, we complete the proof. �

Immediately, in view of Remark 3.1 in [7], and by Proposition 3.4 and Theorems
3.6 and 3.7, we obtain the following results.

Corollary 3.8. Let E be a symmetric space on I = [0, α) with α <∞. The space
E is LLUKM if and only if E is strictly K-monotone and order continuous.

Corollary 3.9. Let E be a symmetric space on I = [0,∞) with the fundamental
function φ such that φ(t)/t → 0 as t → ∞, and let F ⊂ E be a symmetric
sublattice that is embedded in L1[0,∞). Then, the space F is LLUKM if and only
if F is strictly K-monotone and order continuous.
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Now, we investigate a relation between lower local uniform K-monotonicity
and the Kadec–Klee property for global convergence in measure. First, we show
an example of a function in a symmetric space E on I = [0,∞) that is a point
of lower local uniform K-monotonicity but is not an Hg point in E. We also
discuss in this example a symmetric space E on I = [0, 1) that is lower local
uniformly K-monotone, but does not have the Kadec–Klee property for global
convergence in measure. We recall Example 2.8 in [5] and we modify to the case
when I = [0, α), where α ≤ ∞. For the reader’s convenience, we present the
details of the modified example.

Example 3.10. Let δ > 0, and let φ1, φ2 be strictly concave functions such that

φi(0) = φi(0
+) = 0 and φi(∞) = lim

t→∞
φi(t) = ∞ for i = 1, 2,

and also

φ2(1) > φ1(1) + δ and lim
t→0

φ2(t)

φ1(t)
= lim

t→∞

φi(t)

t
= 0 for i = 1, 2.

Consider the space E = Λ1,φ′1
∩ Λ1,φ′2

with a norm given by

‖x‖E = max
{
‖x‖Λ1,φ′1

, ‖x‖Λ1,φ′2

}
for all x ∈ E. Since φi(∞) = ∞ for i = 1, 2, it follows that the symmetric space
E is order continuous (see [5], [15]). Hence, since φ1 and φ2 are strictly concave,
by Theorem 2.11 in [5] we get that E is strictly K-monotone. Consequently, in
the case when I = [0, 1), by Corollary 3.8 we obtain that E is LLUKM. Define

x = χ[0,1] and xn = x+
δ

φ1(
1
n
)
χ[0, 1

n
)

for any n ∈ N. Obviously, xn → x in measure and

‖xn‖E =
δφ2(

1
n
)

φ1(
1
n
)
+ φ2(1) → φ2(1) = ‖x‖E.

On the other hand, we observe that ‖xn − x‖E ≥ δ for any n ∈ N, from which
we infer that x is not an Hg point in E, and consequently, E does not have
the Kadec–Klee property for global convergence in measure. However, since x ∈
L1[0,∞), by Theorem 3.7 we get that x is an LLUKM point in the space E on
I = [0,∞).

Theorem 3.11. Let E be a symmetric space, let x, xn ∈ E with x∗(∞) = 0, and

(i) let x be an LKM point and an Hg point;
(ii) let x be an LKM point and

x∗∗n → x∗∗ in measure, ‖xn‖E → ‖x‖E ⇒ ‖x∗n − x∗‖E → 0;

(iii) let x be an LLUKM point.

Then, (i) ⇒ (ii) ⇒(iii). If x is an Hg point, then (iii) ⇒ (i).
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Proof. (i) ⇒ (ii) Let x, xn ∈ E for any n ∈ N, x∗∗n → x∗∗ in measure, and let
‖xn‖E → ‖x‖E. Now, proceeding analogously as in the proof of Theorem 3.8
in [7], under the assumption that x is an Hg point and x∗(∞) = 0, in view of
Theorem 3.3 in [12] we complete the proof.

(ii) ⇒ (iii) Let x, xn ∈ E, xn ≺ x for any n ∈ N, and let ‖xn‖E → ‖x‖E.
Hence, by Theorem 1 in [9], it follows that x∗∗n → x∗∗ in measure. Therefore, by
condition (ii) we get ‖x∗n − x∗‖E → 0, which proves that x is an LLUKM point.

(iii) ⇒ (i) Let x be an Hg point in E. Immediately, by Remark 3.1 in [7], we
get that x is an LKM point, and this ends the proof. �

In the next example, we present a symmetric space with the Kadec–Klee prop-
erty for global convergence in measure which does not have the LLUKM property.

Example 3.12. Consider the Lorentz space Γp,w with 0 < p < ∞, and let w

be a nonnegative weight function. If W (∞) < ∞ or W (t) =
∫ t
0
w is not strictly

increasing, then by Proposition 1.4 in [15] or by Theorem 2.10 in [11], respectively,
we obtain that the Lorentz space Γp,w is not order continuous or that it is not
strictly K-monotone, respectively. Moreover, we have limt→0+ ‖x∗χ[0,t)‖Γp,w = 0

(see [15]), whence and by the monotonicity of the decreasing rearrangement x∗

we get limt→0+ x
∗(t)φ(t) = 0, where φ is the fundamental function of Γp,w. In

consequence, by Remark 3.1 in [7] or by Lemma 3.2, respectively, it follows that
Γp,w is not LLUKM. On the other hand, by Theorem 4.1 in [12] we know that
the Lorentz space Γp,w has the Kadec–Klee property for global convergence in
measure.

Now, we present the full characterization of lower and upper local uniform
K monotonicity in a symmetric space E with order continuous norm. Then we
establish a correlation between upper local uniform K-monotonicity and upper
local uniform monotonicity in E.

Theorem 3.13. Let E be a symmetric space with order continuous norm. Then,
the following conditions are equivalent:

(i) E is SKM and for any (xn) ⊂ E, x ∈ E,

x∗∗n → x∗∗ in measure and ‖xn‖E → ‖x‖E ⇒ ‖x∗n − x∗‖E → 0;

(ii) E is LLUKM and has the Kadec–Klee property for global convergence in
measure;

(iii) E is SKM and has the Kadec–Klee property for global convergence in
measure;

(iv) E is SKM and has the Kadec–Klee property for local convergence in mea-
sure;

(v) E is ULUKM.

Proof. It is well known that the equivalences (iii) ⇔ (iv) ⇔ (v) follow directly
from Theorem 2.7 in [5]. Immediately, by Theorem 3.8 in [7] and by Theorem 3.5
in [12], we get (i) ⇔ (iii) ⇔ (v). Finally, the consequence of Lemma 2.5 in [10]
and Theorem 3.11 is the following conclusion (ii) ⇔ (iii). �
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Theorem 3.14. Let E be a symmetric space. If x ∈ E is a point of order conti-
nuity and a ULUKM point, then |x| is a ULUM point and x is an Hg point.

Proof. Let (xn) ⊂ E+, |x| ≤ xn, and ‖xn‖E → ‖x‖E. Then, by Proposition 3.2
in [1] we get x ≺ xn for all n ∈ N, and consequently, by the assumption that x
is a ULUKM point, we have ‖x∗n − x∗‖E → 0. Hence, by the implication (iii) ⇒
(ii) in [5, proof of Theorem 3.2], it follows that xn converges to |x| in measure.
Consequently, by the assumption that x is a point of order continuity and by
Proposition 2.4 in [13], we have ‖xn− |x|‖E → 0. Finally, in view of the assump-
tions, by Theorem 3.8 in [7] and by Theorem 3.5 in [12], we conclude that x is an
Hg point in E. �

In the next example, we show that if the assumption that x is a point of order
continuity of the above theorem is missing, then the implication is not true.

Example 3.15. Take E = L∞ on I = [0,∞) and x = χI . Let (xn) ⊂ E be such
that x ≺ xn for any n ∈ N, and let ‖xn‖E → ‖x‖E. Since x∗ = 1 on I, we claim
that x∗ ≤ x∗n almost everywhere for all n ∈ N. Indeed, if it is not true, then there
exist (nk) ⊂ N and (tk) ⊂ I such that, for any k ∈ N and t ≥ tk, we have

x∗nk(t) ≤ x∗nk(tk) < 1.

Hence, setting k ∈ N, we observe that for sufficiently large t > tk,

x∗∗nk(t) < x∗∗(t) = 1.

Therefore, by the assumption that x ≺ xn for all n ∈ N, we get a contradiction
which proves our claim. It is easy to see that x is a ULUM point in E (see [10]).
Thus, according to the claim and by the assumption that ‖x∗n‖E → ‖x∗‖E, we
obtain

‖x∗n − x∗‖E → 0.

In consequence, we get that x is a ULUKM point. On the other hand, taking
yn = χ( 1

n
,∞) for any n ∈ N, it is easy to see that yn → x in measure and

‖yn‖E = ‖x‖E = 1, and also that ‖x − yn‖E = 1 for every n ∈ N. So, it follows
that x is not an Hg point in E.

Now we discuss a correlation between K-order continuity and lower local uni-
form K-monotonicity in symmetric spaces.

Theorem 3.16. Let E be a symmetric space. If x ∈ E is a point of K-order
continuity and an LKM point and also x∗(∞) = 0, then x is an LLUKM point.

Proof. Let (xn) ⊂ E with xn ≺ x for all n ∈ N, and let ‖xn‖E → ‖x‖E. Observe
that for each n ∈ N,

(x∗ − x∗n)
+ ≤ x∗ and (x∗n − x∗)+ ≺ x∗n ≺ x∗. (17)

Moreover, since x is an LKM point and x∗(∞) = 0, by the assumption that
xn ≺ x for any n ∈ N and ‖xn‖E → ‖x‖E and by Theorem 1 in [9], it follows that
x∗n converges to x∗ in measure. Hence, by property 2.11 in [17], we get(

(x∗n − x∗)+
)∗ → 0 and

(
(x∗ − x∗n)

+
)∗ → 0
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almost everywhere on I. In consequence, by condition (17) and by the assumption
that x is a point of K-order continuity, we have∥∥((x∗ − x∗n)

+
)∗∥∥

E
→ 0 and

∥∥((x∗n − x∗)+
)∗∥∥

E
→ 0.

Thus, by symmetry of E and by the triangle inequality of the norm in E, we
conclude that x∗n converges to x∗ in norm of E. �

We present an example of a symmetric space having upper and lower local
uniform K-monotonicity but not satisfying K-order continuity.

Remark 3.17. Let ψ(t) = t1/4 for any t ∈ I. Consider the space E = Λ1,ψ′ ∩ L1

on I endowed with the equivalent norm given by ‖x‖E = ‖x‖Λ1,ψ′ + ‖x‖L1 . We

claim that (E, ‖ · ‖E) is LLUKM and ULUKM, but it is not KOC. First, denote
φ(t) = ψ(t) + t for any t ∈ I. Observe that E = Λ1,φ′ and φ(t)/t → 1 as t → ∞.
Define

x(t) = χ[0,1)(t) +
1

t2
χ[1,∞)(t) and xn(t) =

1

n
χ[0,n)(t)

for any t > 0 and n ∈ N. It is easy to see that x = x∗, xn = x∗n → 0 almost
everywhere. Clearly,

x∗∗(t) = χ[0,1)(t) +
2t− 1

t2
χ[1,∞)(t)

and

x∗∗n (t) =
1

n
χ[0,n)(t) +

1

t
χ[n,∞)(t)

for any t > 0 and n ∈ N, whence xn ≺ x for all n ∈ N. Note that x ∈ E and

‖xn‖E = ‖xn‖Λ1,ψ′ + ‖xn‖L1 = 1 +
1

n3/4

for any n ∈ N. Therefore, ‖xn‖E ≥ 1 for every n ∈ N, from which we infer that
E is not KOC. On the other hand, since φ(∞) =

∫∞
0
φ′ = ∞, by Proposition 1.4

in [15], it follows that the Lorentz space Λ1,φ′ is order continuous. Hence, since
φ is strictly concave, by Theorem 2.11 and Proposition 1.7 in [5], we obtain that
Λ1,φ′ is strictly K-monotone and also has the Kadec–Klee property for global
convergence in measure. Finally, by Theorem 3.13, we get that E is ULUKM and
LLUKM.

According to Theorem 2 in [9] and Remark 3.1 in [7], and also by Lemma 3.2
as well as Theorem 3.16, we conclude with the next theorem.

Theorem 3.18. Let E be a symmetric space on I = [0,∞), and let φ be the fun-
damental function of E and x ∈ E. Then the following conditions are equivalent:

(i) x is an LLUKM point and

lim
t→0+

φ(t)x∗(t) = lim
s→∞

φ(s)x∗∗(s) = 0;

(ii) x is an LKM point and a point of order continuity, and

lim
s→∞

φ(s)x∗∗(s) = 0;

(iii) x is an LKM point and a point of K-order continuity, and x∗(∞) = 0.
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