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Abstract. We prove that, if Banach spaces X and Y are δ-average rough,
then their direct sum with respect to an absolute norm N is δ/N(1, 1)-average
rough. In particular, for octahedralX and Y and for p in (1,∞), the spaceX⊕p

Y is 21−1/p-average rough, which is in general optimal. Another consequence is
that for any δ in (1, 2] there is a Banach space which is exactly δ-average rough.
We give a complete characterization when an absolute sum of two Banach
spaces is octahedral or has the strong diameter 2 property. However, among all
of the absolute sums, the diametral strong diameter 2 property is stable only
for 1- and ∞-sums.

1. Introduction

A real Banach space X is said to be octahedral if, for every finite-dimensional
subspace E of X and every ε > 0, there is a norm 1 element y ∈ X such that

‖x+ y‖ ≥ (1− ε)
(
‖x‖+ ‖y‖

)
for all x ∈ E.

Octahedral Banach spaces were introduced by Godefroy and Maurey [10] (see
also [9]) in order to characterize Banach spaces containing an isomorphic copy
of `1. This notion has recently been useful in studying the diameter 2 properties
(see [3], [4], [11], and [12]). It is known that octahedrality is stable by taking
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`1- or `∞-sums, and it is not stable by taking `p-sums for p ∈ (1,∞) (see [11,
Proposition 3.12]). More precisely, for nontrivial Banach spaces X and Y ,

• if X or Y is octahedral, then X ⊕1 Y is octahedral;
• if X and Y are both octahedral, then X ⊕∞ Y is octahedral;
• X ⊕p Y is not octahedral for p ∈ (1,∞).

We extend these results quantitatively in two directions; instead of octahedral
spaces, we consider more general average rough spaces, and we also consider
absolute normalized norm on direct sum.

Let δ > 0. A Banach space X is said to be δ-average rough (see [8]) if, whenever
n ∈ N and x1, . . . , xn ∈ SX ,

lim sup
‖y‖→0

1

n

n∑
i=1

‖xi + y‖+ ‖xi − y‖ − 2

‖y‖
≥ δ.

Banach spaces which are 2-average rough are exactly the octahedral ones (see
[3], [8], and [9]). We recall that a norm N on R2 is called absolute (see [7]) if

N(a, b) = N
(
|a|, |b|

)
for all (a, b) ∈ R2,

and it is called normalized if

N(1, 0) = N(0, 1) = 1.

For example, the `p-norm ‖ · ‖p is absolute and normalized for every p ∈ [1,∞].
If N is an absolute normalized norm on R2 (see [7, Lemmas 21.1, 21.2]), then

• ‖(a, b)‖∞ ≤ N(a, b) ≤ ‖(a, b)‖1 for all (a, b) ∈ R2;
• if (a, b), (c, d) ∈ R2 with |a| ≤ |c| and |b| ≤ |d|, then

N(a, b) ≤ N(c, d);

• the dual norm N∗ on R2 defined by

N∗(c, d) = max
N(a,b)≤1

(
|ac|+ |bd|

)
for all (c, d) ∈ R2

is also absolute and normalized. Note that (N∗)∗ = N .

If X and Y are Banach spaces and N is an absolute normalized norm on R2,
then we denote by X ⊕N Y the product space X × Y with respect to the norm∥∥(x, y)∥∥

N
= N

(
‖x‖, ‖y‖

)
for all x ∈ X and y ∈ Y .

In the special case where N is the `p-norm, we write X ⊕p Y . Note that (X ⊕N

Y )∗ = X∗ ⊕N∗ Y ∗.
By a slice of BX we mean a set of the form

S(BX , x
∗, α) =

{
x ∈ BX : x∗(x) > 1− α

}
,

where x∗ ∈ SX∗ and α > 0. A convex combination of slices is a set of the form∑n
i=1 λiSi, where n ∈ N, λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1, and S1, . . . , Sn are

slices of BX .



224 R. HALLER, J. LANGEMETS, and R. NADEL

A dual characterization of δ-average roughness is well known. The dual space
X∗ is δ-average rough if and only if the diameter of every convex combination of
slices of BX is greater than or equal to δ (see [8, Theorem 2]). In particular, X∗

is octahedral if and only if the diameter of every convex combination of slices of
BX is 2 (see also [3], [9], and [11]). According to [1], the latter extreme property
of a Banach space X is known as the strong diameter 2 property. An important
class of Banach spaces with the strong diameter 2 property and which are octa-
hedral are the Daugavet spaces (see [1] and [3]). In [6], it is proved that the only
absolute sums which preserve the Daugavet property are the `1- and `∞-sums.
Surprisingly, there are many absolute norms which preserve octahedrality and
the strong diameter 2 property (see Section 3).

Recently, Becerra Guerrero, López-Pérez, and Rueda Zoca introduced a sharper
version of the strong diameter 2 property (see [5]). A Banach space X has the
diametral strong diameter 2 property if, for every convex combination C of rela-
tively weakly open subsets of BX , for every x ∈ C and ε > 0, there is a y ∈ C
such that

‖x− y‖ > 1 + ‖x‖ − ε.

By [5], Daugavet spaces have the diametral strong diameter 2 property, and
the diametral strong diameter 2 property implies the strong diameter 2 property.
The Banach space c0 is an example of a space with the strong diameter 2 property
and one that fails the diametral strong diameter 2 property. As far as the authors
know, it is an open question posed in [5] whether there is a Banach space with
the diametral strong diameter 2 property that fails the Daugavet property. Our
preliminary idea to attack this question was to check whether, besides the `1-
and `∞-norms (see [5] and [13]), there are more absolute norms which preserve
the diametral strong diameter 2 property. However, we found that there are none
(see Section 3).

We now describe the contents of this paper. In Section 2, we prove (see The-
orem 2.4) that for δ-average rough Banach spaces X and Y their absolute sum
X⊕N Y is γδ-average rough, where γ > 0 is such that γN(·) ≤ ‖ ·‖∞. In particu-
lar, we get that, for 1 < p < ∞, the `p-sum X⊕pY of octahedral Banach spaces X
and Y is 21−1/p-average rough (see Corollary 2.6). Moreover, this number 21−1/p

is in general the largest possible one (see Proposition 2.7). As a consequence, we
obtain that for any δ ∈ (1, 2] there is a Banach space which is exactly δ-average
rough (see Theorem 2.8). We end this section by describing when the δ-average
roughness passes down from the absolute sum to one of the factors (see Proposi-
tion 2.11).

In Section 3, we characterize those absolute norms for which the direct sum of
two octahedral Banach spaces is octahedral (see Theorem 3.2). As a consequence,
we can characterize those absolute norms for which the direct sum of two separa-
ble Banach spaces with the almost-Daugavet property has the almost-Daugavet
property (see Corollary 3.3). By duality, we can characterize the absolute norms
which preserve the strong diameter 2 property (see Theorem 3.5). We end this
section by proving that, similarly to the Daugavet property, among all of the
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absolute norms the diametral strong diameter 2 property is stable only for `1-
and `∞-sums (see Corollary 3.8).

2. Average roughness of absolute sums

We begin by pointing out some equivalent but sometimes more convenient
formulations of average roughness, which are easily derived from the definition.

Proposition 2.1. Let X be a Banach space and let δ > 0. The following asser-
tions are equivalent:

(i) X is δ-average rough;
(ii) whenever n ∈ N, x1, . . . , xn ∈ X and ε > 0 there is a y ∈ X such that

‖y‖ ≤ ε and

1

n

n∑
i=1

(
‖xi + y‖+ ‖xi − y‖

)
> (δ − ε)‖y‖+ 2

n

n∑
i=1

‖xi‖;

(iii) whenever n ∈ N, x1, . . . , xn ∈ SX and ε > 0 there is a y ∈ X such that
‖y‖ ≤ ε and

1

n

n∑
i=1

(
‖xi + y‖+ ‖xi − y‖

)
> (δ − ε)‖y‖+ 2.

Remark. The equivalences in Proposition 2.1 remain true if one of the following
holds:

(a) we replace ‖y‖ ≤ ε with ‖y‖ = ε;
(b) we replace 1

n

∑n
i=1 with

∑n
i=1 λi, where λi > 0 and

∑n
i=1 λi = 1. This

can be derived from (ii) and (iii) above by using (a) and the fact that,
for every λ1, . . . , λn > 0 with

∑n
i=1 λi = 1 and for every ε > 0, there are

k1, . . . , kn ∈ N such that
∑n

i=1 |λi − ki
m
| < ε, where m =

∑n
i=1 ki.

The `1-sum of two Banach spaces inherits its δ-average roughness from one of
the factors.

Proposition 2.2. Let X and Y be Banach spaces. If X or Y is δ-average rough
for some δ > 0, then X ⊕1 Y is also δ-average rough.

Proof. We consider only the case where X is δ-average rough. The case where Y
is δ-average rough is similar. We will prove that Z = X ⊕1 Y is δ-average rough.
Let z1 = (x1, y1), . . . , zn = (xn, yn) ∈ SZ , and ε > 0. By Proposition 2.1, it suffices
to show that there exists z = (x, y) ∈ Z such that ‖z‖1 = ε and

1

n

n∑
i=1

(
‖zi + z‖1 + ‖zi − z‖1

)
≥ (δ − ε)‖z‖1 + 2.

Since X is δ-average rough, there is an x ∈ X such that ‖x‖ = ε and

n∑
i=1

1

n

(
‖xi + x‖+ ‖xi − x‖

)
≥ (δ − ε)‖x‖+ 2

n

n∑
i=1

‖xi‖.
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It follows that, for z = (x, 0), we have ‖z‖1 = ‖x‖ = ε, and

1

n

n∑
i=1

(
‖zi + z‖1 + ‖zi − z‖1

)
=

1

n

n∑
i=1

(
‖xi + x‖+ ‖yi‖+ ‖xi − x‖+ ‖yi‖

)
≥ (δ − ε)‖x‖+ 2

n

n∑
i=1

‖xi‖+
2

n

n∑
i=1

‖yi‖

= (δ − ε)‖z‖1 + 2. �

Corollary 2.3 (see [11, Proposition 3.12]). If X or Y is octahedral, then X⊕1 Y
is also octahedral.

The following theorem is one of the main results in this section.

Theorem 2.4. Let X and Y be Banach spaces, let N an absolute normalized
norm on R2, and let γ > 0 be such that ‖ · ‖∞ ≥ γN(·). If X and Y are δ-average
rough for some δ > 0, then X ⊕N Y is γδ-average rough.

Proof. Assume thatX and Y are δ-average rough. We will prove that Z = X⊕NY
is γδ-average rough. Let z1 = (x1, y1), . . . , zn = (xn, yn) ∈ SZ and let ε > 0. By
Proposition 2.1, it suffices to show that there exists z = (x, y) ∈ Z such that
‖z‖N = εN(1, 1) and

1

n

n∑
i=1

(
‖zi + z‖N + ‖zi − z‖N

)
≥ (δ − ε)γ‖z‖N + 2.

Choose ci, di ≥ 0 such that N∗(ci, di) = 1 and ci‖xi‖+ di‖yi‖ = 1. Denote by

c =
1

n

n∑
i=1

ci and d =
1

n

n∑
i=1

di.

Note that c+d ≥ 1 because ci+di ≥ N∗(ci, di) = 1. Consider first the case where
c 6= 0 and d 6= 0. Denote by

µi =
1

n

ci
c

and νi =
1

n

di
d
.

Observe that µ1 + · · · + µn = ν1 + · · · + νn = 1. Since X and Y are δ-average
rough, by Proposition 2.1, there are x ∈ X and y ∈ Y such that ‖x‖ = ‖y‖ = ε
and

n∑
i=1

µi

(
‖xi + x‖+ ‖xi − x‖

)
≥ (δ − ε)‖x‖+ 2

n∑
i=1

µi‖xi‖

and
n∑

i=1

νi
(
‖yi + y‖+ ‖yi − y‖

)
≥ (δ − ε)‖y‖+ 2

n∑
i=1

νi‖yi‖.
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It follows that, for z = (x, y) we have ‖z‖N = εN(1, 1), and

1

n

n∑
i=1

(
‖zi + z‖N + ‖zi − z‖N

)
≥ 1

n

n∑
i=1

N
(
‖xi + x‖+ ‖xi − x‖, ‖yi + y‖+ ‖yi − y‖

)
≥ 1

n

n∑
i=1

(
ci
(
‖xi + x‖+ ‖xi − x‖

)
+ di

(
‖yi + y‖+ ‖yi − y‖

))
= c

n∑
i=1

µi

(
‖xi + x‖+ ‖xi − x‖

)
+ d

n∑
i=1

νi
(
‖yi + y‖+ ‖yi − y‖

)
≥ c

(
(δ − ε)‖x‖+ 2

n∑
i=1

µi‖xi‖
)
+ d

(
(δ − ε)‖y‖+ 2

n∑
i=1

νi‖yi‖
)

= (δ − ε)
(
c‖x‖+ d‖y‖

)
+

2

n

n∑
i=1

(
ci‖xi‖+ di‖yi‖

)
= (δ − ε)(c+ d)max

{
‖x‖, ‖y‖

}
+ 2

≥ (δ − ε)γN
(
‖x‖, ‖y‖

)
+ 2

= (δ − ε)γ‖z‖N + 2.

Consider now the case where c = 0, which means that ci = 0 and di = 1 for
all i ∈ {1, . . . , n}. This implies that ‖yi‖ = 1 for all i ∈ {1, . . . , n}. Since Y is
δ-average rough, by Proposition 2.1, there exists a y ∈ Y such that ‖y‖ = εN(1, 1)
and

n∑
i=1

1

n

(
‖yi + y‖+ ‖yi − y‖

)
≥ (δ − ε)‖y‖+ 2.

Therefore, for z = (0, y) we have ‖z‖N = ‖y‖ = εN(1, 1), and

1

n

n∑
i=1

(
‖zi + z‖N + ‖zi − z‖N

)
≥ 1

n

n∑
i=1

(
‖yi + y‖+ ‖yi − y‖

)
≥ (δ − ε)‖y‖+ 2

≥ (δ − ε)γ‖z‖N + 2.

The case where d = 0 is similar to the case c = 0. We have thus proved that
X ⊕N Y is γδ-average rough. �

In particular, Theorem 2.4 applies to `p-norms.

Corollary 2.5. If Banach spaces X and Y are δ-average rough for some δ > 0,
then

(a) X ⊕∞ Y is δ-average rough,
(b) X ⊕p Y is 2−1/pδ-average rough for 1 < p < ∞.
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Corollary 2.6. If Banach spaces X and Y are octahedral and 1 < p < ∞, then
X ⊕p Y is 21−1/p-average rough.

In Corollary 2.6, we saw that if X and Y are octahedral and if 1 < p < ∞,
then X ⊕p Y is 21−1/p-average rough. We will now prove that in general 21−1/p is
the largest possible number.

Proposition 2.7. Let X and Y be Banach spaces and let 1 < p < ∞. Then
X ⊕p Y is not δ-average rough for any δ > 21−1/p.

Proof. We will prove that Z = X ⊕p Y is not δ-average rough for any δ > 21−1/p.
Consider the elements z1 = (x0, 0) and z2 = (0, y0) in Z, where x0 ∈ SX and
y0 ∈ SY . It suffices to show that there is a function f : (0,∞) → R such that
f(ε) → 0, when ε → 0, and that, for every ε > 0 and z ∈ Z, where ‖z‖ = ε, we
have

1

2

(
‖z1 + z‖p + ‖z1 − z‖p + ‖z2 + z‖p + ‖z2 − z‖p

)
≤

(
21−1/p + f(ε)

)
‖z‖p + 2.

Let ε ∈ (0, 1). Let z = (x, y) ∈ Z be such that ‖z‖p = ε. By Maclaurin’s formula,

(
1 + ‖x‖

)p
= 1 + p‖x‖+ p(p− 1)

2
(1 + ξ)p−2‖x‖2,

for some ξ ∈ (0, ‖x‖). Observe that

‖z1 ± z‖pp = ‖x0 ± x‖p + ‖y‖p ≤
(
1 + ‖x‖

)p
+ ‖y‖p

= 1 + p‖x‖+ p(p− 1)(1 + ξ)p−2

2
‖x‖2 + ‖y‖p. (2.1)

We continue by considering the cases 1 < p ≤ 2 and p > 2 separately. In both
cases we will use the generalized Bernoulli inequality, which says that for any
t ≥ 0 we have (1 + t)1/p ≤ 1 + t/p.

Case I. Assume that 1 < p ≤ 2. Since ξ ∈ (0, ‖x‖), we have

(1 + ξ)p−2 ≤ (1 + 0)p−2 = 1.

Combining the estimate (2.1) with Bernoulli’s inequality we get

‖z1 ± z‖p ≤
(
1 + p‖x‖+ p(p− 1)

2
‖x‖2 + ‖y‖p

)1/p

≤ 1 + ‖x‖+ p− 1

2
‖x‖2 + ‖y‖p

p
.

Similarly, we obtain

‖z2 ± z‖p ≤ 1 +
‖x‖p

p
+

p− 1

2
‖y‖2 + ‖y‖.
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Therefore

1

2

(
‖z1 + z‖p + ‖z1 − z‖p + ‖z2 + z‖p + ‖z2 − z‖p

)
≤

(
1 + ‖x‖+ p− 1

2
‖x‖2 + ‖y‖p

p

)
+
(
1 +

‖x‖p

p
+

p− 1

2
‖y‖2 + ‖y‖

)
= 2 + ‖x‖+ ‖y‖+ p− 1

2

(
‖x‖2 + ‖y‖2

)
+

1

p

(
‖x‖p + ‖y‖p

)
≤ 2 + 21−1/p

∥∥(x, y)∥∥
p
+

p− 1

2
ε2 +

εp

p

= 2 +
(
21−1/p +

p− 1

2
ε+

εp−1

p

)
‖z‖p.

Thus, for 1 < p ≤ 2, we can take

f(ε) =
p− 1

2
ε+

εp−1

p
.

Case II. Assume that p > 2. Since ξ ∈ (0, ‖x‖) and ‖x‖ ≤ ε < 1, we have

(1 + ξ)p−2 ≤
(
1 + ‖x‖

)p−2 ≤ (1 + ε)p−2 < 2p−2.

Combining this estimate with (2.1) and Bernoulli’s inequality, we get

‖z1 ± z‖p ≤
(
1 + p‖x‖+ p(p− 1)2p−3‖x‖2 + ‖y‖p

)1/p
≤ 1 + ‖x‖+ (p− 1)2p−3‖x‖2 + ‖y‖p

p
.

Similarly, we obtain

‖z2 ± z‖p ≤
(
‖x‖p + 1 + p‖y‖+ p(p− 1)2p−3ε2

)1/p
≤ 1 +

‖x‖p

p
+ (p− 1)2p−3‖y‖2 + ‖y‖.

Therefore

1

2

(
‖z1 + z‖p + ‖z1 − z‖p + ‖z2 + z‖p + ‖z2 − z‖p

)
≤

(
1 + ‖x‖+ (p− 1)2p−3ε2 +

‖y‖p

p

)
+
(
1 +

‖x‖p

p
+ (p− 1)2p−3ε2 + ‖y‖

)
= 2 +

(
‖x‖+ ‖y‖

)
+ (p− 1)2p−3

(
‖x‖2 + ‖y‖2

)
+

1

p

(
‖x‖p + ‖y‖p

)
≤ 2 + 21−1/p

∥∥(x, y)∥∥
p
+ (p− 1)2p−321−2/pε2 +

εp

p

=
(
21−1/p + (p− 1)2p−2/p−2ε+

εp−1

p

)
‖z‖+ 2.
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Thus, for p > 2, we can take

f(ε) = (p− 1)2p−2/p−2ε+
εp−1

p
.

Hence X ⊕p Y is not δ-average rough for any δ > 21−1/p. �

Now we are ready to show that for any δ ∈ (1, 2] there is a Banach space which
is exactly δ-average rough.

Theorem 2.8. For any δ ∈ (1, 2] there is a dual Banach space which is δ-average
rough and is not γ-average rough for any γ > δ.

Proof. If δ = 2, then we can take `1. If δ ∈ (1, 2), then there is a q ∈ (1,∞) such
that δ = 21/q. Let p ∈ (1,∞) be such that 1/p+ 1/q = 1. Since `1 is octahedral,
then by Corollary 2.6 and Proposition 2.7 the Banach space `1 ⊕p `1 is δ-average
rough and is not γ-average rough for any γ > δ. �

Remark. We do not know whether a similar result to Theorem 2.8 holds for
δ ∈ (0, 1].

Theorem 2.8 and the dual characterization of δ-average rough norms (see [8,
Theorem 2]) immediately imply the following.

Corollary 2.9. For any δ ∈ (1, 2] there is a Banach space in which the minimal
diameter of convex combination of slices is δ.

We end this section by describing when the δ-average roughness passes down
from the absolute sum to one of the factors. Our results are inspired by [2, Propo-
sition 2.5].

The following lemma is easily verified from the definitions.

Lemma 2.10. Let N be an absolute normalized norm on R2 such that (1, 0) is
an extreme point of the unit ball B(R2,N). Then (1, 0) is a strongly exposed point of
B(R2,N), which is strongly exposed by the functional (1, 0) ∈ B(R2,N∗). In particular,
for every ε > 0 there is a γ > 0 such that, whenever (a, b) ∈ B(R2,N) and a > 1−γ,
it holds that |b| < ε.

Proposition 2.11. Let X and Y be Banach spaces and let N be an absolute
normalized norm on R2 such that (1, 0) is an extreme point of B(R2,N∗). If X⊕N Y
is δ-average rough for some δ > 0, then X is δ-average rough.

Proof. Assume that Z = X ⊕N Y is δ-average rough. Let x1, . . . , xn ∈ SX and let
ε ∈ (0, δ). We will show that there is a u ∈ X such that ‖u‖ ≤ ε and

1

n

n∑
i=1

(
‖xi + u‖+ ‖xi − u‖

)
> (δ − ε)‖u‖+ 2.

By Lemma 2.10, there is a γ ∈ (0, 2ε
3
) such that, whenever N∗(a, b) ≤ 1 and

a > 1− γ, it holds that |b| < ε
3
.
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Consider (xi, 0) ∈ SZ . Since Z is δ-average rough, there is a z = (u, v) ∈ Z
such that ‖z‖N = γ

2n
and

1

n

n∑
i=1

(∥∥(xi, 0) + (u, v)
∥∥
N
+
∥∥(xi, 0)− (u, v)

∥∥
N

)
> (δ − γ/2)‖z‖N + 2.

Choose ai, bi, ci, di ≥ 0 with N∗(ai, bi) = N∗(ci, di) = 1 such that

ai‖xi + u‖+ bi‖v‖ = N
(
‖xi + u‖, ‖v‖

)
and

ci‖xi − u‖+ di‖v‖ = N
(
‖xi − u‖, ‖v‖

)
.

Then we have

1

n

n∑
i=1

(
ai
(
‖xi‖+ ‖u‖

)
+ bi‖v‖+ ci

(
‖xi‖+ ‖u‖

)
+ di‖v‖

)
> (δ − γ/2)‖z‖N + 2,

which implies that

ai
n

+
n− 1

n
+ 1 + 2‖z‖N > (δ − γ/2)‖z‖N + 2.

It follows that ai > 1−γ and hence that bi < ε/3 for all i ∈ {1, . . . , n}. Similarly,
we obtain that ci > 1− γ and that di < ε/3 for all i ∈ {1, . . . , n}. Therefore

1

n

n∑
i=1

(
‖xi + u‖+ ‖xi − u‖

)
≥ 1

n

n∑
i=1

(
ai‖xi + u‖ ± bi‖v‖+ ci‖xi − u‖ ± di‖v‖

)
> (δ − γ/2)‖z‖N + 2− 2

ε

3
‖z‖N

=
(
δ − γ/2− 2

ε

3

)
‖z‖N + 2

> (δ − ε)‖u‖+ 2. �

Remark. One can prove similarly to Proposition 2.11 that, if N is an absolute
normalized norm on R2 such that (0, 1) is an extreme point of B(R2,N∗) and such
that X ⊕N Y is δ-average rough for some δ > 0, then Y is δ-average rough.

Corollary 2.12. If X ⊕p Y is δ-average rough and 1 < p ≤ ∞, then X and Y
are δ-average rough.

3. Octahedrality and strong diameter 2 properties
of absolute sums

In this section, we characterize those absolute norms for which the direct sum
of two octahedral Banach spaces is octahedral. In fact, there are many such
norms besides the `1- and `∞-norms. Since octahedrality and the strong diam-
eter 2 property are dually connected, it follows that there are many absolute
norms which preserve the strong diameter 2 property. In order to present these
characterizations, we will introduce the notions of positive octahedrality and the
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c

d

1

1

Figure 1. First quadrant of the unit ball of a positively octahedral
(R2, N).

positive strong diameter 2 property. We end this section by proving that, similarly
to the Daugavet property, among all of the absolute norms the diametral strong
diameter 2 property is stable only for `1- and `∞-sums. We begin by recalling the
following equivalent formulation of octahedrality from [11].

Proposition 3.1 ([11, Proposition 2.2]). Let X be a Banach space. The following
assertions are equivalent:

(i) X is octahedral;
(ii) whenever n ∈ N, x1, . . . , xn ∈ SX , and ε > 0, there is a y ∈ SX such that

‖xi + y‖ ≥ 2− ε for all i ∈ {1, . . . , n}.
Definition. An element (a, b) ∈ R2 is positive if a ≥ 0 and b ≥ 0. Let N be an
absolute normalized norm on R2. We say that (R2, N) is positively octahedral if,
whenever n ∈ N and positive (a1, b1), . . . , (an, bn) ∈ S(R2,N), there is a positive
(c, d) ∈ S(R2,N) such that (see Figure 1)

N
(
(ai, bi) + (c, d)

)
= 2 for all i ∈ {1, . . . , n}.

Remark. Note that (R2, N) is positively octahedral if and only if there is a (c, d) ∈
S(R2,N) such that

N
(
(1, 0) + (c, d)

)
= 2 and N

(
(0, 1) + (c, d)

)
= 2.

Theorem 3.2. Let X and Y be octahedral Banach spaces, and let N be an abso-
lute normalized norm on R2. Then X ⊕N Y is octahedral if and only if (R2, N)
is positively octahedral.

Proof. (Necessity) Assume that X ⊕N Y is octahedral. Let ε > 0 and let positive
(a1, b1), . . . , (an, bn) ∈ S(R2,N). We will show that there is a positive (c, d) ∈ S(R2,N)

such that

N
(
(ai, bi) + (c, d)

)
> 2− ε for all i ∈ {1, . . . , n}.

Let xi ∈ X and yi ∈ Y be such that ‖xi‖ = ai and ‖yi‖ = bi. Since X ⊕N Y is
octahedral, there exists a (u, v) ∈ SX⊕NY such that ‖(u, v)‖N = 1 and∥∥(xi, yi) + (u, v)

∥∥
N
> 2− ε for all i ∈ {1, . . . , n}.
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Take c = ‖u‖ and d = ‖v‖. Then for every i,

N
(
(ai, bi) + (c, d)

)
= N(ai + c, bi + d)

= N
(
‖xi‖+ ‖u‖, ‖yi‖+ ‖v‖

)
≥ N

(
‖xi + u‖, ‖yi + v‖

)
> 2− ε.

The positive octahedrality of (R2, N) can now be completed by a simple com-
pactness argument.

(Sufficiency) Assume that (R2, N) is positively octahedral. Let (x1, y1), . . . ,
(xn, yn) ∈ X ⊕N Y be with norm 1 and let ε > 0. We will show that there is a
(u, v) ∈ X ⊕N Y with norm 1 such that∥∥(xi, yi) + (u, v)

∥∥
N
≥ (1− ε)(2− ε) for all i ∈ {1, . . . , n}.

Since (R2, N) is positively octahedral, there is a positive (c, d) ∈ S(R2,N) such that

N
(
‖xi‖+ c, ‖yi‖+ d

)
≥ 2− ε for all i ∈ {1, . . . , n}.

Since X and Y are octahedral, there are x ∈ SX and y ∈ SY such that

‖xi + tx‖ ≥ (1− ε)
(
‖xi‖+ t

)
for all t ≥ 0

and

‖yi + ty‖ ≥ (1− ε)
(
‖yi‖+ t

)
for all t ≥ 0.

Take u = cx and v = dy. It follows that ‖(u, v)‖N = 1 and that∥∥(xi, yi) + (u, v)
∥∥
N
= N

(
‖xi + cx‖, ‖yi + dy‖

)
≥ (1− ε)N

(
‖xi‖+ c, ‖yi‖+ d

)
≥ (1− ε)(2− ε). �

Recall (see [14]) that a Banach space X has the almost-Daugavet property if
there is a 1-norming subspace Y of X∗ such that

‖Id+ T‖ = 1 + ‖T‖
holds true for every rank 1 operator T : X → X of the form T = y∗ ⊗ x, where
x ∈ X and y∗ ∈ Y . This definition is a generalization of the well-known Daugavet
property, where Y = X∗. In [15, Propositions 2.1, 2.2], it is shown that if X
and Y are separable Banach spaces with the almost-Daugavet property, then
X ⊕1 Y and X ⊕∞ Y have the almost-Daugavet property too. Since the almost-
Daugavet property and octahedrality coincide for separable Banach spaces (see
[14, Theorem 1.1]), we immediately get from Theorem 3.2 the following stability
result for almost-Daugavet spaces.

Corollary 3.3. Let X and Y be separable Banach spaces with the almost-
Daugavet property, and let N be an absolute normalized norm on R2. Then X⊕N

Y has the almost-Daugavet property if and only if (R2, N) is positively octahedral.

In order to characterize those absolute norms which preserve the strong diam-
eter 2 property, we introduce the following notion.
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a

b

1

1

Figure 2. First quadrant of the unit ball of (R2, N) with the pos-
itive strong diameter 2 property.

Definition. LetN be an absolute normalized norm on R2. Then R2 has the positive
strong diameter 2 property if, whenever n ∈ N, positive f1, . . . , fn ∈ S(R2,N∗),
α1, . . . , αn > 0, and λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1, there are positive (ai, bi) ∈

S(B(R2,N), fi, αi) such that (see Figure 2)

N
( n∑

i=1

λi(ai, bi)
)
= 1.

Remark. Note that (R2, N) has the positive strong diameter 2 property if and only
if there are a, b ≥ 0 such that N(a, 1) = N(1, b) = 1 and N(1

2
(a, 1)+ 1

2
(1, b)) = 1.

To see this, assume first that (R2, N) has the positive strong diameter 2 property.
Consider functionals f1 = (0, 1) and f2 = (1, 0). For every k ∈ N, let positive
(aki , b

k
i ) ∈ S(B(R2,N), fi, 1/k) be such that

N
(1
2
(ak1, b

k
1) +

1

2
(ak2, b

k
2)
)
= 1.

Then bk1 → 1 and ak2 → 1 as k → ∞. Passing to a subsequence if necessary, we can
assume that sequences (ak1) and (bk2) converge, say to a and b, correspondingly.
Then N(a, 1) = N(1, b) = 1 and

N
(1
2
(a, 1) +

1

2
(1, b)

)
= 1.

For the other direction, one may take (ai, bi) = (a, 1) or (ai, bi) = (1, b).

Proposition 3.4. Let N be an absolute normalized norm on R2. The space
(R2, N) has the positive strong diameter 2 property if and only if (R2, N∗) is
positively octahedral.

Proof. (Necessity) Assume that (R2, N) has the positive strong diameter 2 prop-
erty. So there are a, b ≥ 0 such that N(a, 1) = N(1, b) = 1 and

N
(1
2
(a, 1) +

1

2
(1, b)

)
= 1.
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Let c, d ≥ 0 be such that N∗(c, d) = 1 and

(c, d)
(1
2
(a, 1) +

1

2
(1, b)

)
= 1.

This implies that (c, d)(a, 1) = (c, d)(1, b) = 1. Hence

N∗((1, 0) + (c, d)
)
=

(
(1, 0) + (c, d)

)
(1, b) = 2

and

N∗((0, 1) + (c, d)
)
=

(
(0, 1) + (c, d)

)
(a, 1) = 2.

Therefore (R2, N∗) is positively octahedral.
(Sufficiency) Assume now that (R2, N∗) is positively octahedral. So there exist

c, d ≥ 0 such that N∗(c, d) = 1 and

N∗((1, 0) + (c, d)
)
= 2 and N∗((0, 1) + (c, d)

)
= 2.

Let a, b, x, y ≥ 0 be such that N(a, y) = 1, N(x, b) = 1,(
(1, 0) + (c, d)

)
(x, b) = 2,

and (
(0, 1) + (c, d)

)
(a, y) = 2.

It follows that (1, 0)(x, b) = 1 and (0, 1)(a, y) = 1, which means that x = y = 1.
Hence

N
(1
2
(a, 1) +

1

2
(1, b)

)
= (c, d)

(1
2
(a, 1) +

1

2
(1, b)

)
=

1

2
+

1

2
= 1.

Therefore (R2, N) has the positive strong diameter 2 property. �

The duality between the strong diameter 2 property and octahedrality, Theo-
rem 3.2, and Proposition 3.4 yield the following result (however, we prefer to give
its direct proof).

Theorem 3.5. Let X and Y be Banach spaces with the strong diameter 2 prop-
erty, and let N be an absolute normalized norm on R2. Then X ⊕N Y has the
strong diameter 2 property if and only if (R2, N) has the positive strong diameter
2 property.

Proof. (Necessity) Assume that X ⊕N Y has the strong diameter 2 property.
We will show that (R2, N) has the positive strong diameter 2 property. Let
(c1, d1), . . . , (cn, dn) be positive elements in S(R2,N∗), α1, . . . , αn > 0, λi > 0 with∑n

i=1 λi = 1, and ε > 0. We will show that there are positive (ai, bi) ∈ B(R2,N)

such that ciai + dibi > 1− αi and N(
∑n

i=1 λi(ai, bi)) > 1− ε.
Let (x∗

i , y
∗
i ) ∈ SX∗⊕N∗Y ∗ be such that ‖x∗

i ‖ = ci and ‖y∗i ‖ = di for every i. Since
X ⊕N Y has the strong diameter 2 property, there are

(xi, yi) ∈ S
(
BX⊕NY , (x

∗
i , y

∗
i ), αi

)
such that ‖

∑n
i=1 λi(xi, yi)‖N ≥ 1 − ε. Take (ai, bi) = (‖xi‖, ‖yi‖). Then ciai +

dibi > 1− αi, because

ciai + dibi =
∥∥x∗

i

∥∥‖xi‖+
∥∥y∗i ∥∥‖yi‖ ≥ x∗

i (xi) + y∗i (yi) > 1− αi
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and

N
( n∑

i=1

λi(ai, bi)
)
= N

( n∑
i=1

λi‖xi‖,
n∑

i=1

λi‖yi‖
)

≥ N
(∥∥∥ n∑

i=1

λixi

∥∥∥,∥∥∥ n∑
i=1

λiyi

∥∥∥)
=

∥∥∥ n∑
i=1

λi(xi, yi)
∥∥∥
N
≥ 1− ε.

The positive strong diameter 2 property of (R2, N) can now be completed by a
simple compactness argument.

(Sufficiency) We now use an idea from [13]. Assume that (R2, N) has the
positive strong diameter 2 property. Let S1, . . . , Sn be slices of BX⊕NY defined
by norm 1 functionals (x∗

i , y
∗
i ) and scalars αi > 0. Let λi > 0 be such that∑n

i=1 λi = 1. We will show that the diameter of
∑n

i=1 λiSi is 2.

Let ε > 0. Consider the slices SX
i = S(BX ,

x∗
i

‖x∗
i ‖
, αi

2
) and SY

i = S(BY ,
y∗i

‖y∗i ‖
, αi

2
)

(if x∗
i = 0, then SX

i = BX and if y∗i = 0, then SY
i = BY ).

Since (R2, N) has the positive strong diameter 2 property, there are positive
(ai, bi) ∈ S(B(R2,N), (‖x∗

i ‖, ‖y∗i ‖), δ) such that N(
∑n

i=1 λi(ai, bi)) > 1 − δ, where
δ > 0 satisfies (1− δ)(1− αi/2) ≥ 1− αi for all i ∈ {1, . . . , n}.

It turns out that aiS
X
i × biS

Y
i ⊂ Si. Indeed, if x ∈ SX

i and y ∈ SY
i , then∥∥(aix, biy)∥∥N

= N
(
ai‖x‖, bi‖y‖

)
≤ N(ai, bi) ≤ 1

and

aix
∗
i (x) + biy

∗
i (y) > (1− δ)

(
1− αi

2

)
≥ 1− αi.

Denote by

a =
n∑

i=1

λiai and b =
n∑

i=1

λibi.

Suppose that a 6= 0 and b 6= 0. For every i, denote by

µi =
λiai
a

and νi =
λibi
b

.

AsX and Y have the strong diameter 2 property, then there are x̂, û ∈
∑n

i=1 µiS
X
i

and ŷ, v̂ ∈
∑n

i=1 νiS
Y
i such that ‖x̂ − û‖ ≥ 2 − ε and ‖ŷ − v̂‖ ≥ 2 − ε. Take

x = ax̂, y = bŷ, u = aû, and v = bv̂. Then (x, y), (u, v) ∈
∑n

i=1 λiSi, because
x, u ∈

∑n
i=1 λiaiS

X
i and y, v ∈

∑n
i=1 λibiS

Y
i . Finally,∥∥(x, y)− (u, v)

∥∥
N
= N

(
‖x− u‖, ‖y − v‖

)
≥ (2− ε)N(a, b)

> (2− ε)(1− δ).

Consider now the case where a = 0 or b = 0. Assume that a = 0. Since

{0} × SY
i ⊂ Si,
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then

{0} ×
n∑

i=1

λiS
Y
i ⊂

n∑
i=1

λiSi.

As the diameter of
∑n

i=1 λiS
Y
i is 2, there are y, v ∈

∑n
i=1 λiS

Y
i such that

‖y − v‖ ≥ 2− ε.

Thus (0, y), (0, v) ∈
∑n

i=1 λiSi. Now we have∥∥(0, y)− (0, v)
∥∥
N
= N

(
0, ‖y − v‖

)
= ‖y − v‖
≥ 2− ε. �

We now turn our attention to investigate the stability of the diametral strong
diameter 2 property. From [5] and [13], we know that X ⊕∞ Y and X ⊕1 Y
have the diametral strong diameter 2 property as soon as X and Y have the
diametral strong diameter 2 property. We end this section by proving that there
are no other absolute norms different from `1- and `∞-norms which preserve
the diametral strong diameter 2 property. Since the diametral strong diameter 2
property implies the strong diameter 2 property and the latter is stable only for
absolute norms with the positive strong diameter 2 property, we can restrict our
attention to them.

Consider an absolute normalized norm N on R2, different from the `1-norm and
`∞-norm, such that (R2, N) has the positive strong diameter 2 property. Thus,
for some a, b ∈ [0, 1) with a > 0 or b > 0, N is defined by

N(c, d) = max
{
|c|, |d|, (1− b)|c|+ (1− a)|d|

1− ab

}
for all (c, d) ∈ R2. (3.1)

Proposition 3.6. Let X and Y be nontrivial Banach spaces and let N be defined
by (3.1). Then X ⊕N Y does not have the diametral strong diameter 2 property.

We will use the following elementary lemma.

Lemma 3.7. There is a λ ∈ (0, 1) such that

N
(
2λ+ (1− λ)a, 2(1− λ) + λb

)
< 1 +N(λ, 1− λ).

Proof. Assume that λ ∈ (0, 1). Denote by

c = 2λ+ (1− λ)a and d = 2(1− λ) + λb.

It is straightforward to show directly that the condition

N(c, d) =
(1− b)c+ (1− a)d

1− ab

is equivalent to
a

2 + a− ab
≤ λ ≤ 2− ab

2 + b− ab
,

and the condition

(1− b)c+ (1− a)d

1− ab
< 1 +N(λ, 1− λ)
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is equivalent to

λ <
a

1 + a
or λ >

1

1 + b
.

Note that
a

2 + a− ab
≤ a

1 + a
≤ 1

1 + b
≤ 2− ab

2 + b− ab
,

where the first inequality is strict if and only if a 6= 0, and the last inequality is
strict if and only if b 6= 0. �

Proof of Proposition 3.6. By using Lemma 3.7, we choose λ ∈ (0, 1) such that

N
(
2λ+ (1− λ)a, 2(1− λ) + λb

)
< 1 +N(λ, (1− λ)

)
.

Denote by

δ = 1 +N(λ, 1− λ)−N
(
2λ+ (1− λ)a, 2(1− λ) + λb

)
.

Choose any ε ∈ (0, δ/2). Let α > 0 be such that if (c1, d1), (c2, d2) ∈ R2 satisfy
the conditions N(c1, d1), N(c2, d2) ≤ 1, |c1| > 1− α, and |d2| > 1− α, then

N
(
2λ+ (1− λ)|c2|, 2(1− λ) + λ|d1|

)
≤ N

(
2λ+ (1− λ)a, 2(1− λ) + λb

)
+ ε.

Fix any x∗ ∈ SX∗ and y∗ ∈ SY ∗ . Consider the slices S1 = S(BX⊕NY , (x
∗, 0), α)

and S2 = S(BX⊕NY , (0, y
∗), α). Choose x ∈ SX and y ∈ SY such that (x, 0) ∈ S1

and (0, y) ∈ S2. Assuming that the Banach space X ⊕N Y has the diametral
strong diameter 2 property, there exist (u1, v1) ∈ S1 and (u2, v2) ∈ S2 such that

Ñ :=
∥∥λ(x, 0) + (1− λ)(0, y)− λ(u1, v1)− (1− λ)(u2, v2)

∥∥
N

≥
∥∥λ(x, 0) + (1− λ)(0, y)

∥∥
N
+ 1− ε.

Since

Ñ = N
(∥∥λx− λu1 − (1− λ)u2

∥∥,∥∥(1− λ)y − λv1 − (1− λ)v2
∥∥)

≤ N
(
2λ+ (1− λ)‖u2‖, 2(1− λ) + λ‖v1‖

)
≤ N

(
2λ+ (1− λ)a, 2(1− λ) + λb

)
+ ε

= 1 +N(λ, 1− λ)− δ + ε,

it follows that∥∥λ(x, 0) + (1− λ)(0, y)
∥∥
N
+ 1− ε ≤ 1 +N(λ, 1− λ)− δ + ε,

or in other words, δ ≤ 2ε, which is a contradiction. �

Combining [5, Theorem 3.8], [13, Theorem], and Proposition 3.6, we get the
following corollary.

Corollary 3.8. If Z = X ⊕N Y has the diametral strong diameter 2 property,
then either Z = X ⊕1 Y or Z = X ⊕∞ Y .
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